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Abstract: The event sensor provides high temporal resolution and generates large amounts of
raw event data. Efficient low-complexity coding solutions are required for integration into low-
power event-processing chips with limited memory. In this paper, a novel lossless compression
method is proposed for encoding the event data represented as asynchronous event sequences. The
proposed method employs only low-complexity coding techniques so that it is suitable for hardware
implementation into low-power event-processing chips. A first, novel, contribution consists of a
low-complexity coding scheme which uses a decision tree to reduce the representation range of the
residual error. The decision tree is formed by using a triplet threshold parameter which divides the
input data range into several coding ranges arranged at concentric distances from an initial prediction,
so that the residual error of the true value information is represented by using a reduced number of
bits. Another novel contribution consists of an improved representation, which divides the input
sequence into same-timestamp subsequences, wherein each subsequence collects the same timestamp
events in ascending order of the largest dimension of the event spatial information. The proposed
same-timestamp representation replaces the event timestamp information with the same-timestamp
subsequence length and encodes it together with the event spatial and polarity information into a
different bitstream. Another novel contribution is the random access to any time window by using
additional header information. The experimental evaluation on a highly variable event density
dataset demonstrates that the proposed low-complexity lossless coding method provides an average
improvement of 5.49%, 11.45%, and 35.57% compared with the state-of-the-art performance-oriented
lossless data compression codecs Bzip2, LZMA, and ZLIB, respectively. To our knowledge, the paper
proposes the first low-complexity lossless compression method for encoding asynchronous event
sequences that are suitable for hardware implementation into low-power chips.

Keywords: low-power electronics; low-complexity codec; lossless compressio; event camera

1. Introduction

The recent research breakthroughs in the neuromorphic engineering domain have
made possible the development of a new type of sensor, called the event camera, which
is bioinspired by the human brain, as each pixel operates individually and mimics the
behaviour of a separate nerve cell. In contrast to the conventional camera, in which all
pixels are designed to capture the intensity of the incoming light at the same time, the event
camera sensor reports only the changes of the incoming light intensity above a threshold,
at any timestamp, and at any pixel position by triggering a sequence of asynchronous
events (sometimes called spikes); otherwise it remains silent. Because each pixel detects
and reports independently only the change in brightness, the event camera sensor proposes
a new paradigm shift for capturing visual data.

The event camera provides a series of important technological advantages, such as
a high temporal resolution as the asynchronous events can be triggered at a minimum
timestamp distance of only 1µs (10−6 s), i.e., the event sensor can achieve a frame rate
of up to 1 million (M) frames per second (fps). This is made possible thanks to the
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remarkable novel event camera feature of capturing all dynamic information without
unnecessary static information (e.g., background), which is an extremely useful feature
for capturing high-speed motion scenes for which the conventional camera usually fails to
provide a good performance. Two types of sensors are currently available on the market:
(i) the dynamic vision sensor (DVS) [1], which captures only the event modality; and
(ii) the dynamic and active-pixel vision sensor (DAVIS) [2], which is comprised of a DVS
sensor and an active pixel sensor (APS), i.e., it captures a sequence of conventional camera
frames and their corresponding event data. The event camera sensors are now widely
used in the computer vision domain, wherein the RGB and event-based solutions already
provide an improved performance compared with state-of-the-art RGB-based solutions
for applications such as deblurring [3], feature detection and tracking [4,5], optic flow
estimation [6], 3D estimation [7], superresolution [8], interpolation [9], visual odometry [10],
and many others. For more details regarding event-based applications in computer vision,
please see the comprehensive literature review presented in [11]. To achieve high frame
rates, the captured asynchronous event sequences reach high bit-rate levels when stored
using the raw event representation of 8 bytes (B) per event provided by the event camera.
Therefore, for better preprocessing of event data on low-power event-processing chips,
novel low-complexity and efficient event coding solutions are required to be able to store
without any information loss the acquired raw event data. In this paper, a novel low-
complexity lossless compression method is proposed for efficient-memory representation
of the asynchronous event sequences by employing a novel low-complexity coding scheme
so that the proposed codec is suitable for hardware implementation into low-cost event
signal processing (ESP) chips.

