

Sensors 2022, 22, 9658. https://doi.org/10.3390/s22249658 www.mdpi.com/journal/sensors

Article

Operational State Recognition of a DC Motor Using Edge

Artificial Intelligence

Konstantinos Strantzalis 1, Fotios Gioulekas 2,*, Panagiotis Katsaros 3 and Andreas Symeonidis 1

1 School of Electrical and Computer Engineering, Aristotle University of Thessaloniki,

541 24 Thessaloniki, Greece
2 5th Regional Health Authority, 411 10 Larissa, Greece
3 School of Informatics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece

* Correspondence: fogi@dypethessaly.gr

Abstract: Edge artificial intelligence (EDGE-AI) refers to the execution of artificial intelligence algo-

rithms on hardware devices while processing sensor data/signals in order to extract information

and identify patterns, without utilizing the cloud. In the field of predictive maintenance for indus-

trial applications, EDGE-AI systems can provide operational state recognition for machines and

production chains, almost in real time. This work presents two methodological approaches for the

detection of the operational states of a DC motor, based on sound data. Initially, features were ex-

tracted using an audio dataset. Two different Convolutional Neural Network (CNN) models were

trained for the particular classification problem. These two models are subject to post-training quan-

tization and an appropriate conversion/compression in order to be deployed to microcontroller

units (MCUs) through utilizing appropriate software tools. A real-time validation experiment was

conducted, including the simulation of a custom stress test environment, to check the deployed

models’ performance on the recognition of the engine’s operational states and the response time for

the transition between the engine’s states. Finally, the two implementations were compared in terms

of classification accuracy, latency, and resource utilization, leading to promising results.

Keywords: convolutional neural networks; DC motor failures; EDGE-AI; internet of things;

predictive maintenance

1. Introduction

The fast-growing deployment of Internet of Things (IoT) systems to modern indus-

trial environments has led to the development of predictive maintenance applications that

implement prognostic algorithms to monitor the “health” conditions of an asset in order

to minimize the operational costs and ensure safety. In this context, data processing along

with cloud-based analytics are used to detect possible mechanical failures and propose

corresponding maintenance tasks. This approach is efficient in terms of accuracy; how-

ever, time delays in data transfer, possible bandwidth saturation, or network outages ren-

der it prohibitive in applications where hard or soft real time constraints are imposed (e.g.,

industrial environments). Thus, there is a need to shift the time delay associated with

computations to the local layer by integrating intelligence into devices at the edge of sys-

tems. Most IoT devices provide limited resources in computing power and memory and

usually generate large amounts of data; therefore, through integrating intelligence to

them, we also reduce the cloud processing overload. This implies supporting a kind of

“consciousness” to the devices that become capable to interact with or even without an

internet connection and can be immediately adapted to rapid state changes [1].

Edge computing is economically advantageous and easier to access when compared

to cloud computing and can support a wide variety of artificial intelligence (AI) applica-

tions. Therefore, edge computing is an important avenue in the evolution of AI and its

Citation: Strantzalis, K.;

Gioulekas, F.; Katsaros, P.;

Symeonidis, A. Operational State

Recognition of a DC Motor Using

Edge Artificial Intelligence.

Sensors 2022, 22, 9658.

https://doi.org/10.3390/s22249658

Academic Editor: Marco Carratù

Received: 28 October 2022

Accepted: 5 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Sensors 2022, 22, 9658 2 of 21

applicability to predictive maintenance [2]. AI has the potential to simplify the design of the

complex processing involved in such applications and can be used also to control and classify

the processes of a production line by learning features directly from the extracted data. In ef-

fect, the “health” control of a factory machine system and its operational conditions enables

the associated operator to anticipate and schedule the required maintenance, thus allowing

the predictive maintenance prospect to extend the operation time and life of industrial ma-

chines and eventually save costs. By moving AI computations as close as possible to the sensor

(EDGE-AI), the scalability and responsiveness of the system can be improved and the real-

time requirements that are usually seen in industrial environments can be met [3].

In this paper, we focus on the timely and effective operational state recognition of a

direct current (DC) motor, which is an essential element of practical interest in industrial

environments. In this domain, motors are inspected on a regular basis to ensure their ef-

ficient operation. The main causes of faults in electrical motors include electric overload,

low resistance, overheating, dirt, moisture, and vibrations [4–6]. The maintenance plan is

performed through the identification of the causes of the aforementioned failures and the

execution of proper actions to mitigate them or to lower their impact. The occurrence of

operational problems should, therefore, be resolved in short timeframes to avoid further

failures. Within this scope, possible motor failures have to be detected on time, since this

is crucial to avoid adverse effects during the operation of the overall setup and instrumen-

tation.

By eliminating the need of data transfer to the cloud, EDGE-AI can increase the in-

ference speed of a motor’s operational state recognition. A direct consequence, in terms of

the motor’s operation, is the improved safety and reduced maintenance costs. In terms of

reliability of the maintenance system, potential problems due to poor network connectiv-

ity can be avoided, since no internet connection is required.

Within the outlined context, we present the design and implementation of a convo-

lutional neural network (CNN) on a micro-controller board that supports digital omnidi-

rectional microphones to sense the sound and infer the operational states of a DC motor.

Two methodological approaches are implemented, each of them based on a different

open-source EDGE-AI tool. The experimental results demonstrate the applicability of the

proposed EDGE-AI solutions to the timely and effective operational state recognition of a

DC motor for the purpose of its predictive maintenance.

In summary, the contributions of this article towards the implementation of EDGE-

AI nodes for operational state recognition of DC motors are:

 An architecture design of the EDGE-AI implementation and the frequency analysis of an

audio dataset [7] for a DC motor’s operational states. We show, in detail, how the sound

signal is digitally processed and interfaced with the deep learning (DL) algorithm.

 Two design methodologies for the implementation of CNNs on microcontroller units

(MCUs). We evaluate the utilization of HW resources, along with the model training

and validation processes.

 The simulation of a stress test experimental setup, which included slight variations

in the environmental noise gain, so as to evaluate the performance of our EDGE-AI

solutions in conditions close to a real industrial environment. More concretely, the

inference performance is measured with respect to the resulting speed and accuracy, two

criteria crucial for the stringent real-time conditions of an industrial environment.

To the best of our knowledge, this the first piece of work to be reported in the litera-

ture that presents and analyzes, in detail, the implementation of CNNs on MCUs (two

methodologies), for the operational state recognition of DC Motors, based on sound signal

processing and classification. It is shown that our implementation is suitable for EDGE-

AI classification, which can be incorporated into a predictive maintenance process for in-

dustrial environments.

The rest of the paper is organized as follows. Section 2 reviews the related work in

the field of DC motors’ predictive maintenance and the incorporation of EDGE-AI

Sensors 2022, 22, 9658 3 of 21

features. Section 3 gives an overview of the characteristics of the dataset used for the train-

ing and testing of the deep learning models and introduces the necessary definitions for

sound signal processing and the key components for the real-time execution of these mod-

els on the edge. Section 4 presents the architecture of the EDGE-AI node and the flow of

data operations. Section 5 describes the two design methodologies and evaluates their

performance in various environmental sound conditions in terms of the real-time classifi-

cation capabilities of the generated CNN models. Section 6 compares the EDGE AI imple-

mentation against a cloud computing solution. Finally, Section 7 concludes the paper and

provides insights on future research directions.

2. Related Work

A recent analysis on the adoption of IoT technology [8] reported that a share of 29%

of the industry has been invested in the deployment of real-time IoT sensor data and AI

techniques to determine when maintenance should be performed on specific equipment.

