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Abstract: Edge artificial intelligence (EDGE-AI) refers to the execution of artificial intelligence algo-
rithms on hardware devices while processing sensor data/signals in order to extract information
and identify patterns, without utilizing the cloud. In the field of predictive maintenance for indus-
trial applications, EDGE-AI systems can provide operational state recognition for machines and
production chains, almost in real time. This work presents two methodological approaches for the
detection of the operational states of a DC motor, based on sound data. Initially, features were
extracted using an audio dataset. Two different Convolutional Neural Network (CNN) models
were trained for the particular classification problem. These two models are subject to post-training
quantization and an appropriate conversion/compression in order to be deployed to microcontroller
units (MCUs) through utilizing appropriate software tools. A real-time validation experiment was
conducted, including the simulation of a custom stress test environment, to check the deployed
models’ performance on the recognition of the engine’s operational states and the response time for
the transition between the engine’s states. Finally, the two implementations were compared in terms
of classification accuracy, latency, and resource utilization, leading to promising results.

Keywords: convolutional neural networks; DC motor failures; EDGE-AI; internet of things;
predictive maintenance

1. Introduction

The fast-growing deployment of Internet of Things (IoT) systems to modern industrial
environments has led to the development of predictive maintenance applications that
implement prognostic algorithms to monitor the “health” conditions of an asset in order to
minimize the operational costs and ensure safety. In this context, data processing along
with cloud-based analytics are used to detect possible mechanical failures and propose
corresponding maintenance tasks. This approach is efficient in terms of accuracy; however,
time delays in data transfer, possible bandwidth saturation, or network outages render
it prohibitive in applications where hard or soft real time constraints are imposed (e.g.,
industrial environments). Thus, there is a need to shift the time delay associated with
computations to the local layer by integrating intelligence into devices at the edge of
systems. Most IoT devices provide limited resources in computing power and memory
and usually generate large amounts of data; therefore, through integrating intelligence to
them, we also reduce the cloud processing overload. This implies supporting a kind of
“consciousness” to the devices that become capable to interact with or even without an
internet connection and can be immediately adapted to rapid state changes [1].

Edge computing is economically advantageous and easier to access when compared to
cloud computing and can support a wide variety of artificial intelligence (AI) applications.
Therefore, edge computing is an important avenue in the evolution of AI and its applicabil-
ity to predictive maintenance [2]. AI has the potential to simplify the design of the complex
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processing involved in such applications and can be used also to control and classify the
processes of a production line by learning features directly from the extracted data. In effect,
the “health” control of a factory machine system and its operational conditions enables the
associated operator to anticipate and schedule the required maintenance, thus allowing
the predictive maintenance prospect to extend the operation time and life of industrial
machines and eventually save costs. By moving AI computations as close as possible to the
sensor (EDGE-AI), the scalability and responsiveness of the system can be improved and
the real-time requirements that are usually seen in industrial environments can be met [3].

In this paper, we focus on the timely and effective operational state recognition of a
direct current (DC) motor, which is an essential element of practical interest in industrial
environments. In this domain, motors are inspected on a regular basis to ensure their
efficient operation. The main causes of faults in electrical motors include electric over-
load, low resistance, overheating, dirt, moisture, and vibrations [4–6]. The maintenance
plan is performed through the identification of the causes of the aforementioned failures
and the execution of proper actions to mitigate them or to lower their impact. The oc-
currence of operational problems should, therefore, be resolved in short timeframes to
avoid further failures. Within this scope, possible motor failures have to be detected on
time, since this is crucial to avoid adverse effects during the operation of the overall setup
and instrumentation.

By eliminating the need of data transfer to the cloud, EDGE-AI can increase the
inference speed of a motor’s operational state recognition. A direct consequence, in terms
of the motor’s operation, is the improved safety and reduced maintenance costs. In terms of
reliability of the maintenance system, potential problems due to poor network connectivity
can be avoided, since no internet connection is required.

Within the outlined context, we present the design and implementation of a con-
volutional neural network (CNN) on a micro-controller board that supports digital om-
nidirectional microphones to sense the sound and infer the operational states of a DC
motor. Two methodological approaches are implemented, each of them based on a different
open-source EDGE-AI tool. The experimental results demonstrate the applicability of the
proposed EDGE-AI solutions to the timely and effective operational state recognition of a
DC motor for the purpose of its predictive maintenance.

In summary, the contributions of this article towards the implementation of EDGE-AI
nodes for operational state recognition of DC motors are:

• An architecture design of the EDGE-AI implementation and the frequency analysis
of an audio dataset [7] for a DC motor’s operational states. We show, in detail, how
the sound signal is digitally processed and interfaced with the deep learning (DL)
algorithm.

• Two design methodologies for the implementation of CNNs on microcontroller units
(MCUs). We evaluate the utilization of HW resources, along with the model training
and validation processes.

• The simulation of a stress test experimental setup, which included slight variations
in the environmental noise gain, so as to evaluate the performance of our EDGE-AI
solutions in conditions close to a real industrial environment. More concretely, the
inference performance is measured with respect to the resulting speed and accuracy,
two criteria crucial for the stringent real-time conditions of an industrial environment.

To the best of our knowledge, this the first piece of work to be reported in the liter-
ature that presents and analyzes, in detail, the implementation of CNNs on MCUs (two
methodologies), for the operational state recognition of DC Motors, based on sound signal
processing and classification. It is shown that our implementation is suitable for EDGE-
AI classification, which can be incorporated into a predictive maintenance process for
industrial environments.

The rest of the paper is organized as follows. Section 2 reviews the related work
in the field of DC motors’ predictive maintenance and the incorporation of EDGE-AI
features. Section 3 gives an overview of the characteristics of the dataset used for the
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training and testing of the deep learning models and introduces the necessary definitions
for sound signal processing and the key components for the real-time execution of these
models on the edge. Section 4 presents the architecture of the EDGE-AI node and the
flow of data operations. Section 5 describes the two design methodologies and evaluates
their performance in various environmental sound conditions in terms of the real-time
classification capabilities of the generated CNN models. Section 6 compares the EDGE AI
implementation against a cloud computing solution. Finally, Section 7 concludes the paper
and provides insights on future research directions.