The event data compression domain is understudied whereas the sensor’s popularity
continues to grow thanks to improved technical specifications offered by the latest class of
event sensors. The problem was tackled in only a few articles that propose to either encode
the raw asynchronous event sequences generated by the sensor with or without any infor-
mation loss [12–14], or to first preprocess the event data from a sequence of synchronous
event frames (EFs) that are finally encoded by employing a video coding standard [15,16].
The EF sequences are formed by using an event-accumulation process that consists of
splitting the asynchronous event sequence into spatiotemporal neighbourhoods of time
intervals, processing the events triggered in a single time interval, and then generating a
single event for each pixel position in the EF. These performance-oriented coding solutions
are too complex for hardware implementation in the ESP chip designed with limited mem-
ory, and may be integrated only in a system on a chip (SoC) wherein enough computation
power and memory is available.

In our prior work [17,18], we proposed employing an event-accumulation process
which first splits each asynchronous event sequence into spatiotemporal neighbourhoods
by using different time-window values, and then generates the EF sequence by using a
sum-accumulation process, whereby the events triggered in a time window are represented
by a single event that is set as the sign of the event polarity sum and stored at the cor-
responding pixel position. In [17], we proposed a performance-oriented, context-based
lossless image codec for encoding the sequence of event camera frames, in which the event
spatial information and the event polarity are encoded separately by using the event map
image (EMI) and the concatenated polarity vector (CPV). One can note that the lossless
compression codec proposed in [17] is suitable for hardware implementation in SoC chips.
In [18], we proposed a low-complexity lossless coding framework for encoding event
camera frames by adapting the run-length encoding scheme and Elias coding [19] for EF
coding. One can note that the low-complexity lossless compression codec proposed in [18]
is suitable for hardware implementation in ESP chips. The goal of this work is to propose
a novel low complexity-oriented lossless compression codec for encoding asynchronous
event sequences, suitable for hardware implementation in ESP chips.

In summary, the novel contributions of this work are summarized as follows.
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(1) A novel low-complexity lossless compression method for encoding raw event data
represented as asynchronous event sequences, which is suitable for hardware imple-
mentation into ESP chips.

(2) A novel low-complexity coding scheme for encoding residual errors by dividing the
input range into several coding ranges arranged at concentric distances from an initial
prediction.

(3) A novel event sequence representation that removes the event timestamp information
by dividing the input sequence into ordered same-timestamp event subsequences that
can be encoded in separated bit streams.

(4) A lossless event data codec that provides random access (RA) to any time window by
using additional header information.

The remainder of this paper is organized as follows. Section 2 presents an overview of
state-of-the-art methods. Section 3 describes the proposed low-complexity lossless coding
framework. Section 4 presents the experimental evaluation of the proposed codecs. Section 5
draws the conclusions of this work.

2. State-of-the-Art Methods

To achieve an efficient representation of the large amount of event data, a first ap-
proach was proposed to losslessly (without any information loss) encode the asynchronous
event representation. In [12], a lossless compression method is proposed by removing the
redundancy of the spatial and temporal information by using three strategies: adaptive
macrocube partitioning structure, the address-prior mode, and the time-prior mode. The
method was extended in [13] by introducing an event sequence octree-based cube partition
and a flexible intercube prediction method based on motion estimation and motion com-
pensation. However, the coding performance of these methods (based on the spike coding
strategy) remains limited.

In another approach, the asynchronous event representation is compressed by em-
ploying traditional lossless data compression methods. In [14], the authors present a
coding performance comparison study of different traditionally based lossless data com-
pression strategies when employed to encode raw event data. The study shows that
traditional dictionary-based methods for data compression provide the best performance.
The dictionary-based approach consists of searching for matches of data between the data
to be compressed and a set of strings stored as a dictionary, in which the goal is to find
the best match between the information maintained in the dictionary and the data to be
compressed. One of the most well-known algorithms for lossless data compression is
the Lempel-Ziv 77 (LZ77) algorithm [20], which was created by Lempel and Ziv in 1977.
LZ77 iterates sequentially through the input string and stores any new match into a search
buffer. The Zeta Library (ZLIB) [21], an LZ77 variant called deflation, proposed a strategy
whereby the input data is divided into a sequence of blocks. The Lempel–Ziv–Markov
chain algorithm (LZMA) [22] is an advanced dictionary-based codec developed by Igor
Pavlov for lossless data compression, which was first used in the 7-Zip open source code.
The Bzip2 algorithm is based on the well-known Burrows–Wheeler transform [23] for block
sorting, which operates by applying a reversible transformation to a block of input data.