As a consequence of this trend, predictive maintenance has enabled the active monitoring

of highly critical assets by aggregating and analyzing in real time multiple sources of data,

such as temperature, humidity, sound, vibration, and noise. Within this context, several meth-

ods of maintenance have been proposed for the diagnosis of DC Motor faults and the state of

their operation conditions. Table 1 summarizes the main characteristics of the methods pre-

sented in the literature. The shown methods are classified based on the monitoring variables

of the DC motor operation, the employed diagnostic algorithm and the use or absence of cloud

support.

Specifically, authors in [9] presented an approach for fault recognition in induction

motors using a low-cost Arduino-based sensor system for control. Their method utilized

a fault recognition system, a speed control system, and a data collection system. In another

approach, [10] presented a fault diagnosis method for DC motors at the early stage based

on machine learning models. A dual-tree complex wavelet packet transform was applied

to extract the features of current measurements and a support vector machine (SVM) clas-

sifier was used to diagnose the faults. As a second approach, a CNN was used for classi-

fication, while in another variant a combination of CNN and recurrent neural network

(RNN) was employed to classify the faults. The final decision upon the adoption of the

model was dependent on the signal-to-noise ratio (SNR) value. Additionally, authors in

[11] addressed the problem of the fault tolerant control of a DC motor, based on a cloud-

assisted system. With this type of control strategy, they combined network resources and

computing resources to reduce the cost of various control tasks.

In [12], the fault diagnosis of DC motors was based on the implementation of decision

trees for the analysis of audio signals. For the experimental evaluation, defects were created

using electrical discharge machining (EDM) to keep the size of the defects under control. Fur-

thermore, authors in [13] presented a similar technique, according to which the diagnosis was

composed of two processes: the pattern creation process and the pattern recognition process.

In the analysis, acoustic signals from the DC motor were used to identify the motor’s opera-

tional conditions. The motor states considered were: a “Healthy” DC motor, a DC motor with

six short-circuited rotor coils, and a DC motor with a damaged coil and six short-circuited

rotor coils.

In another methodology, the authors of [14] described a method of bearing fault de-

tection using widely accessible audio tools. In the experiments, audio measurements from

a smartphone and a USB microphone, as well as vibration measurements from an accel-

erometer were collected for an induction motor, showing a number of bearing irregulari-

ties. The faults were classified using a Matlab routine for executing the SVM analysis [15].

In [16], the authors present a sound-based fault diagnosis technique where five engine

states were identified: healthy motor, motor with damaged rotor coil, motor with short-

circuited stator coil, motor with a broken tooth in the gear, and motor with damaged gear.

The following methods were used to classify the engine conditions from the extracted

features: nearest neighbor (NN), nearest mean (NM), self-organizing map (SOM), and

Sensors 2022, 22, 9658 4 of 21

backpropagation neural network (BNN). The proposed technique using a one-dimen-

sional convolutional neural network (1-DCNN) in [17] had the limitation that if the engine

operated quietly, it was difficult to get good results. In [18], a method of fault detection in

motors with rotating elements based on audio signals was proposed. The classification

process was performed with an artificial neural network (ANN) using back propagation.

Table 1. Analysis of the methods used for the diagnosis of the DC motor faults.

Related

Work

Monitoring

Variable

Diagnosis

Algorithm

Computation

Unit

Cloud

Support

[9]
Speed, temperature, cur-

rent, and voltage
Simple Heuristic

Arduino and Lo-

cal PC
No

[10] Current SVM, CNN, and LSTM Local PC No

[11]

armature winding current,

resistance, input voltage

and inductance, rotor

angular speed, and torque

constant

Output feedback

approximate dynamic pro-

gramming

Cloud Connectiv-

ity
Yes

[12] Audio signals Decision tree learning Local PC No

[13] Acoustic signal
Linear discriminant analysis,

NN, and NM
Local PC No

[14]
Acoustic signal and Vibra-

tion
SVM

Local PC, micro-

phone, and

smartphone

No

[16] Acoustic signal NN, NM, SOM, and BNN Local PC No

[17] Vibration signal 1-DCNN Local PC No

[18] Acoustic signal ANN Local PC No

[3] Vibration DNN MCU No

[19]
Acoustic signal of car en-

gines
ANN, CRNN MCU No

This Work Audio signal CNN MCU No

The related work also includes proposals for the deployment of EDGE-AI on micro-

controllers for predictive maintenance and sound-based classification. The experimental

setup that is described in [3] shows how AI can be used effectively to recognize and clas-

sify loads in a drivetrain using an STM32 microcontroller. For this purpose, an accelerom-

eter was used to measure the vibrations of the system. In addition, the same study illus-

trates how DNNs are constructed and trained for classification purposes and how the

MCU code library and the compressed AI model are then automatically created with the

X-CUBE-AI tool [18]. The training of the DNN model was performed using the Keras Py-

thon library [19]. Additionally, in [20], an audio classification method based on a micro-

controller is also demonstrated. This application focuses on classifying sound signals pro-

duced by car engines in order to manage traffic in urban centers. The methodology used

ANNs running on a microcontroller with a microphone, without need for a durable con-

nection to a server. The application was executed on the STM Sensortile Kit board with

128 KB RAM and 1 MB flash memory [21]. First, the MFCCs (mel-frequency cepstral co-

efficients) were extracted for audio pre-processing. The classification of audio events was

based on a pre-trained convolutional recurrent neural network (CRNN).

Taking into consideration the aforementioned approaches, this work addresses two

major challenges: (i) Is it possible to identify the operational states of a DC motor using

only acoustic signals without attaching extra sensors to it (e.g., accelerometers or gyro-

scopes to capture vibrations and changes on the positions of the moving parts, stator cur-

rent measurements)? (ii) Is it possible to implement an AI algorithm on a resource-con-

strained MCU that is interfaced to a microphone to perform the inferences without send-

ing data to the cloud? Within this context, the proposed work focuses on the implementa-

tion of AI on a resource-constrained MCU to perform sound classification in order to iden-

tify the operational states of a DC motor and diagnose faulty conditions in real time. In

comparison to the related work, we define the architecture of the signal-processing path

Sensors 2022, 22, 9658 5 of 21

required to transform and feed the audio signals, captured from the on-board microphone

to the CNN. Additionally, the design methodologies used in both industry and academia

for the CNN implementation on MCUs are analyzed and assessed. Furthermore, EDGE-

AI and cloud computing modes are evaluated in terms of latency and data transfer. To

this end, we demonstrate how this EDGE-AI approach can help to optimize predictive

maintenance processes by increasing efficiency and reducing costs in the business opera-

tional flows of industrial environments.

3. Methods and Materials

3.1. DC Motor Dataset

The proposed technique and its implementation were tested and validated using the

IDMT-ISA-ELECTRIC-ENGINE dataset [7] from Fraunhofer Institute for Digital Media

Technology (IDMT). This dataset consists of audio recordings from a DC motor for three

operational states of the motor (“good”, ”broken”, ”heavy load”). The dataset was gener-

ated using the ACT Motor Brushless DC 42BLF01, 4000 RPM, 24VDC. The measurements

were taken through an improvised microphone with the following parameters: frequency

range 50 Hz to 20 kHz, voltage range 2 V to 10 V, omnidirectional, sensitivity −35 dB ± 4

dB. Additionally, to record the data we used 44,100 Hz sampling frequency, 32-bit reso-

lution, mono audio, and WAVE format.

For the audio signals recording, three identical motor units were employed to simulate

different sound situations. The first motor operated at 60% of the supply voltage and repre-

sented the “good” operating state. For the second motor, the supply voltage varied every 18

ms between 15% and 75% of the supply voltage to represent the “broken” operating state. The

“heavy load” case was set when an additional load was applied to the third motor, with a

supply voltage of 60% of the nominal. The dataset consists of the audio recordings of the elec-

tric DC motor in combination with the presence of the following types of sound environments:

 Pure—recordings without the presence of other sounds or noise.