2. Related Work

A recent analysis on the adoption of IoT technology [8] reported that a share of 29%
of the industry has been invested in the deployment of real-time IoT sensor data and AI
techniques to determine when maintenance should be performed on specific equipment.
As a consequence of this trend, predictive maintenance has enabled the active monitoring
of highly critical assets by aggregating and analyzing in real time multiple sources of data,
such as temperature, humidity, sound, vibration, and noise. Within this context, several
methods of maintenance have been proposed for the diagnosis of DC Motor faults and
the state of their operation conditions. Table 1 summarizes the main characteristics of
the methods presented in the literature. The shown methods are classified based on the
monitoring variables of the DC motor operation, the employed diagnostic algorithm and
the use or absence of cloud support.

Specifically, authors in [9] presented an approach for fault recognition in induction
motors using a low-cost Arduino-based sensor system for control. Their method utilized a
fault recognition system, a speed control system, and a data collection system. In another
approach, Ref. [10] presented a fault diagnosis method for DC motors at the early stage
based on machine learning models. A dual-tree complex wavelet packet transform was
applied to extract the features of current measurements and a support vector machine
(SVM) classifier was used to diagnose the faults. As a second approach, a CNN was used
for classification, while in another variant a combination of CNN and recurrent neural
network (RNN) was employed to classify the faults. The final decision upon the adoption
of the model was dependent on the signal-to-noise ratio (SNR) value. Additionally, authors
in [11] addressed the problem of the fault tolerant control of a DC motor, based on a cloud-
assisted system. With this type of control strategy, they combined network resources and
computing resources to reduce the cost of various control tasks.

In [12], the fault diagnosis of DC motors was based on the implementation of decision
trees for the analysis of audio signals. For the experimental evaluation, defects were
created using electrical discharge machining (EDM) to keep the size of the defects under
control. Furthermore, authors in [13] presented a similar technique, according to which
the diagnosis was composed of two processes: the pattern creation process and the pattern
recognition process. In the analysis, acoustic signals from the DC motor were used to
identify the motor’s operational conditions. The motor states considered were: a “Healthy”
DC motor, a DC motor with six short-circuited rotor coils, and a DC motor with a damaged
coil and six short-circuited rotor coils.

In another methodology, the authors of [14] described a method of bearing fault
detection using widely accessible audio tools. In the experiments, audio measurements
from a smartphone and a USB microphone, as well as vibration measurements from
an accelerometer were collected for an induction motor, showing a number of bearing
irregularities. The faults were classified using a Matlab routine for executing the SVM
analysis [15]. In [16], the authors present a sound-based fault diagnosis technique where
five engine states were identified: healthy motor, motor with damaged rotor coil, motor
with short-circuited stator coil, motor with a broken tooth in the gear, and motor with
damaged gear. The following methods were used to classify the engine conditions from
the extracted features: nearest neighbor (NN), nearest mean (NM), self-organizing map
(SOM), and backpropagation neural network (BNN). The proposed technique using a
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one-dimensional convolutional neural network (1-DCNN) in [17] had the limitation that if
the engine operated quietly, it was difficult to get good results. In [18], a method of fault
detection in motors with rotating elements based on audio signals was proposed. The
classification process was performed with an artificial neural network (ANN) using back
propagation.

Table 1. Analysis of the methods used for the diagnosis of the DC motor faults.

Related
Work

Monitoring
Variable

Diagnosis
Algorithm

Computation
Unit

Cloud
Support

[9] Speed, temperature,
current, and voltage Simple Heuristic Arduino and Local

PC No

[10] Current SVM, CNN, and LSTM Local PC No

[11]

armature winding
current, resistance,
input voltage and
inductance, rotor

angular speed, and
torque constant

Output feedback
approximate dynamic

programming

Cloud
Connectivity Yes

[12] Audio signals Decision tree learning Local PC No

[13] Acoustic signal Linear discriminant
analysis, NN, and NM Local PC No

[14] Acoustic signal and
Vibration SVM

Local PC,
microphone, and

smartphone
No

[16] Acoustic signal NN, NM, SOM, and
BNN Local PC No

[17] Vibration signal 1-DCNN Local PC No
[18] Acoustic signal ANN Local PC No
[3] Vibration DNN MCU No

[19] Acoustic signal of car
engines ANN, CRNN MCU No

This Work Audio signal CNN MCU No

The related work also includes proposals for the deployment of EDGE-AI on micro-
controllers for predictive maintenance and sound-based classification. The experimental
setup that is described in [3] shows how AI can be used effectively to recognize and classify
loads in a drivetrain using an STM32 microcontroller. For this purpose, an accelerometer
was used to measure the vibrations of the system. In addition, the same study illustrates
how DNNs are constructed and trained for classification purposes and how the MCU
code library and the compressed AI model are then automatically created with the X-
CUBE-AI tool [18]. The training of the DNN model was performed using the Keras Python
library [19]. Additionally, in [20], an audio classification method based on a microcontroller
is also demonstrated. This application focuses on classifying sound signals produced by car
engines in order to manage traffic in urban centers. The methodology used ANNs running
on a microcontroller with a microphone, without need for a durable connection to a server.
The application was executed on the STM Sensortile Kit board with 128 KB RAM and 1 MB
flash memory [21]. First, the MFCCs (mel-frequency cepstral coefficients) were extracted
for audio pre-processing. The classification of audio events was based on a pre-trained
convolutional recurrent neural network (CRNN).

Taking into consideration the aforementioned approaches, this work addresses two
major challenges: (i) Is it possible to identify the operational states of a DC motor using only
acoustic signals without attaching extra sensors to it (e.g., accelerometers or gyroscopes
to capture vibrations and changes on the positions of the moving parts, stator current
measurements)? (ii) Is it possible to implement an AI algorithm on a resource-constrained
MCU that is interfaced to a microphone to perform the inferences without sending data
to the cloud? Within this context, the proposed work focuses on the implementation of
AI on a resource-constrained MCU to perform sound classification in order to identify the
operational states of a DC motor and diagnose faulty conditions in real time. In comparison
to the related work, we define the architecture of the signal-processing path required to
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transform and feed the audio signals, captured from the on-board microphone to the CNN.
Additionally, the design methodologies used in both industry and academia for the CNN
implementation on MCUs are analyzed and assessed. Furthermore, EDGE-AI and cloud
computing modes are evaluated in terms of latency and data transfer. To this end, we
demonstrate how this EDGE-AI approach can help to optimize predictive maintenance
processes by increasing efficiency and reducing costs in the business operational flows of
industrial environments.