In a more recent approach [24], the authors propose to treat the asynchronous event
sequence as a point cloud representation and to employ a lossless compression method
based on a point cloud compression strategy. One can note that the coding performance of
such a method depends on the performance of the geometry-based point cloud compression
(G-PCC) algorithm used in the algorithm design.

Many of the upper-level applications prefer to consume the event data as an “intensity-
like” image rather than asynchronous events sequence, wherein several event-accumulation
processes are proposed [25–30] to form the EF sequence. Hence, in another approach,
several methods are proposed to losslessly encode the generated EF sequence. The study
in [14] was extended in [15] by proposing a time aggregation-based lossless video encoding
method based on the strategy of accumulating events over a time interval by creating
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two event frames that count the number positive and negative polarity events, which
are concatenated and encoded by the high-efficiency video coding (HEVC) standard [31].
Similarly, the coding performance depends on the performance of the video coding standard
employed to encode the concatenated frames.

To further improve event data representation, another approach was proposed to
encode the asynchronous event sequences by relaxing the lossless compression constraint
problem and accepting information loss. In [32], the authors propose a macrocuboids
partition of the raw event data, and they employ a novel spike coding framework, inspired
by video coding, to encode spike segments. In [16], the authors propose a lossy coding
method based on a quad-tree segmentation map derived from the adjacent intensity images.
One can note that the information loss introduced by such methods might affect the
performance of the upper-level applications.

3. Proposed Low-Complexity Lossless Coding Framework

Let us consider an event camera having a W × H pixel resolution. Any change of the
incoming light intensity triggers an asynchronous event, ei = (xi, yi, pi, ti), which stores
(based on the sensors representation) the following information in 8 B of memory:

• spatial information (xi, yi), ∀xi ∈ [1, H], yi ∈ [1, W], i.e., the pixel positions where the
event was triggered;

• polarity information pi ∈ {−1, 1},where the symbol “−1” signals a decrease and
symbol “1” signals an increase in the light intensity; and

• timestamp ti, the time when the event was triggered.

Hence, an asynchronous event sequence, denoted as ST = {ei}i=1,2,...,Ne , collects Ne events
triggered over a time period of T µs. The goal of this paper is to encode ST by employing a
novel, low-complexity lossless compression algorithm.

Figure 1 depicts the proposed low-complexity lossless coding framework scheme
for encoding asynchronous event sequences. A novel sequence representation groups
the same-timestamp events in subsequences and reorders them. Each same-timestamp
subsequence is encoded in turn by the proposed method, called low-complexity lossless
compression of asynchronous event sequences (LLC-ARES). LLC-ARES is built based on a
novel coding scheme, called the triple threshold-based range partition (TTP).

Same-Timestamp 
Event Grouping 
and Reordering

𝑆𝒯 = 𝑒𝑖 𝑖=1,2,…,𝑁e

Proposed
Method

𝑡𝑘+1 = 𝑡𝑘 + 1

ℬ𝑡𝑘

1, 2, … , 𝒯

Compressed File
𝑆𝑘 = 𝑒𝑖

𝑘
𝑖=1,2,…,𝑁e

𝑘

Collect ΔRA
Bitstreams

Encode Length

ℬℓ

ℬℓ
𝐻

Compressed File with RA

Random Access (RA)

ℬℓ−1

𝐿ℓ

ℬ𝑆

ℬ𝐻

ℬℬ𝑡𝑘−1

Figure 1. The proposed low-complexity lossless coding framework. The input asynchronous event
sequence, ST , is first represented by using the proposed event representation as a set of same-
timestamp subsequences, Sk, having same-timestamp tk, and then encoded losslessly by employing
the proposed method. The output bitstream of each same-timestamp subsequence can be stored in
memory as a compressed file. Moreover, it can also be collected as a package bitstream for all the
timestamps found in a time period ∆RA and then stored in memory together with bitstream-length
information stored as a header as a compressed file with RA, so that the proposed codec can provide
RA to any time window of size ∆RA.