 Talking—recordings with the presence of sounds from people talking outside the

case surrounding the device.

 White noise—recordings in the presence of white noise played by speakers outside

the case surrounding the device.

 Atmo—recordings with the presence of sounds from a factory environment in three

volume levels (low, medium, high) that were reproduced using speakers.

 Stress test—recordings with slightly changed gains at the input, simulating varia-

tions in the setup.

Table 2 lists the audio recordings with their type and duration included in the IDMT-

ISA-ELECTRIC-ENGINE dataset. All recordings are equally divided into three classes

(good, broken, heavy load) in terms of their duration. The duration of each individual

sample is 30 s. The frequency response is shown in Figure 1.

Table 2. Audio recordings from the IDMT-ISA-ELECTRIC-ENGINE dataset.

Type of Audio Recordings Duration (min)

Pure 15

Talking 18

Atmo (High) 9

Atmo (Medium) 9

Atmo (Low) 9

White Noise 9

Stress Test 6

Sensors 2022, 22, 9658 6 of 21

Figure 1. Frequency responses of audio signals.

3.2. Basic Definitions

Henceforward, we provide the basic definitions for the terminology and the concepts

used throughout the next sections of the paper.

3.2.1. Mel-Scale

Log-mel spectrograms and the associated MFCCs are used extensively in deep learn-

ing frameworks for various tasks, such as emotion recognition, audio classification, and

automatic speech recognition (ASR) [21]. Log-mel spectrograms are produced by apply-

ing the mel-scale transform of the sound data and afterwards the logarithmic scale con-

version. The MFCCs correspond to the coefficients that define a mel-frequency cepstrum

representation of the short-term power spectrum of a sound, based on a linear cosine

transform of a log power spectrum on a nonlinear mel-scale of frequency. Furthermore,

the conversion to mel-scale is the result of the nonlinear transformation of the frequency

f (Hz) into m (Mels), as shown in Equation (1) [22].

� = 2595���(1 + �/700), (1)

3.2.2. Convolutional Neural Networks (CNN)

A CNN consists of a set of nodes organized in multiple layers by stacking many hid-

den layers on top of each other in sequence, which receive inputs from a previous layer

and compute an output from a weighted and biased sum of the inputs in a feed-forward

and hierarchical manner. During training, data is introduced to the input layer of the net-

work, and the output of each layer is sent to the next one. The last or the so-called output

layer yields the model’s predictions, which are compared to the known expected values

to evaluate the model error. The training process involves refining or adjusting the

weights and biases of each layer of the network at each iteration using a process called

back-propagation, until the output of the network closely correlates with the expected

values. Therefore, the network iteratively learns from the input dataset and progressively

improves the accuracy of the output prediction.

Sensors 2022, 22, 9658 7 of 21

3.2.3. Softmax

The softmax function is a generalization of the logistic function to multiple dimen-

sions and is applied to multinomial logistic regression or performed during the last acti-

vation function of a neural network, where it normalizes the output of a network to a

probability distribution over predicted output classes. The standard (unit) softmax func-

tion �: ℝ� → [0,1]� is defined in Equation (2) [23]:

�(�)� =
���

∑ �
���

���

, (2)

for � = 1, . . . , � and � = (��, . . . , ��) ∈ ℝ�.

3.2.4. Rectified Linear Unit (ReLU)

In the context of artificial neural networks, the rectifier or ReLU activation function

is an activation function defined as the positive part of its argument �(�) = ���(0, �),

where � is the input to a neuron [23].

3.3. Design Methodology for Artificial Intelligence Implementation on Edge and IoT Devices

We followed two variants of a design flow using appropriate environments for the

integration of a neural network into an MCU, i.e., the STM software tools [18] and the

Edge Impulse platform [24]. The implemented models were trained and evaluated using

the sound dataset mentioned before [7]. Figure 2 depicts the steps of the two aforemen-

tioned approaches towards the AI models’ implementations on the STM32 Discovery Kit

IoT node board [25] in order to present a high-level description regarding the different

processes during the progression of the entire development for each technique. The board

featured an ARM Cortex-M4 CPU with 64-Mbit Flash memory, Bluetooth, Wi-Fi and LoRa

connectivity, Dynamic NFC tag, two digital omni-directional microphones, and various pe-

ripherals and sensors. The implementation based on STM’s tools included pre-processing, fea-

ture extraction, and data labelling of the sound dataset, which were eventually fed to the se-

lected neural network for training and evaluation of its performance. The successful comple-

tion of the training process was determined by the accuracy, as well as the loss function.

Sensors 2022, 22, 9658 8 of 21

Figure 2. Design flow variants based on the STM software tools and the Edge Impulse platform.

The accuracy was required to be as high as possible at the end of the training process,

following a smooth progression over the epochs. On the other hand, the loss had to be as

low as possible at the end of the training process, following a smooth reduction over the

epochs. At the end of the neural network training process, we extracted the trained model

in order to import it to the STM’s CubeMX software tool [18]. The model can be inserted

in several forms, such as .h5, but it is preferable to be extracted in the most compressed

form possible, especially if it is a large network, because it will be imported after further

compression into a microcontroller device with limited memory capacity. Therefore, the

trained model was transformed to a TensorFlowLite format. This conversion was based

on a post-training quantization. Such a process focuses on the reduction in the trained

model’s size and the improvement at the CPU level towards increasing the inference

speed. Subsequently, for the model’s compression stage through CubeMX, it was neces-

sary, firstly, to select the board on which the project will run on. Then, we selected the X-

Cube-AI as an additional software tool. This particular software tool was able to convert

Sensors 2022, 22, 9658 9 of 21

a trained model in a form that could run on an STM microcontroller. After the completion

of this step, we imported the trained model into X-Cube-AI. It was then necessary to ana-

lyze the model through the software tool to ascertain whether it fitted to the selected mi-

crocontroller. The analysis outputs included the RAM and flash memory occupation of

the model, as well as the multiply and accumulate (MACC) number, which represents the

number of operations to perform the inference. If the RAM and/or flash memory occupa-

tion of the model exceeded the board’s limits, there was a compression choice available.

If the compression failed to drop the memory occupation enough so that the model can fit

to the selected board, then post-training quantization would be needed, as we already

mentioned. If the post-training quantization and the extra compression provided by X-

Cube-AI was not adequate, then the topology of the neural network would need to be

changed in a way to allow the model to properly predict its classes. The next step was the

model’s validation on the desktop by using either random numbers or by importing a test

set from the dataset on which the model had been trained on. The validation on desktop

stage performed a comparison of the original model trained in Python and the com-

pressed model produced by the X-Cube-AI tool, so that the user can realize whether they

converge or not. After the validation on desktop, it was necessary to configure the appli-

cation by going to platform settings and selecting the appropriate COM port. Moreover, it

was important to configure the Pinouts and the clock according to the peripherals to be used

via the application that will run on the board. Finally, we needed to generate the C-code pro-

ject by selecting the preferred Toolchain/IDE. The generated code contained the topology of

the neural network, as well as other key functions for the application functionality. The final

stage involved programming all the necessary functions appropriately, debugging, and flash-

ing the executable program on the board.

Edge Impulse [24] is a platform that can be used for AI projects on embedded devices.