3. Methods and Materials
3.1. DC Motor Dataset

The proposed technique and its implementation were tested and validated using the
IDMT-ISA-ELECTRIC-ENGINE dataset [7] from Fraunhofer Institute for Digital Media
Technology (IDMT). This dataset consists of audio recordings from a DC motor for three op-
erational states of the motor (“good”, “broken”, “heavy load”). The dataset was generated
using the ACT Motor Brushless DC 42BLF01, 4000 RPM, 24VDC. The measurements were
taken through an improvised microphone with the following parameters: frequency range
50 Hz to 20 kHz, voltage range 2 V to 10 V, omnidirectional, sensitivity −35 dB ± 4 dB.
Additionally, to record the data we used 44,100 Hz sampling frequency, 32-bit resolution,
mono audio, and WAVE format.

For the audio signals recording, three identical motor units were employed to simulate
different sound situations. The first motor operated at 60% of the supply voltage and
represented the “good” operating state. For the second motor, the supply voltage varied
every 18 ms between 15% and 75% of the supply voltage to represent the “broken” operating
state. The “heavy load” case was set when an additional load was applied to the third
motor, with a supply voltage of 60% of the nominal. The dataset consists of the audio
recordings of the electric DC motor in combination with the presence of the following types
of sound environments:

• Pure—recordings without the presence of other sounds or noise.
• Talking—recordings with the presence of sounds from people talking outside the case

surrounding the device.
• White noise—recordings in the presence of white noise played by speakers outside

the case surrounding the device.
• Atmo—recordings with the presence of sounds from a factory environment in three

volume levels (low, medium, high) that were reproduced using speakers.
• Stress test—recordings with slightly changed gains at the input, simulating variations

in the setup.

Table 2 lists the audio recordings with their type and duration included in the IDMT-
ISA-ELECTRIC-ENGINE dataset. All recordings are equally divided into three classes
(good, broken, heavy load) in terms of their duration. The duration of each individual
sample is 30 s. The frequency response is shown in Figure 1.

Table 2. Audio recordings from the IDMT-ISA-ELECTRIC-ENGINE dataset.

Type of Audio Recordings Duration (min)

Pure 15
Talking 18

Atmo (High) 9
Atmo (Medium) 9

Atmo (Low) 9
White Noise 9
Stress Test 6
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3.2. Basic Definitions

Henceforward, we provide the basic definitions for the terminology and the concepts
used throughout the next sections of the paper.

3.2.1. Mel-Scale

Log-mel spectrograms and the associated MFCCs are used extensively in deep learn-
ing frameworks for various tasks, such as emotion recognition, audio classification, and
automatic speech recognition (ASR) [21]. Log-mel spectrograms are produced by applying
the mel-scale transform of the sound data and afterwards the logarithmic scale conversion.
The MFCCs correspond to the coefficients that define a mel-frequency cepstrum representa-
tion of the short-term power spectrum of a sound, based on a linear cosine transform of a
log power spectrum on a nonlinear mel-scale of frequency. Furthermore, the conversion to
mel-scale is the result of the nonlinear transformation of the frequency f (Hz) into m (Mels),
as shown in Equation (1) [22].

m = 2595log(1 + f /700), (1)

3.2.2. Convolutional Neural Networks (CNN)

A CNN consists of a set of nodes organized in multiple layers by stacking many
hidden layers on top of each other in sequence, which receive inputs from a previous layer
and compute an output from a weighted and biased sum of the inputs in a feed-forward
and hierarchical manner. During training, data is introduced to the input layer of the
network, and the output of each layer is sent to the next one. The last or the so-called
output layer yields the model’s predictions, which are compared to the known expected
values to evaluate the model error. The training process involves refining or adjusting the
weights and biases of each layer of the network at each iteration using a process called
back-propagation, until the output of the network closely correlates with the expected
values. Therefore, the network iteratively learns from the input dataset and progressively
improves the accuracy of the output prediction.
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3.2.3. Softmax

The softmax function is a generalization of the logistic function to multiple dimensions
and is applied to multinomial logistic regression or performed during the last activation
function of a neural network, where it normalizes the output of a network to a proba-
bility distribution over predicted output classes. The standard (unit) softmax function
σ : Rk → [0, 1]k is defined in Equation (2) [23]:

σ(z)i =
ezi

∑k
j=1 ezj

(2)

for i = 1, . . . , k and z = (z1, . . . , zk) ∈ Rk.

3.2.4. Rectified Linear Unit (ReLU)

In the context of artificial neural networks, the rectifier or ReLU activation function is
an activation function defined as the positive part of its argument f (x) = max(0, x), where
x is the input to a neuron [23].

3.3. Design Methodology for Artificial Intelligence Implementation on Edge and IoT Devices

We followed two variants of a design flow using appropriate environments for the
integration of a neural network into an MCU, i.e., the STM software tools [18] and the Edge
Impulse platform [24]. The implemented models were trained and evaluated using the
sound dataset mentioned before [7]. Figure 2 depicts the steps of the two aforementioned
approaches towards the AI models’ implementations on the STM32 Discovery Kit IoT node
board [25] in order to present a high-level description regarding the different processes
during the progression of the entire development for each technique. The board featured an
ARM Cortex-M4 CPU with 64-Mbit Flash memory, Bluetooth, Wi-Fi and LoRa connectivity,
Dynamic NFC tag, two digital omni-directional microphones, and various peripherals
and sensors. The implementation based on STM’s tools included pre-processing, feature
extraction, and data labelling of the sound dataset, which were eventually fed to the selected
neural network for training and evaluation of its performance. The successful completion
of the training process was determined by the accuracy, as well as the loss function.