Section 3.1 presents the proposed sequence representation. Section 3.2 presents the
proposed low-complexity coding scheme. Section 3.3 presents the proposed method.
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3.1. Proposed Sequence Representation

An input asynchronous event sequence, ST , is arranged as a set of same-timestamp
subsequences, ST = {Sk}k=0,1,...,T −1, where each same-timestamp subsequence
Sk = {ek

i }i=1,2,...,Nk
e
= {(xk

i , yk
i , pk

i )}i=1,2,...,Nk
e

collects all Nk
e events in ST triggered at

the same timestamp tk. One can note that at the decoder side the timestamp information
is recovered based on the subsequence length information, {Nk

e }k=0,1,...,T −1, i.e., tk = k
is set to all Nk

e events. Each Sk is ordered in the ascending order of the largest spatial
information dimension, e.g., yk

i < yk
i+1. However, if yk

i = yk
i+1, then Sk is further ordered in

the ascending order of the remaining dimension, i.e., xk
i < xk

i+1.
Figure 2 depicts the proposed sequence representation and highlights the difference

between the sensor’s event-by-event (EE) order, depicted on the left side, and the same-
timestamp (ST) order, depicted on the right side. Note that the EE order proposes to
write to file, in turn, each event ei. Although the proposed ST order proposes to write
to file the number of events of each same-timestamp subsequence, Nk

e having the same-
timestamp tk, and, if Nk

e > 0, it is followed by the spatial and the event information of all
same-timestamp events, i.e., {xi}i=1:Nk

e
, {yi}i=1:Nk

e
, {pi}i=1:Nk

e
. Section 4 shows that the state-

of-the-art dictionary-based data compression methods provide an improved performance
when the proposed ST order is employed to represent the input data compared with the
EE order.

𝑥1 𝑦1 𝑝1 𝑡0

𝑥2 𝑦2 𝑝2 𝑡0

𝑥3 𝑦3 𝑝3 𝑡0

𝑥4 𝑦4 𝑝4 𝑡2

𝑥5 𝑦5 𝑝5 𝑡2

Event-by-event (EE) order

𝑁𝑒
0 =3

Same-Timestamp (ST) order

𝑒𝑖 𝑖=1
5

൞

𝑥1
0 𝑦1

0 𝑝1
0

𝑥2
0 𝑦2

0 𝑝2
0

𝑥3
0 𝑦3

0 𝑝2
0

൝
𝑥1
2 𝑦1

2 𝑝1
2

𝑥2
2 𝑦2

2 𝑝2
2

𝑆0

𝑁𝑒
1 = 0,𝑁𝑒

2 = 2

𝑆2

Write-to-file order

Group &
Reorder

𝑦1
0< 𝑦2

0 < 𝑦3
0

If 𝑦1
2 = 𝑦2

2,
𝑥1
2 < 𝑥2

2

Figure 2. The proposed representation based the proposed same-timestamp (ST) order (on the right)
in comparison with the sensor’s event-by-event (EE) order (on the left). The red arrow shows the
write-to-file order used to generate the input data files feed to the traditional methods.

3.2. Proposed Triple Threshold-Based Range Partition (TTP)

For hardware implementation of the proposed event data codec into low-power
event-processing chips, a novel low-complexity coding scheme is proposed. The binary
representation range of the residual error is partitioned into smaller intervals selected by
using a short-depth decision tree designed based on a triple threshold, ∆ = (δ1, δ2, δ3).
Hence, the input range is partitioned into several smaller coding ranges arranged at
concentric distances from the initial prediction.