The methodology for deploying a project end extracting the executable program was sim-

ple. Initially, we needed to connect the board to be used with the Edge Impulse environ-

ment. Next, we imported the data to be used for the training part, as well as for validation

and testing. The procedure took place either by importing the data files from a PC or by

collecting the data directly from the board’s sensors. When importing the data, we also

needed to label them according to the classes of the AI project. Then, through the “Create

Impulse” tab, an impulse was created that takes raw data, uses signal processing to extract

features, and then employs a learning block to classify new data. When the signal pro-

cessing method (e.g., MFCCs) and the learning block (e.g., neural network) are chosen, it

is necessary for them to be configured according to their parameters. Edge Impulse pro-

vides a proposed parameter setup for each method. After setting all parameters for the

feature extraction, as well as the learning method, the model was ready for training. At

the end of the training process, Edge Impulse displayed a panel where the model’s per-

formance was depicted. Moreover, a “Live Classification” option was provided, whereby

connecting the board to be used, Edge Impulse could capture data from its sensors and

could also classify them based on the trained model. Through the “Model Testing” tab,

test data could be classified, and the user could thus decide if the model is efficient

enough. The final phase was the deployment of the model (“Deployment” tab), which

involved the selection of the inference engine and the output format. The binary file could

be extracted directly from Edge Impulse for a variety of boards.

The main differences of the two methods are summarized as follows: (i) although the

STM tools supports only the automated conversion of a trained model into an equivalent

C model, it requires that the entire pre-processing, feature extraction, and model’s training

have to be performed manually and through iterations (ii) Contrarywise, Edge Impulse

platform provides a more automated solution, where the engineer just pre-configures all

the associated parameters for the entire process, taking into account the problem’s domain

(in our case sound processing and deep learning). (iii) An EDGE-AI implementation based

on the STM approach provides more degrees of freedom for the developer but it requires

full expertise in machine learning/deep learning and embedded systems, while Edge

Sensors 2022, 22, 9658 10 of 21

Impulse exhibits a more user-friendly approach, albeit more constrained in development

interventions by the user.

4. EDGE-AI Node Architecture and Operating Process

Figure 3 depicts the block diagram of the DC motor’s operational state recognition

via the utilization of the EDGE-AI node, along with the data flow procedures from audio

signal reception until its processing by the neural network that runs on the board and the

generation of the inference. The sampling frequency of the digital omnidirectional micro-

phones (i.e., MP34DT01 module) of the STM32 IoT node [25] is 16 kHz (16 bit, 1 channel),

which means that the acquired digital signal is represented in PDM (pulse-density mod-

ulation) format. Therefore, through the peripheral DFSDM (digital filter for sigma-delta

modulators) that handles the sound of the microphones, the PDM samples are collected

and converted to PCM using the peripheral configurations, where the output sampling

frequency is set to 16 kHz and the output signal resolution at 16 bits. The PCM samples

are then stacked in a 1024 sample rolling window with 50% overlap. Every millisecond, a

DMA (direct memory access)-based interrupt is received with the last 16 PCM (pulse-code

modulation) audio samples. The DMA controller supports the transfer of data from pe-

ripherals and memories without being loaded into the CPU. For every 512 samples (i.e.,

32 ms), the buffer is inserted into the pre-processing process to extract the attributes. The

pre-processing process outputs audio features to a LogMel spectrogram (30 × 32). For

computational efficiency and optimization in memory management, this processing step

is divided into two parts. The first part calculates one of the thirty-two columns of the

spectrogram from the time domain for the input signal on the mel scale, using the fast

Fourier transform (FFT) and the application of 30 mel filters. In the second part, when all 32

columns of the spectrogram are calculated (after 1024 ms), a log-scale conversion is applied to

the Mel-scale spectrogram, thus shaping the input features for the neural network that runs

on the MCU. Every 1024 ms, the (30 × 32) LogMel spectrogram is fed to the input of the neural

network, which, in turn, classifies it into the outputs: “good”, “broken”, and “heavy load”.

Figure 3. Architecture and block diagram for the DC motor’s operational state recognition via the

EDGE-AI node.

Sensors 2022, 22, 9658 11 of 21

5. Methodological Approaches—Results

5.1. EDGE-AI Implementation Based on STM’s Tools

The Python programming language was used for pre-processing the audio data from

the audio dataset [7], feature extraction, and model’s training process. The

STM32CubeMX tool and its extension, X-CUBE-AI [18], were then used to convert the

neural network into a format that allows it to be added and operated in the STM32 IoT

node [25]. The Python’s Librosa library [26] was utilized for data pre-processing. Initially

the audio samples were subject to resampling from 44.1 kHz to 16 kHz. The data was then

divided into smaller subsections for the creation of 32-column LogMel spectrograms. Sub-

sequently, FFT was applied on sections for the conversion from the time domain to the

frequency domain. The length of FFT was 1024 samples, with the hop length [26] being

512 samples. Next, data was converted to Mel scale by applying 30 triangular overlapping

filters, and consequently were converted into LogMel spectrograms of 30 × 32 size. These

features were used to train, validate, and test the model after being normalized with Z-

score normalization. The particular normalization involves redefining features so that

they have the properties of a standard normal distribution with an average of zero and a

standard deviation of one [27,28]. During the training process, the accuracy and loss of

the model on the data were evaluated. Therefore, the dataset was separated into training

and validation sets to assess the accuracy and loss at the end of each training session. The

testing set was only used for the final evaluation as unseen data. Specifically, 25% of the

total dataset for the testing set was randomly selected. Then, from the remaining 75%, 25%

was again randomly selected for the validation set, while the remaining dataset repre-

sented the training set.

We used a sequential model, implemented in Keras [19], to build the CNN model layer

by layer. The CNN consists of two convolutional layers (Conv2D), two max pooling 2D layers,

one flatten layer, and two dense layers. Specifically, the first convolutional layer was placed,

which received a LogMel spectrogram as input as a two-dimensional matrix 30 × 32 in the

form (30, 32, 1) (l × m × r). The number of filters was 16 with a size of 3 × 3 (n × n). In general,

in CNNs the number of filters is smaller than the dimension of the input data. This option was

preferred because it allowed the same filter (weight set) to be multiplied by the input panel

multiple times at different input points. As a result of the first layer, 16 feature maps of size (l

− n + 1) × (m − n +1) were produced, i.e., 28 × 30. ReLU was selected as the activation function.

Each feature was then sampled using a max pooling layer in 2 × 2 continuous areas, maintain-

ing the maximum value from each area. As a result, the out was reduced to 14 × 15.

The second convolutional layer had the same 16 filters of size 3 × 3, and ReLU activa-

tion function. As before, there was a max pooling layer after the convolutional layer with

sampling in 2 × 2 continuous areas. The output of the second convolutional layer was 12

× 13, while the output of the second max pooling layer was 6 × 6. After the second max

pooling layer, a flatten layer follows, which results in the consolidation into one column

of size 576. Finally, two dense layers were used, the first with nine units and ReLU acti-

vation function, and the second with three units and a softmax activation function. The

choice of softmax was made, as in the case of the second layer, due to the multiclass clas-

sification nature of our problem, where the three units represented the three classes (i.e.,

“good”, “broken”, and “heavy load”). The model’s output constitutes a probabilistic clas-

sification for every spectrogram fed in the CNN, regarding the three classes (i.e., three

percentage indications, one for each of the class). The data for training and validation was

set with batch sizes equal to 500, and 10 epochs were used for the training process, due to

the fast convergence that was observed at a high accuracy value, as well as at a low loss

value. Specifically, after the 10th epoch, a training accuracy of 99.91% and a validation

accuracy of 99.87% were achieved. Regarding the loss, a training loss of 0.0073 and a val-

idation loss of 0.0074 were achieved. For the confusion matrix shown in Table 3, 31,902

testing features were used that correspond to 25% of the complete dataset.