The accuracy was required to be as high as possible at the end of the training process,
following a smooth progression over the epochs. On the other hand, the loss had to be as
low as possible at the end of the training process, following a smooth reduction over the
epochs. At the end of the neural network training process, we extracted the trained model
in order to import it to the STM’s CubeMX software tool [18]. The model can be inserted
in several forms, such as .h5, but it is preferable to be extracted in the most compressed
form possible, especially if it is a large network, because it will be imported after further
compression into a microcontroller device with limited memory capacity. Therefore, the
trained model was transformed to a TensorFlowLite format. This conversion was based
on a post-training quantization. Such a process focuses on the reduction in the trained
model’s size and the improvement at the CPU level towards increasing the inference speed.
Subsequently, for the model’s compression stage through CubeMX, it was necessary, firstly,
to select the board on which the project will run on. Then, we selected the X-Cube-AI as
an additional software tool. This particular software tool was able to convert a trained
model in a form that could run on an STM microcontroller. After the completion of this
step, we imported the trained model into X-Cube-AI. It was then necessary to analyze the
model through the software tool to ascertain whether it fitted to the selected microcontroller.
The analysis outputs included the RAM and flash memory occupation of the model, as
well as the multiply and accumulate (MACC) number, which represents the number of
operations to perform the inference. If the RAM and/or flash memory occupation of
the model exceeded the board’s limits, there was a compression choice available. If the
compression failed to drop the memory occupation enough so that the model can fit to the
selected board, then post-training quantization would be needed, as we already mentioned.
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If the post-training quantization and the extra compression provided by X-Cube-AI was
not adequate, then the topology of the neural network would need to be changed in a way
to allow the model to properly predict its classes. The next step was the model’s validation
on the desktop by using either random numbers or by importing a test set from the dataset
on which the model had been trained on. The validation on desktop stage performed a
comparison of the original model trained in Python and the compressed model produced
by the X-Cube-AI tool, so that the user can realize whether they converge or not. After the
validation on desktop, it was necessary to configure the application by going to platform
settings and selecting the appropriate COM port. Moreover, it was important to configure
the Pinouts and the clock according to the peripherals to be used via the application that
will run on the board. Finally, we needed to generate the C-code project by selecting
the preferred Toolchain/IDE. The generated code contained the topology of the neural
network, as well as other key functions for the application functionality. The final stage
involved programming all the necessary functions appropriately, debugging, and flashing
the executable program on the board.
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Edge Impulse [24] is a platform that can be used for AI projects on embedded devices.
The methodology for deploying a project end extracting the executable program was simple.
Initially, we needed to connect the board to be used with the Edge Impulse environment.
Next, we imported the data to be used for the training part, as well as for validation
and testing. The procedure took place either by importing the data files from a PC or
by collecting the data directly from the board’s sensors. When importing the data, we
also needed to label them according to the classes of the AI project. Then, through the
“Create Impulse” tab, an impulse was created that takes raw data, uses signal processing to
extract features, and then employs a learning block to classify new data. When the signal
processing method (e.g., MFCCs) and the learning block (e.g., neural network) are chosen,
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it is necessary for them to be configured according to their parameters. Edge Impulse
provides a proposed parameter setup for each method. After setting all parameters for the
feature extraction, as well as the learning method, the model was ready for training. At the
end of the training process, Edge Impulse displayed a panel where the model’s performance
was depicted. Moreover, a “Live Classification” option was provided, whereby connecting
the board to be used, Edge Impulse could capture data from its sensors and could also
classify them based on the trained model. Through the “Model Testing” tab, test data could
be classified, and the user could thus decide if the model is efficient enough. The final
phase was the deployment of the model (“Deployment” tab), which involved the selection
of the inference engine and the output format. The binary file could be extracted directly
from Edge Impulse for a variety of boards.

The main differences of the two methods are summarized as follows: (i) although the
STM tools supports only the automated conversion of a trained model into an equivalent C
model, it requires that the entire pre-processing, feature extraction, and model’s training
have to be performed manually and through iterations (ii) Contrarywise, Edge Impulse
platform provides a more automated solution, where the engineer just pre-configures all
the associated parameters for the entire process, taking into account the problem’s domain
(in our case sound processing and deep learning). (iii) An EDGE-AI implementation based
on the STM approach provides more degrees of freedom for the developer but it requires
full expertise in machine learning/deep learning and embedded systems, while Edge
Impulse exhibits a more user-friendly approach, albeit more constrained in development
interventions by the user.

4. EDGE-AI Node Architecture and Operating Process

Figure 3 depicts the block diagram of the DC motor’s operational state recognition
via the utilization of the EDGE-AI node, along with the data flow procedures from audio
signal reception until its processing by the neural network that runs on the board and
the generation of the inference. The sampling frequency of the digital omnidirectional
microphones (i.e., MP34DT01 module) of the STM32 IoT node [25] is 16 kHz (16 bit,
1 channel), which means that the acquired digital signal is represented in PDM (pulse-
density modulation) format. Therefore, through the peripheral DFSDM (digital filter for
sigma-delta modulators) that handles the sound of the microphones, the PDM samples
are collected and converted to PCM using the peripheral configurations, where the output
sampling frequency is set to 16 kHz and the output signal resolution at 16 bits. The
PCM samples are then stacked in a 1024 sample rolling window with 50% overlap. Every
millisecond, a DMA (direct memory access)-based interrupt is received with the last 16
PCM (pulse-code modulation) audio samples. The DMA controller supports the transfer
of data from peripherals and memories without being loaded into the CPU. For every 512
samples (i.e., 32 ms), the buffer is inserted into the pre-processing process to extract the
attributes. The pre-processing process outputs audio features to a LogMel spectrogram
(30 × 32). For computational efficiency and optimization in memory management, this
processing step is divided into two parts. The first part calculates one of the thirty-two
columns of the spectrogram from the time domain for the input signal on the mel scale,
using the fast Fourier transform (FFT) and the application of 30 mel filters. In the second
part, when all 32 columns of the spectrogram are calculated (after 1024 ms), a log-scale
conversion is applied to the Mel-scale spectrogram, thus shaping the input features for the
neural network that runs on the MCU. Every 1024 ms, the (30 × 32) LogMel spectrogram is
fed to the input of the neural network, which, in turn, classifies it into the outputs: “good”,
“broken”, and “heavy load”.
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EDGE-AI node.