Sensors 2022, 22, 9658 12 of 21

Table 3. Confusion matrix of the Keras CNN model for the implementation on STM tools.

 Good Broken Heavy Load

Good 10,637 1 2

Broken 0 10,587 8

Heavy load 32 0 10,635

In order to deploy the trained model into the STM32 Discovery kit IoT node, it must

be saved in a format so that the X-CUBE-AI tool can create the corresponding optimized

C model for the specific STM32 device. The model was initially saved in .h5 format (HDF5

file), but for further optimization a conversion to TensorFlowLite model was performed.

This transformation reduced the size of the model while it also reduced the transfer delay

to the CPU and improved the hardware acceleration at a small cost in terms of model

accuracy. Specifically, it was chosen to apply integer quantization, an appropriate choice

for the use of models in MCUs. This process essentially converts 32-bit floating-point

numbers, such as weights and activation outputs, to the nearest 8-bit fixed-point numbers.

The end result was a .tflite format.

After the completion of the previous procedures, the produced TensorFlowLite

model was inserted into the X-Cube-AI tool of the CubeMX environment. The tool per-

formed the weight compression of the CNN, the merging of network layers optimization

regarding the utilization of RAM and ROM, and the generation of a C-based model of the

CNN, which comprises all the necessary files for the topology, weights, and bias of the

CNN. The complexity of the C-model was 501428 MACC and the utilization of the flash

and RAM memory was 7.65 Kbytes and 5.52 Kbytes, respectively. After extracting the

necessary libraries to produce the project in the CubeIDE environment for the final de-

ployment stage, there was a validation process that was performed on the board by im-

porting data from the testing dataset used for the corresponding procedure in Python.

After the model’s analysis completion in X-CUBE-AI, there were two network forms (i.e.,

the original TensorFlowLite model and the generated C model), as illustrated in Figure 4.

Specifically, the boxes representing the layers also contain information, such as flash

memory consumption and the number of MACC operations. As a visual effect, it can be

observed that in the created neural network (Figure 4), the convolutional layers are joined

with those of the pooling, as well as those of the nonlinear ones (activation functions).

Furthermore, the generated CNN model’s architecture has been differentiated from the

initial model.

Figure 4. CNN model in TensorFlowLite and generated C-Model from STM tools.

It was observed that the largest percentage of the execution time was concentrated in

the optimized convolutional layers and that the total execution time was 40.767 ms, which

constitutes a very satisfactory result. Moreover, the C-model showed a very good fit to the

control data; as 100% accuracy was obtained, root mean square error (RMSE) was only

0.001059 and medium average error (MAE) was 0.000112, where imported network’s forecasts

were taken as reference values for the comparison. Finally, the confusion matrix (using 1901

samples) for the control process based on the C-Model is presented in Table 4.

Sensors 2022, 22, 9658 13 of 21

Table 4. Confusion matrix of the generated C-Model.

 Good Broken Heavy Load

Good 664 0 0

Broken 0 574 0

Heavy load 0 0 633

5.2. EDGE-AI Implementation Based on Edge Impulse Environment

A second implementation was based on Edge Impulse environment that facilitates a

more automated development process. This environment does not require an in-depth

intervention by the designer during the entire development procedure. After importing

the audio files into Edge Impulse, the data was split to 1 sec windows with a 0.5 sec over-

lap. For feature extraction, the mel frequency cepstral coefficients (MFCC’s) option for

audio pre-processing was chosen. Moreover, FFT was performed with a length of 256

samples with 20 ms frame length. Subsequently, 32 mel filters and 13 cepstral coefficients

were selected. Another important step for the development of the methodological ap-

proach based on the Edge Impulse environment was the development and training of a

CNN model with a different architecture, in comparison with the model that was devel-

oped in the first methodological approach (i.e., the approach based on the STM tools).

Specifically, the input (i.e., MFCC spectrograms) feeds the first layer of the CNN. The

spectrograms were converted during their passage through the intermediate layers into

three numbers that represented the probabilities representing each sample’s classification

to “good”, “broken”, and “heavy load” class. For the intermediate layers, initially, a re-

shape layer was placed. The first convolutional layer had one-dimensional convolution

window length (Conv1D); it included 30 filters, kernel size 5, and activation function

ReLU. Next, there was a max pooling layer, with pool_size = 5. Subsequently, the second

convolutional layer (Conv1D) was placed, which had 10 filters and the same other param-

eters as the first convolutional layer. A max pooling layer followed, configured with the

same parameters as the first max pooling layer. After the second max polling layer, a flat-

ten layer was placed and finally a dense layer with softmax as activation function. Adam

was used as an optimizer, while the categorical cross entropy function was chosen as a

loss function and the accuracy metric for the model’s performance evaluation. Finally, 90

epochs were used for the training process of the model.

After having selected the STM32 Discovery Kit IoT Node board from the platform, it

was possible to choose between two options for the CNN’s deployment, the quantized

and the non-optimized model. The quantized model was selected because it presented better

performance in memory levels (RAM and ROM), as well as in response time, compared to the

non-optimized model. The accuracy of the quantized model was 93.3%, while the correspond-

ing one for the non-optimized model was 93.38% (negligible difference). The Edge Impulse

automatically produced the .bin executable file that could be executed directly on the board.

The results from the CNN model’s training in the Edge Impulse environment for 90

epochs, in terms of accuracy and loss, are provided in Table 5, which also illustrates infor-

mation regarding the inference time, maximum RAM, and ROM usage for the model. It is

noted that the performance of the model was calculated based on the characteristics of the

STM32 Discovery Kit IoT node (Cortex-M4) and the compiler Edge Impulse EON. The

confusion matrix on the control data is listed in Table 6. We observe that the model has

high accuracy and a low loss. Additionally, the inference time is very satisfactory, as well

as the consumption in RAM and ROM. The performance of the model in the testing data

is also very good, as is shown in the confusion matrix.

Sensors 2022, 22, 9658 14 of 21

Table 5. Performance characteristics of the Edge Impulse model.

Metrics Values

Accuracy (%) 97.8

Loss (%) 0.06

Peak RAM Usage (Kbytes) 7.0

ROM Usage (Kbytes) 38.2

Inference Time (ms) 16

Table 6. Confusion matrix of the generated Edge Impulse implementation.

 Good Broken Heavy Load

Good 504 5 4

Broken 4 479 0

Heavy load 13 7 512

5.3. Real-Time Performance Monitoring and Test Results

The test environment included a set of digital speakers, where we played the record-

ings created by joining audio samples from the dataset [7] that were not used in models’

training processes. Therefore, for each model, the audio clips were played from the speak-

ers that were placed on either side of the STM32 Discovery Kit IoT Node while, at the

same time, each model was executed on the board. Finally, the results regarding the clas-

sification performance of the models, as well as their response time regarding the transi-

tion of the DC motor from one state to another, were analyzed. Three cases were simulated

to calculate the response time of the two implemented CNN models capturing DC motor’s

state alternations for each one of the surrounding environment assumptions (pure, atmo

High, atmo Medium, atmo Low, talking, white noise, and stress test). These cases were:

(i) good-to-broken transition, (ii) good to heavy load transition, (iii) heavy load to broken

transition. In addition to the operating environment assumptions provided by the dataset,

a custom stress test was simulated during which pure recordings were reproduced, for

each of the above three cases of the engine’s state change, with the simultaneous presence

of noise generated at the site of the experiment (e.g., speech, impulsive strong noises, mu-

sic). We analyzed the test results by defining representations of the probabilities for the

predictions of the implemented CNN models per sample recording in order to give a vis-

ual demonstration for all the simulated environmental assumptions.