5. Methodological Approaches—Results
5.1. EDGE-AI Implementation Based on STM’s Tools

The Python programming language was used for pre-processing the audio data from
the audio dataset [7], feature extraction, and model’s training process. The STM32CubeMX
tool and its extension, X-CUBE-AI [18], were then used to convert the neural network into
a format that allows it to be added and operated in the STM32 IoT node [25]. The Python’s
Librosa library [26] was utilized for data pre-processing. Initially the audio samples were
subject to resampling from 44.1 kHz to 16 kHz. The data was then divided into smaller
subsections for the creation of 32-column LogMel spectrograms. Subsequently, FFT was
applied on sections for the conversion from the time domain to the frequency domain. The
length of FFT was 1024 samples, with the hop length [26] being 512 samples. Next, data
was converted to Mel scale by applying 30 triangular overlapping filters, and consequently
were converted into LogMel spectrograms of 30 × 32 size. These features were used to
train, validate, and test the model after being normalized with Z-score normalization.
The particular normalization involves redefining features so that they have the properties
of a standard normal distribution with an average of zero and a standard deviation of
one [27,28]. During the training process, the accuracy and loss of the model on the data
were evaluated. Therefore, the dataset was separated into training and validation sets to
assess the accuracy and loss at the end of each training session. The testing set was only
used for the final evaluation as unseen data. Specifically, 25% of the total dataset for the
testing set was randomly selected. Then, from the remaining 75%, 25% was again randomly
selected for the validation set, while the remaining dataset represented the training set.

We used a sequential model, implemented in Keras [19], to build the CNN model
layer by layer. The CNN consists of two convolutional layers (Conv2D), two max pooling
2D layers, one flatten layer, and two dense layers. Specifically, the first convolutional layer
was placed, which received a LogMel spectrogram as input as a two-dimensional matrix
30 × 32 in the form (30, 32, 1) (l × m × r). The number of filters was 16 with a size of
3 × 3 (n × n). In general, in CNNs the number of filters is smaller than the dimension of
the input data. This option was preferred because it allowed the same filter (weight set)
to be multiplied by the input panel multiple times at different input points. As a result of
the first layer, 16 feature maps of size (l − n + 1) × (m − n +1) were produced, i.e., 28 × 30.
ReLU was selected as the activation function. Each feature was then sampled using a max
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pooling layer in 2 × 2 continuous areas, maintaining the maximum value from each area.
As a result, the out was reduced to 14 × 15.

The second convolutional layer had the same 16 filters of size 3 × 3, and ReLU
activation function. As before, there was a max pooling layer after the convolutional layer
with sampling in 2 × 2 continuous areas. The output of the second convolutional layer was
12 × 13, while the output of the second max pooling layer was 6 × 6. After the second max
pooling layer, a flatten layer follows, which results in the consolidation into one column of
size 576. Finally, two dense layers were used, the first with nine units and ReLU activation
function, and the second with three units and a softmax activation function. The choice of
softmax was made, as in the case of the second layer, due to the multiclass classification
nature of our problem, where the three units represented the three classes (i.e., “good”,
“broken”, and “heavy load”). The model’s output constitutes a probabilistic classification
for every spectrogram fed in the CNN, regarding the three classes (i.e., three percentage
indications, one for each of the class). The data for training and validation was set with
batch sizes equal to 500, and 10 epochs were used for the training process, due to the fast
convergence that was observed at a high accuracy value, as well as at a low loss value.
Specifically, after the 10th epoch, a training accuracy of 99.91% and a validation accuracy of
99.87% were achieved. Regarding the loss, a training loss of 0.0073 and a validation loss of
0.0074 were achieved. For the confusion matrix shown in Table 3, 31,902 testing features
were used that correspond to 25% of the complete dataset.

Table 3. Confusion matrix of the Keras CNN model for the implementation on STM tools.

Good Broken Heavy Load

Good 10,637 1 2
Broken 0 10,587 8

Heavy load 32 0 10,635

In order to deploy the trained model into the STM32 Discovery kit IoT node, it must
be saved in a format so that the X-CUBE-AI tool can create the corresponding optimized C
model for the specific STM32 device. The model was initially saved in .h5 format (HDF5
file), but for further optimization a conversion to TensorFlowLite model was performed.
This transformation reduced the size of the model while it also reduced the transfer delay to
the CPU and improved the hardware acceleration at a small cost in terms of model accuracy.
Specifically, it was chosen to apply integer quantization, an appropriate choice for the use
of models in MCUs. This process essentially converts 32-bit floating-point numbers, such
as weights and activation outputs, to the nearest 8-bit fixed-point numbers. The end result
was a .tflite format.

After the completion of the previous procedures, the produced TensorFlowLite model
was inserted into the X-Cube-AI tool of the CubeMX environment. The tool performed the
weight compression of the CNN, the merging of network layers optimization regarding
the utilization of RAM and ROM, and the generation of a C-based model of the CNN,
which comprises all the necessary files for the topology, weights, and bias of the CNN.
The complexity of the C-model was 501428 MACC and the utilization of the flash and
RAM memory was 7.65 Kbytes and 5.52 Kbytes, respectively. After extracting the necessary
libraries to produce the project in the CubeIDE environment for the final deployment stage,
there was a validation process that was performed on the board by importing data from the
testing dataset used for the corresponding procedure in Python. After the model’s analysis
completion in X-CUBE-AI, there were two network forms (i.e., the original TensorFlowLite
model and the generated C model), as illustrated in Figure 4. Specifically, the boxes
representing the layers also contain information, such as flash memory consumption and
the number of MACC operations. As a visual effect, it can be observed that in the created
neural network (Figure 4), the convolutional layers are joined with those of the pooling, as
well as those of the nonlinear ones (activation functions). Furthermore, the generated CNN
model’s architecture has been differentiated from the initial model.
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It was observed that the largest percentage of the execution time was concentrated
in the optimized convolutional layers and that the total execution time was 40.767 ms,
which constitutes a very satisfactory result. Moreover, the C-model showed a very good fit
to the control data; as 100% accuracy was obtained, root mean square error (RMSE) was
only 0.001059 and medium average error (MAE) was 0.000112, where imported network’s
forecasts were taken as reference values for the comparison. Finally, the confusion matrix
(using 1901 samples) for the control process based on the C-Model is presented in Table 4.

Table 4. Confusion matrix of the generated C-Model.

Good Broken Heavy Load

Good 664 0 0
Broken 0 574 0

Heavy load 0 0 633

5.2. EDGE-AI Implementation Based on Edge Impulse Environment

A second implementation was based on Edge Impulse environment that facilitates
a more automated development process. This environment does not require an in-depth
intervention by the designer during the entire development procedure. After importing
the audio files into Edge Impulse, the data was split to 1 s windows with a 0.5 s overlap.
For feature extraction, the mel frequency cepstral coefficients (MFCC’s) option for audio
pre-processing was chosen. Moreover, FFT was performed with a length of 256 samples
with 20 ms frame length. Subsequently, 32 mel filters and 13 cepstral coefficients were
selected. Another important step for the development of the methodological approach
based on the Edge Impulse environment was the development and training of a CNN
model with a different architecture, in comparison with the model that was developed in
the first methodological approach (i.e., the approach based on the STM tools).

Specifically, the input (i.e., MFCC spectrograms) feeds the first layer of the CNN. The
spectrograms were converted during their passage through the intermediate layers into
three numbers that represented the probabilities representing each sample’s classification to
“good”, “broken”, and “heavy load” class. For the intermediate layers, initially, a reshape
layer was placed. The first convolutional layer had one-dimensional convolution window
length (Conv1D); it included 30 filters, kernel size 5, and activation function ReLU. Next,
there was a max pooling layer, with pool_size = 5. Subsequently, the second convolutional
layer (Conv1D) was placed, which had 10 filters and the same other parameters as the first
convolutional layer. A max pooling layer followed, configured with the same parameters
as the first max pooling layer. After the second max polling layer, a flatten layer was
placed and finally a dense layer with softmax as activation function. Adam was used as an
optimizer, while the categorical cross entropy function was chosen as a loss function and
the accuracy metric for the model’s performance evaluation. Finally, 90 epochs were used
for the training process of the model.

After having selected the STM32 Discovery Kit IoT Node board from the platform, it
was possible to choose between two options for the CNN’s deployment, the quantized and
the non-optimized model. The quantized model was selected because it presented better
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performance in memory levels (RAM and ROM), as well as in response time, compared
to the non-optimized model. The accuracy of the quantized model was 93.3%, while
the corresponding one for the non-optimized model was 93.38% (negligible difference).
The Edge Impulse automatically produced the .bin executable file that could be executed
directly on the board.

The results from the CNN model’s training in the Edge Impulse environment for
90 epochs, in terms of accuracy and loss, are provided in Table 5, which also illustrates
information regarding the inference time, maximum RAM, and ROM usage for the model.
It is noted that the performance of the model was calculated based on the characteristics
of the STM32 Discovery Kit IoT node (Cortex-M4) and the compiler Edge Impulse EON.
The confusion matrix on the control data is listed in Table 6. We observe that the model has
high accuracy and a low loss. Additionally, the inference time is very satisfactory, as well
as the consumption in RAM and ROM. The performance of the model in the testing data is
also very good, as is shown in the confusion matrix.

Table 5. Performance characteristics of the Edge Impulse model.

Metrics Values

Accuracy (%) 97.8
Loss (%) 0.06

Peak RAM Usage (Kbytes) 7.0
ROM Usage (Kbytes) 38.2
Inference Time (ms) 16

Table 6. Confusion matrix of the generated Edge Impulse implementation.

Good Broken Heavy Load

Good 504 5 4
Broken 4 479 0

Heavy load 13 7 512

5.3. Real-Time Performance Monitoring and Test Results

The test environment included a set of digital speakers, where we played the record-
ings created by joining audio samples from the dataset [7] that were not used in models’
training processes. Therefore, for each model, the audio clips were played from the speak-
ers that were placed on either side of the STM32 Discovery Kit IoT Node while, at the same
time, each model was executed on the board. Finally, the results regarding the classifica-
tion performance of the models, as well as their response time regarding the transition of
the DC motor from one state to another, were analyzed. Three cases were simulated to
calculate the response time of the two implemented CNN models capturing DC motor’s
state alternations for each one of the surrounding environment assumptions (pure, atmo
High, atmo Medium, atmo Low, talking, white noise, and stress test). These cases were:
(i) good-to-broken transition, (ii) good to heavy load transition, (iii) heavy load to broken
transition. In addition to the operating environment assumptions provided by the dataset,
a custom stress test was simulated during which pure recordings were reproduced, for
each of the above three cases of the engine’s state change, with the simultaneous presence
of noise generated at the site of the experiment (e.g., speech, impulsive strong noises,
music). We analyzed the test results by defining representations of the probabilities for the
predictions of the implemented CNN models per sample recording in order to give a visual
demonstration for all the simulated environmental assumptions.

The diagrams of the recording results of the measurements for the recognition of the
DC motor’s operating states consist mostly of 60 measurements for the STM-based CNN
model and 18 measurements for the Edge Impulse-based CNN model. This difference
in the number of measurements taken between the two models was due to the fact that
the STM model performed continuous sampling with the processed samples entering the
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CNN every 1024 ms for an inference time of 40.767 ms, while for the Edge Impulse model
there was a time interval of 2 secs for starting each measurement, 1 sec sampling duration,
16 ms latency, 337 ms for DSP calculations, and 36 ms for classification time. Indicatively,
Figures 5 and 6 illustrate the live classification’s performance of the two CNN models,
where the horizontal axis represents the audio samples and the vertical axis represents the
percentage indications for each of the three classes and for each sample.

The STM CNN model’s performance in the presence of the pure environment was
satisfactory and accurate for all of the class transition experiments. As for the custom
stress test environmental background, it is, firstly, noted that for the heavy load to broken
transition experiment, the model performed well for the broken class, but there was a
relatively lower probability of classification on average for the heavy load class, which
nevertheless maintains the reliability of the model (>50%). On the other hand, the Edge
Impulse model exhibited an accurate classification capability in the presence of the pure
background environment for every class transition scenario. Contrariwise, at the custom
stress test background environment, there were many fluctuations within the course of
the prediction percentages over the audio samples, while the model presented a few
misclassifications. Therefore, in the presence of severe noise, there is a possibility that good
and heavy load classes exhibit the same signal levels and may cause further delay in the
CNN model to converge. This was noticeable in Figure 6 where the EDGE-AI was tested
under stress test conditions.