The diagrams of the recording results of the measurements for the recognition of the

DC motor’s operating states consist mostly of 60 measurements for the STM-based CNN

model and 18 measurements for the Edge Impulse-based CNN model. This difference in

the number of measurements taken between the two models was due to the fact that the

STM model performed continuous sampling with the processed samples entering the

CNN every 1024 ms for an inference time of 40.767 ms, while for the Edge Impulse model

there was a time interval of 2 secs for starting each measurement, 1 sec sampling duration,

16 ms latency, 337 ms for DSP calculations, and 36 ms for classification time. Indicatively,

Figures 5 and 6 illustrate the live classification’s performance of the two CNN models,

where the horizontal axis represents the audio samples and the vertical axis represents

the percentage indications for each of the three classes and for each sample.

Sensors 2022, 22, 9658 15 of 21

Figure 5. Performance of CNN model of the STM’s methodology for the heavy load to broken

state transition test.

Figure 6. Performance of CNN model of the Edge Impulse’s methodology for the heavy load to

broken state transition test.

Sensors 2022, 22, 9658 16 of 21

The STM CNN model’s performance in the presence of the pure environment was satis-

factory and accurate for all of the class transition experiments. As for the custom stress test

environmental background, it is, firstly, noted that for the heavy load to broken transition ex-

periment, the model performed well for the broken class, but there was a relatively lower

probability of classification on average for the heavy load class, which nevertheless maintains

the reliability of the model (>50%). On the other hand, the Edge Impulse model exhibited an

accurate classification capability in the presence of the pure background environment for

every class transition scenario. Contrariwise, at the custom stress test background environ-

ment, there were many fluctuations within the course of the prediction percentages over the

audio samples, while the model presented a few misclassifications. Therefore, in the presence

of severe noise, there is a possibility that good and heavy load classes exhibit the same signal

levels and may cause further delay in the CNN model to converge. This was noticeable in

Figure 6 where the EDGE-AI was tested under stress test conditions.

Furthermore, Tables 7 and 8 summarize the test results for the two models by provid-

ing the average percentage indications of each one of them for all measurements and en-

vironmental backgrounds during playback of each class, as well as the transition response

times, regarding the transition from one class to another. In Table 7, we observe that the

STM model performed sufficiently on the recognition of every class, as well as on the re-

sponse time between the transitions from one class to another. Specifically, it is worth

noting that the only difficulty observed for the STM model’s prediction success was for

the broken class at the custom stress test environment during the good to broken transi-

tion experiment, because it presented an average percentage of 61%. Nevertheless, these

slight difficulties of the model for these environments are justified because the back-

ground noise was intense. As for the response time of the model between the class transi-

tions, it was found sufficient because most perceptions of the transition took place in un-

der 5 s. On the other hand, Table 8 shows that generally, the Edge Impulse model was

capable of correctly classifying every class in all the rest of the environmental back-

grounds, except for the stress test environment during the good to broken transition,

where it exhibited an average percentage of 54.9%. As for the response time of the model

to observe a transition between two classes, in most of the cases, the model needed less

than 4 s to recognize a change between the DC motor’s operational states.

Table 7. Average percentage indications for each class and environmental background, along with

transition response times between classes for the STM’s methodology model.

 Pure Atmo Medium White Noise Custom Stress Test

Good-to-Broken DC Motor State Transition

Good class average per-

centage (%)
92 89 84 82

Broken class average per-

centage (%)
89 89 91 61

Transition response time

between classes (s)
4.46 4.61 4.25 5.22

Good to Heavy Load DC Motor State Transition

Good class average per-

centage (%)
90 90 89 89

Broken class average per-

centage (%)
87 79 84 58

Transition response time

between classes (s)
5.43 4.86 4.63 9.07

Heavy Load to Broken DC Motor State Transition

Good class average per-

centage (%)
89 83 78 56

Sensors 2022, 22, 9658 17 of 21

Broken class average per-

centage (%)
89 88 89 72

Transition response time

between classes (s)
3.68 4.16 3.97 4.54

Table 8. Average percentage indications for each class and environmental background along with

transition response times between classes for the Edge Impulse methodology model.

 Pure Atmo Medium White Noise Custom Stress Test

Good to Broken DC Motor State Transition

Good class average per-

centage (%)
87.2 87.1 80.4 54.9

Broken class average per-

centage (%)
99.6 85.7 99.6 92.5

Transition response time

between classes (s)
3.31 3.94 2.13 2.62

Good to Heavy Load DC Motor State Transition

Good class average per-

centage (%)
95.9 95.8 96.4 72.6

Broken class average per-

centage (%)
99.6 99.2 99.6 84.6

Transition response time

between classes (s)
2.92 5.17 3.96 5.8

Heavy Load to Broken DC Motor State Transition

Good class average per-

centage (%)
99.6 99.5 97.7 84.9

Broken class average per-

centage (%)
99.6 85.8 99.6 68.7

Transition response time

between classes (s)
3.23 5.31 3.69 2.31

5.4. Models’ Performance Analysis and Evaluation of Test Results

The performance comparison between the two models (STM and Edge Impulse) was

based on the set of results obtained from the experimental tests during their execution on

the STM32 Discovery Kit IoT Node, the differences of the two implementations regarding

the resources’ utilization, and the capability of developing an integrated application. It is

noted that both models demonstrated the ability to adequately detect the various engine

operating states for the full range of experiments performed, in terms of average classifi-

cation success rates (>50% in all cases) and response times regarding the transition be-

tween operational conditions, which makes them both capable to be used for the valid

and timely detection of the DC motor’s three states (i.e., good, broken, and heavy load).

For each implementation, we derived the corresponding confusion matrices for the

whole range of experiments by incorporating all the measurements taken during the re-

production of the audio samples for every operational state separately. For instance, in

the case of good operational state, all the measurements collected during the reproduction

of this class in the two simulated transition modes containing it (good–broken, good–

heavy load) were collected separately for each one of the two models. Subsequently, from all

these measurements collected for this class, the number of measurements was separated ac-

cording to the class identified by the model. This procedure was performed to check the effi-

ciency of the model over the entire range of the experiments performed. It is observed from

Tables 9 and 10 that the STM model infallibly identified the good operational state contrary-

wise of the Edge Impulse model, which presented a misclassification rate of 10.94% for this

Sensors 2022, 22, 9658 18 of 21

class. Regarding the other two classes (i.e., broken and heavy load), it is observed that the Edge

Impulse model had a slightly higher accuracy, compared to the STM model.

Table 9. Confusion matrix of the STM model.

 Good Broken Heavy Load

Good 100% 0% 0%

Broken 5.90% 89.26% 4.84%

Heavy load 11.16% 0% 88.84%

Table 10. Confusion matrix of the Edge Impulse model.

 Good Broken Heavy Load

Good 89.06% 0% 10.94%

Broken 2.63% 94.74% 2.63%

Heavy load 3.65% 0.73% 95.62%

Furthermore, by checking the average transition response times between modes for

both models we observe that the STM model has an average time transition of 4.55 s, while

the Edge Impulse model has an average of 3.83 s. The X-CUBE-AI tool showed that the

STM model occupies 5.52 Kbytes of RAM and 7.8 Kbytes of ROM. The Edge Impulse

model occupies 7 Kbytes of RAM and 38.2 Kbytes of ROM. Furthermore, the Edge Impulse

platform provides automated processes for building and exporting a model, as opposed

to the STM software tools, which do not provide such automated processes but give the

user the flexibility to customize the process when creating a complete project.

The Edge Impulse software development platform has a time limit for the process of

calculations available to the user. This is because all the processes for both the pre-pro-

cessing of data and the training of the model are performed in the cloud. Contrarywise,

for the development of a project using the software tools of STM, as well as for the training

of the model in Python, there is no such restriction, as these procedures are performed on

the user’s personal computer. Therefore, the slight difference in the performance of the

inferencing of the EDGE-AI node between the two design flows is due to the selection of

the CNN model, which refers to the step regarding the definition of the data processing

method in the Edge Impulse methodology of Figure 2. This is a one-step process without

iterations while in the case of the STM method, engineers are able to trade-off among neu-

ral network training accuracy loss and compression factor (see first iteration in the STM

method of Figure 2). Edge Impulse does not provide this capability. Although different

CNN architectures certainly play an important role in models’ performance differences,

another contributing factor to these differences constitutes the difference in the models’

conversion procedures that STM method and Edge Impulse exhibit.

By unifying three scientific domains (i.e., audio signal processing, deep learning, and

EDGE-AI), we concluded that there are two possible and efficient approaches that can be

followed in order to develop a process for the operational state recognition for a DC motor

via its sound with an AI model executing locally on an embedded system. The first ap-

proach prerequisites the user’s expertise in all the aforementioned three scientific domains

but provide more degrees of intervention in the design cycle (i.e., the choice of using STM

software tools for the deployment stage, modifications in the AI model), and the second

one, with less intervention actions that needs no extensive technical expertise to be imple-

mented (i.e., the choice of using the Edge Impulse platform). Therefore, the method selec-

tion for the specific application can be based on the aforementioned factors because both

models were applicable and efficiently met the requirements of the case study that was

explored in this work.

Sensors 2022, 22, 9658 19 of 21

6. Discussion—EDGE AI Implementation vs. Cloud Computing for Predictive

Maintenance

In order to evaluate the performance differences of the EDGE AI nodes over cloud

computing operations, we considered two modes of operation for the STM32 Discovery

Kit IoT Node. The first one constituted the EDGE AI mode and the second one was the

cloud computing mode. In the EDGE AI scenario, the total amount of data to be processed

by the board during inference was 8.4575 Kbytes. Initially, 16,384 bits were processed by

the board to collect the audio samples needed for the calculation of one LogMel spectro-

gram (1024 samples × 16-bit sample resolution). Moreover, the LogMel spectrogram occu-

pied 7680 bits (30 × 32 × 8 bits) and the neural network’s inference calculations needed 5.52

Kbytes of the board’s RAM. The latency of data processing for the extraction of a single

result for EDGE AI mode was, in total, 1064.767 ms (i.e., 1024 ms for sample collection and

40.767 ms for inference extraction). Finally, the data transmitted over the network con-

tained the result of the model, which was composed of three percentage numbers for the

three classes (i.e., “good”, “broken”, and “heavy load”), as well as their class labels.

On the other hand, for the cloud computing mode, the board consumes 2 kB for data

processing during inference because it only sends the 1024 PCM audio samples to the

cloud. Furthermore, the latency of data processing is 1024 ms, which is slightly faster than

EDGE-AI because it only refers to the time needed for the collection of audio samples.

Finally, the data size transmitted over the network is 1.9844 Kbytes because they include

the audio data window of 1024 ms, while for the EDGE AI mode it is only 32 bytes (the

inference of the CNN network). Therefore, the conclusion regarding the comparison of

the two modes, is that the main advantage of the EDGE-AI mode lies on the part of data

transmission over the network. Table 11 summarizes the aforementioned evaluation.

Table 11. Comparison between EDGE-AI and cloud computing modes of the STM32 Discover Kit

IoT Node.

Data Processing

Mode

Data Size Processed

During Inference

Latency of Data

Processing

Data Transmitted

Over the Network

EDGE-AI 8.4575 Kbytes 1064.767 ms 32 bytes

Cloud Computing 2 Kbytes 1024 ms 1.9844 Kbytes

It is deduced that the presented approach can be incorporated in various other applica-

tions where EDGE-AI is required for acoustic signal classification in real time (e.g., voice com-

mands for robot manipulation, noise-levels in smart-city environments, etc.). Furthermore, the

resource-constrained environment of MCUs has led us to develop a signal processing proce-

dure where the acoustic signal is captured, processed, and transformed using less arithmetic

precision than a PC-based SW. In this way, the sound signal has been efficiently fed to the

CNN algorithm in real time and can be used as a blueprint for similar approaches.

Furthermore, supplementary model trainings are required to be performed for dif-

ferent DC motors. Therefore, in order to sufficiently incorporate our EDGE-AI node into

an environment where various DC motors of various power capabilities that exhibit dif-

ferent sounds associated with their operational conditions, in comparison to the DC motor

used in our case studies, it is important to re-execute the training steps for the different

dataset to match the inference algorithm to the specific characteristics of the industrial

environment. If the performance results are not adequate, changes in the CNN model

could be enacted to cope with the different characteristics. Additionally, as mentioned in

previous sections, our implemented EDGE-AI node has been trained using the sound data of

[7]. The authors of this work have captured audio data based on the different levels of the

voltage supply of the DC motor, since many motor faults can be caused or emulated by dif-

ferent voltage supply levels. Therefore, for the recognition of specific operational states of the

specific DC motor where the employed data have been associated, our EDGE-AI node could

perform efficiently. However, in order to efficiently identify all fault aspects of the specific DC

Sensors 2022, 22, 9658 20 of 21

motor, such as the short-circuited armature and field coils, the lack of ventilation, the hitting

of rotating parts on the stationary parts, the worn nature of the bearings, etc., more audio data

are required.

7. Conclusions

In this work, we presented two methodological approaches of EDGE AI nodes, used

for the operational state recognition of a DC motor through sound signals, by the aspect

of enhancing the efficiency and reducing valuable time regarding the identification of pos-

sible changes in the engine’s functionality. These particular aspects can be significantly

beneficial in predictive maintenance operations. The two methodological approaches

were developed and evaluated for the deployment of CNNs on microcontrollers and es-

pecially on the STM32 Discovery Kit IoT Node. The implementations’ design regarding

the signal processing, data path, and the necessary transformations were presented in de-

tail. It was demonstrated that both methods resulted in the efficient implementations of

CNN models that can perform high accuracy and low latency classifications of the DC

motor’s operational states, based on sound signals. The benefits over a relevant cloud

computing implementation were also shown. Future work includes the incorporation of

additional sensors that can sense vibrations and proximity to assisting the CNN models

to recognize the operational states of multiple DC motors installed in an industrial envi-

ronment. Finally, the efficient models’ performance on a dataset with three operational

states opens the exploratory space for the problem’s augmentation with even more clas-

ses, which can include different operational states of the motor, as well as specific failure

types.

Author Contributions: Conceptualization, K.S., F.G., P.K. and A.S.; Data curation, K.S. and F.G.;

Formal analysis, K.S., F.G., P.K. and A.S.; Investigation, K.S. and F.G.; Methodology, K.S., F.G., P.K.

and A.S.; Project administration, F.G., P.K. and A.S.; Resources, P.K.; Software, K.S. and F.G.; Super-

vision, F.G., P.K. and A.S.; Validation, K.S., F.G., P.K. and A.S.; Visualization, K.S. and F.G.; Writ-

ing—original draft, K.S. and F.G.; Writing—review and editing, K.S., F.G., P.K. and A.S. All authors

have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the

corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Merenda, M.; Porcaro, C.; Iero, D. Edge Machine Learning for AI-Enabled IoT Devices: A Review. Sensors 2020, 20, 2533.

https://doi.org/10.3390/s20092533.

2. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge

Computing. Proc. IEEE 2019, 107, 1738–1762. https://doi.org/10.1109/JPROC.2019.2918951.