Furthermore, Tables 7 and 8 summarize the test results for the two models by pro-
viding the average percentage indications of each one of them for all measurements and
environmental backgrounds during playback of each class, as well as the transition re-
sponse times, regarding the transition from one class to another. In Table 7, we observe that
the STM model performed sufficiently on the recognition of every class, as well as on the
response time between the transitions from one class to another. Specifically, it is worth
noting that the only difficulty observed for the STM model’s prediction success was for the
broken class at the custom stress test environment during the good to broken transition
experiment, because it presented an average percentage of 61%. Nevertheless, these slight
difficulties of the model for these environments are justified because the background noise
was intense. As for the response time of the model between the class transitions, it was
found sufficient because most perceptions of the transition took place in under 5 s. On the
other hand, Table 8 shows that generally, the Edge Impulse model was capable of correctly
classifying every class in all the rest of the environmental backgrounds, except for the
stress test environment during the good to broken transition, where it exhibited an average
percentage of 54.9%. As for the response time of the model to observe a transition between
two classes, in most of the cases, the model needed less than 4 s to recognize a change
between the DC motor’s operational states.

5.4. Models’ Performance Analysis and Evaluation of Test Results

The performance comparison between the two models (STM and Edge Impulse) was
based on the set of results obtained from the experimental tests during their execution on the
STM32 Discovery Kit IoT Node, the differences of the two implementations regarding the
resources’ utilization, and the capability of developing an integrated application. It is noted
that both models demonstrated the ability to adequately detect the various engine operating
states for the full range of experiments performed, in terms of average classification success
rates (>50% in all cases) and response times regarding the transition between operational
conditions, which makes them both capable to be used for the valid and timely detection of
the DC motor’s three states (i.e., good, broken, and heavy load).
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Table 7. Average percentage indications for each class and environmental background, along with
transition response times between classes for the STM’s methodology model.

Pure Atmo Medium White Noise Custom Stress Test

Good-to-Broken DC Motor State Transition
Good class average

percentage (%) 92 89 84 82

Broken class average
percentage (%) 89 89 91 61

Transition response time
between classes (s) 4.46 4.61 4.25 5.22

Good to Heavy Load DC Motor State Transition
Good class average

percentage (%) 90 90 89 89

Broken class average
percentage (%) 87 79 84 58

Transition response time
between classes (s) 5.43 4.86 4.63 9.07

Heavy Load to Broken DC Motor State Transition
Good class average

percentage (%) 89 83 78 56

Broken class average
percentage (%) 89 88 89 72

Transition response time
between classes (s) 3.68 4.16 3.97 4.54

Table 8. Average percentage indications for each class and environmental background along with
transition response times between classes for the Edge Impulse methodology model.

Pure Atmo Medium White Noise Custom Stress Test

Good to Broken DC Motor State Transition
Good class average

percentage (%) 87.2 87.1 80.4 54.9

Broken class average
percentage (%) 99.6 85.7 99.6 92.5

Transition response time
between classes (s) 3.31 3.94 2.13 2.62

Good to Heavy Load DC Motor State Transition
Good class average

percentage (%) 95.9 95.8 96.4 72.6

Broken class average
percentage (%) 99.6 99.2 99.6 84.6

Transition response time
between classes (s) 2.92 5.17 3.96 5.8

Heavy Load to Broken DC Motor State Transition
Good class average

percentage (%) 99.6 99.5 97.7 84.9

Broken class average
percentage (%) 99.6 85.8 99.6 68.7

Transition response time
between classes (s) 3.23 5.31 3.69 2.31

For each implementation, we derived the corresponding confusion matrices for the
whole range of experiments by incorporating all the measurements taken during the
reproduction of the audio samples for every operational state separately. For instance, in
the case of good operational state, all the measurements collected during the reproduction
of this class in the two simulated transition modes containing it (good–broken, good–heavy
load) were collected separately for each one of the two models. Subsequently, from all
these measurements collected for this class, the number of measurements was separated
according to the class identified by the model. This procedure was performed to check the
efficiency of the model over the entire range of the experiments performed. It is observed
from Tables 9 and 10 that the STM model infallibly identified the good operational state
contrarywise of the Edge Impulse model, which presented a misclassification rate of 10.94%
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for this class. Regarding the other two classes (i.e., broken and heavy load), it is observed
that the Edge Impulse model had a slightly higher accuracy, compared to the STM model.

Furthermore, by checking the average transition response times between modes for
both models we observe that the STM model has an average time transition of 4.55 s, while
the Edge Impulse model has an average of 3.83 s. The X-CUBE-AI tool showed that the
STM model occupies 5.52 Kbytes of RAM and 7.8 Kbytes of ROM. The Edge Impulse
model occupies 7 Kbytes of RAM and 38.2 Kbytes of ROM. Furthermore, the Edge Impulse
platform provides automated processes for building and exporting a model, as opposed to
the STM software tools, which do not provide such automated processes but give the user
the flexibility to customize the process when creating a complete project.

Table 9. Confusion matrix of the STM model.

Good Broken Heavy Load

Good 100% 0% 0%
Broken 5.90% 89.26% 4.84%

Heavy load 11.16% 0% 88.84%

Table 10. Confusion matrix of the Edge Impulse model.

Good Broken Heavy Load

Good 89.06% 0% 10.94%
Broken 2.63% 94.74% 2.63%

Heavy load 3.65% 0.73% 95.62%

The Edge Impulse software development platform has a time limit for the process
of calculations available to the user. This is because all the processes for both the pre-
processing of data and the training of the model are performed in the cloud. Contrarywise,
for the development of a project using the software tools of STM, as well as for the training
of the model in Python, there is no such restriction, as these procedures are performed on
the user’s personal computer. Therefore, the slight difference in the performance of the
inferencing of the EDGE-AI node between the two design flows is due to the selection of
the CNN model, which refers to the step regarding the definition of the data processing
method in the Edge Impulse methodology of Figure 2. This is a one-step process without
iterations while in the case of the STM method, engineers are able to trade-off among
neural network training accuracy loss and compression factor (see first iteration in the STM
method of Figure 2). Edge Impulse does not provide this capability. Although different
CNN architectures certainly play an important role in models’ performance differences,
another contributing factor to these differences constitutes the difference in the models’
conversion procedures that STM method and Edge Impulse exhibit.

By unifying three scientific domains (i.e., audio signal processing, deep learning, and
EDGE-AI), we concluded that there are two possible and efficient approaches that can
be followed in order to develop a process for the operational state recognition for a DC
motor via its sound with an AI model executing locally on an embedded system. The
first approach prerequisites the user’s expertise in all the aforementioned three scientific
domains but provide more degrees of intervention in the design cycle (i.e., the choice of
using STM software tools for the deployment stage, modifications in the AI model), and
the second one, with less intervention actions that needs no extensive technical expertise
to be implemented (i.e., the choice of using the Edge Impulse platform). Therefore, the
method selection for the specific application can be based on the aforementioned factors
because both models were applicable and efficiently met the requirements of the case study
that was explored in this work.
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6. Discussion—EDGE AI Implementation vs. Cloud Computing for Predictive
Maintenance

In order to evaluate the performance differences of the EDGE AI nodes over cloud
computing operations, we considered two modes of operation for the STM32 Discovery
Kit IoT Node. The first one constituted the EDGE AI mode and the second one was
the cloud computing mode. In the EDGE AI scenario, the total amount of data to be
processed by the board during inference was 8.4575 Kbytes. Initially, 16,384 bits were
processed by the board to collect the audio samples needed for the calculation of one LogMel
spectrogram (1024 samples× 16-bit sample resolution). Moreover, the LogMel spectrogram
occupied 7680 bits (30× 32× 8 bits) and the neural network’s inference calculations needed
5.52 Kbytes of the board’s RAM. The latency of data processing for the extraction of a single
result for EDGE AI mode was, in total, 1064.767 ms (i.e., 1024 ms for sample collection and
40.767 ms for inference extraction). Finally, the data transmitted over the network contained
the result of the model, which was composed of three percentage numbers for the three
classes (i.e., “good”, “broken”, and “heavy load”), as well as their class labels.

On the other hand, for the cloud computing mode, the board consumes 2 kB for data
processing during inference because it only sends the 1024 PCM audio samples to the
cloud. Furthermore, the latency of data processing is 1024 ms, which is slightly faster than
EDGE-AI because it only refers to the time needed for the collection of audio samples.
Finally, the data size transmitted over the network is 1.9844 Kbytes because they include
the audio data window of 1024 ms, while for the EDGE AI mode it is only 32 bytes (the
inference of the CNN network). Therefore, the conclusion regarding the comparison of
the two modes, is that the main advantage of the EDGE-AI mode lies on the part of data
transmission over the network. Table 11 summarizes the aforementioned evaluation.

Table 11. Comparison between EDGE-AI and cloud computing modes of the STM32 Discover Kit
IoT Node.

Data Processing
Mode

Data Size Processed
During Inference

Latency of Data
Processing

Data Transmitted
Over the Network

EDGE-AI 8.4575 Kbytes 1064.767 ms 32 bytes
Cloud Computing 2 Kbytes 1024 ms 1.9844 Kbytes

It is deduced that the presented approach can be incorporated in various other ap-
plications where EDGE-AI is required for acoustic signal classification in real time (e.g.,
voice commands for robot manipulation, noise-levels in smart-city environments, etc.).
Furthermore, the resource-constrained environment of MCUs has led us to develop a signal
processing procedure where the acoustic signal is captured, processed, and transformed
using less arithmetic precision than a PC-based SW. In this way, the sound signal has
been efficiently fed to the CNN algorithm in real time and can be used as a blueprint for
similar approaches.

Furthermore, supplementary model trainings are required to be performed for differ-
ent DC motors. Therefore, in order to sufficiently incorporate our EDGE-AI node into an
environment where various DC motors of various power capabilities that exhibit different
sounds associated with their operational conditions, in comparison to the DC motor used
in our case studies, it is important to re-execute the training steps for the different dataset to
match the inference algorithm to the specific characteristics of the industrial environment.
If the performance results are not adequate, changes in the CNN model could be enacted
to cope with the different characteristics. Additionally, as mentioned in previous sections,
our implemented EDGE-AI node has been trained using the sound data of [7]. The authors
of this work have captured audio data based on the different levels of the voltage supply
of the DC motor, since many motor faults can be caused or emulated by different voltage
supply levels. Therefore, for the recognition of specific operational states of the specific DC
motor where the employed data have been associated, our EDGE-AI node could perform
efficiently. However, in order to efficiently identify all fault aspects of the specific DC motor,
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such as the short-circuited armature and field coils, the lack of ventilation, the hitting of
rotating parts on the stationary parts, the worn nature of the bearings, etc., more audio
data are required.

7. Conclusions

In this work, we presented two methodological approaches of EDGE AI nodes, used
for the operational state recognition of a DC motor through sound signals, by the aspect
of enhancing the efficiency and reducing valuable time regarding the identification of
possible changes in the engine’s functionality. These particular aspects can be significantly
beneficial in predictive maintenance operations. The two methodological approaches were
developed and evaluated for the deployment of CNNs on microcontrollers and especially
on the STM32 Discovery Kit IoT Node. The implementations’ design regarding the signal
processing, data path, and the necessary transformations were presented in detail. It
was demonstrated that both methods resulted in the efficient implementations of CNN
models that can perform high accuracy and low latency classifications of the DC motor’s
operational states, based on sound signals. The benefits over a relevant cloud computing
implementation were also shown. Future work includes the incorporation of additional
sensors that can sense vibrations and proximity to assisting the CNN models to recognize
the operational states of multiple DC motors installed in an industrial environment. Finally,
the efficient models’ performance on a dataset with three operational states opens the
exploratory space for the problem’s augmentation with even more classes, which can
include different operational states of the motor, as well as specific failure types.
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