3. Akhtari, S.; Pickhardt, F.; Pau, D.; Di Pietro, A.; Tomarchio, G. Intelligent Embedded Load Detection at the Edge on Industry

4.0 Powertrains Applications. In Proceedings of the 5th IEEE International forum on Research and Technology for Society and

Industry (RTSI), Florence, Italy, 9–12 September 2019; pp. 427–430. https://doi.org/10.1109/RTSI. 2019.8895598.

4. Nourse, D. Electric Motor Failure—A Comparative study of its causes. In Proceedings of the 8th Electrical Insulation Confer-

ence, Los Angeles, CA, USA, 9–12 December 1968; pp. 142–143. https://doi.org/10.1109/EIC.1968.7456129.

5. Azurto, A.; Quispe, E.; Mendoza, R. Causes and failures classification of industrial electric motor. In Proceedings of the 2016

IEEE ANDESCON, Arequipa, Peru, 19–21 October 2016; pp. 1–4. https://doi.org/10.1109/ANDESCON.2016.7836190.

6. Portos, J.; Dean, K.; Parker, B.; Cannon, J. Most common mechanisms and reasons for electric motor failures in industry. In

Proceedings of the 2019 IEEE IAS Pulp, Paper and Forest Industries Conference (PPFIC), Jacksonville, Florida, USA, 23–28 June

2019; pp. 1–11. https://doi.org/10.1109/ PPFIC43189.2019.9052384.

7. Grollmisch, S.; Abesser, J.; Liebetrau, J.; Lukashevich, H. Sounding industry: Challenges and datasets for industrial sound anal-

ysis. In Proceedings of the 27th European Signal Processing Conference (EUSIPCO), A Coruña, Spain, 2–6 September 2019; pp.

Sensors 2022, 22, 9658 21 of 21

1–5. Available online: https://new.eurasip.org/Proceedings/Eusipco/eusipco2019/Proceedings/papers/1570526697.pdf (accessed

on 22 October 2022).

8. IoT Use Case Adoption Report 2021. Available online: https://iot-analytics.com/top-10-iot-use-cases/ (accessed on 22 October

2022).

9. Waswani, R.; Pawar, A.; Deore, M.; Patel, R. Induction motor fault detection, protection and speed control using arduino. In

Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems

(ICIIECS), Coimbatore, India, 17–18 March 2017; pp. 1–5. https://doi.org/10.1109/ICIIECS.2017.8276071.

10. Munikoti, S.; Das, L.; Natarajan, B.; Srinivasan, B. Data-Driven Approaches for Diagnosis of Incipient Faults in DC Motors. IEEE

Trans. Ind. Informatics 2019, 15, 5299–5308. https://doi.org/10.1109/TII.2019.2895132.

11. He, Z.; Ju, Y.; Liu, Y.; Zhang, B. Cloud-Based Fault Tolerant Control for a DC Motor System. J. Control Sci. Eng. 2017, 2017,

5670849. https://doi.org/10.1155/2017/5670849.

12. Aravazhi, Α.; Arjun, KV.; Deepak, S.; Karthick, V.; Muthusamy, S. Machine learning based fault diagnosis of rotating machinery

using sound signal. In Proceedings of the India National Conference on Recent Trends in Mechanical Engineering (RTIME

2011), Chennai, India, 20–21 April 2011. Available online: https://www.researchgate.net/publication/325313722_Machine_learn-

ing_based_fault_diagnosis_of_rotating_machinery_using_sound_signal (accessed on 22 October 2022).

13. Glowacz, A.; Głowacz, Z. (Recognition of rotor damages in a DC Motor using Acoustic Signals. Bull. Polish Acad. Sci. Tech. Sci.

2017, 65, 187–194.

14. Grebenik, J.; Zhang, Y.; Bingham, C.; Srivastava. S. Roller element bearing acoustic fault detection using smartphone and con-

sumer microphones comparing with vibration techniques. In Proceedings of the 2016 17th International Conference on Mecha-

tronics—Mechatronika (ME), Prague, Czech Republic, 7–9 December 2016; pp. 1–7.

15. Matlab—Mathworks—Matlab and Simulink. Available online: https://www.mathworks.com/products/matlab.html (accessed

on 22 October 2022).

16. Glowacz, A. Acoustic-Based Fault Diagnosis of Commutator Motor. Electronics 2018, 7, 299. https://doi.org/10.3390/electron-

ics7110299.

17. Wu, C.; Jiang, P.; Ding, C.; Feng, F.; Chen, T. Intelligent fault diagnosis of rotating machinery based on one-dimensional convo-

lutional neural network. Comput. Ind. 2019, 108, 53–61. https://doi.org/10.1016/j.compind.2018.12.001.

18. X-CUBE-AI: AI Expansion Pack for STM32 CUBEMX. Available online: https://www.st.com/en/embedded-software/x-cube-

ai.html (accessed on 22 October 2022).

19. Keras: The Python Deep Learning API. Available online: https://keras.io/ (accessed on 22 October 2022).

20. Montino, P.; Pau, D. Environmental Intelligence for Embedded Real-time Traffic Sound Classification. In Proceedings of the

2019 IEEE 5th International forum on Research and Technology for Society and Industry (RTSI), Florence, Italy, 9–12 September

2019; pp. 45–50. https://doi.org/10.1109/RTSI.2019.8895517.

21. Sensortile Development Kit. Available online: https://www.st.com/en/evaluation-tools/steval-stlkt01v1.html (accessed on 22

October 2022).

22. Xu, M.; Duan, LY.; Cai, J.; Chia, LT.; Xu, C.; Tian, Q. HMM-Based Audio Keyword Generation. In Advances in Multimedia Infor-

mation Processing—PCM 2004; Lecture Notes in Computer Science; Aizawa, K., Nakamura, Y., Satoh, S., Eds.; Springer-Verlag:

Berlin/Heidelberg, Germany, 2004; Volume 3333, pp. 566–574. https://doi.org/10. 1007/978-3-540-30543-9_71.

23. Goodfellow, I.; Bengio. Y.; Courville, A. Deep Learning. MIT Press. 2016. Available online: http://www.deeplearningbook.org

(accessed on 22 October 2022).

24. Machine Learning for All STM32 Developers with STM32Cube.AI and Edge Impulse. Available online: https://www.edgeim-

pulse.com/blog/machine-learning-for-all-stm32-developers-with-stm32cube-ai-and-edge-impulse (accessed on 22 October

2022).

25. B-L475E-IOT01A, STM32L4 Discovery Kit IoT Node. Available online: https://www.st.com/en/evaluation-tools/b-l475e-

iot01a.html (accessed on 22 October 2022).

26. McFee, B.; Raffel, C.; Liang, D.; Ellis, D.P.; McVicar, M.; Battenberg, E.; Nieto, O. Audio and Music Signal Analysis in Python.

In Proceedings of the 14th Python in Science Conference (SCIPY 2015), Austin, TX, USA, 6–12 July 2015; pp. 18–24.

https://doi.org/10.25080/Majora-7b98e3ed-003.

27. Valenti, M.; Diment, A.; Parascandolo, G.; Squartini, S.; Virtanen, T. Acoustic scene classification using convolutional neural

networks. In Proceedings of the Detection and Classification of Acoustic Scenes and Events Workshop (DCASE 2016), Budapest,

Hungary, 3 September 2016; pp. 1–5. Available online: https://www.eurecom.fr/~evans/papers/pdfs/4982.pdf (accessed on 22

October 2022).

28. Importance of Feature Scaling. Available online: https://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_im-

portance.html (accessed on 22 October 2022).