Let us consider the case of encoding x ∈ [1, H], i.e., a finite range, by using the
prediction x̂ by writing the binary representation of the residual error ε = x− x̂ on exactly
nε bits. Because on the decoder side nε is unknown, the triple threshold ∆ is used to create a
decision tree having the role of partitioning the input range [1, H] into five types of coding
ranges (see Figure 3a), where either the binary representation of ε is represented by using
a different number of bits or the binary representation of x is written by using a different
number of bits.
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Figure 3. The proposed low-complexity coding scheme, triple threshold-based range partition (TTP).
(a) TTP range partition. (b) TTP decision tree. (c) TTPy range partition. (d) TTPy decision tree.
(e) TTPe range partition. (f) TTPe decision tree. (g) TTPL range partition. (h) TTPL range partition.
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Let us denote ∆ = δ1 + δ2 + δ3, x1 = x̂ − ∆, x2 = x̂ + ∆, nδj = dlog2 δje, ∀j = 1, 2, 3,
n1 = dlog2 x1e, and n2 = dlog2 (H − x2 − 1)e. The 1st range, R1, is defined by using δ1
as (x̂− δ1, x̂ + δ1) to represent any residual error |ε| < δ1 on nδ1 bits plus an additional
bit for sign(ε). The 2nd range, R2, is defined by using δ2 to represent any residual error
|ε| − δ1 < δ2 on nδ2 bits plus a sign bit, i.e., x ∈ (x̂ − δ1 − δ2, x̂ − δ1] for ε < 0 and
x ∈ [x̂ + δ1, x̂ + δ1 + δ2) for ε ≥ 0. Similarly, the 3rd range, R3, is defined by using δ3 to
represent any residual error |ε| − δ1 − δ2 < δ3 on nδ3 bits plus a sign bit. The 4th (R4) and
5th (R5) ranges are defined for |ε| ≥ ∆ and used to represent x− 1 on n1 bits and H − x on
n2 bits, respectively.

Figure 3b depicts the decision tree defined by checking the following four constraints:

(c1) b0 is set by checking |ε| < ∆. If true then b0 = 0; otherwise, b0 = 1.
(c2) If b0 = 0, then b1 is set by checking |ε| < δ1. If true, then b1 = 0 and R1 is employed to

represent ε on nε = nδ1 + 1 bits; otherwise b1 = 1.
(c3) If b1 = 1, then b2 is set by checking |ε| < δ1 + δ2. If true then b2 = 0 and R2 is

employed to represent ε on nε = nδ2 + 1 bits. Otherwise, b1 = 1 and R3 is used to
represent ε on nε = nδ3 + 1 bits.

(c4) If b0 = 1, then b1 is set by checking x ≤ x1. If true, then b1 = 0 and R4 is employed
to represent x− 1 on n1 bits. Otherwise, b1 = 1 and R5 is used to represent H − x on
n2 bits.

Note that the range [1, x1] contains x1 possible values. To fully utilize the entire set of code
words (i.e., including 00 · · · 0 having n1 bits length), x− 1 is represented on n1 bits.

Algorithm 1 presents the pseudocode of the basic implementation of the TTP encoding
algorithm. It is employed to represent a general value x by using the prediction x̂, the
support range [1, H], and the triple threshold parameter, ∆, as output bitstream B, which
contains the decision tree bits, followed by the binary representation of the required
additional information for the corresponding coding range. Algorithm 2 presents the
pseudocode of the basic implementation of the corresponding TTP decoding algorithm.

Algorithm 1: Encode a general x by using TTP

Data: True value x, prediction x̂, range [1, H], and triple threshold ∆;
Result: Output bitstream B;

1 B(0)← 0; B(1)← 0; ε = x− x̂; ∆ = δ1 + δ2 + δ3;
2 if |ε| < ∆ then
3 if |ε| < δ1 then // R1 Range
4 B(2 : dlog2 δ1e+ 2)← [sign(ε); Write |ε| on dlog2 δ1e bits];
5 else
6 if |ε| < δ1 + δ2 then // R2 Range
7 B(1 : dlog2 δ2e+ 3)← [1; 0; sign(ε); Write |ε| − δ1 on dlog2 δ2e bits];
8 else // R3 Range
9 B(1 : dlog2 δ3e+ 3)← [1; 1; sign(ε); Write |ε| − δ1 − δ2 on dlog2 δ3e b];

10 else
11 if x ≤ x̂− ∆, then // R4 Range
12 B(2 : dlog2 (x̂− ∆)e+ 1)← [Write x− 1 on dlog2 (x̂− ∆)e bits];
13 else // R5 Range
14 B(1 : dlog2 (H − x̂− ∆− 1)e+ 1)← [1; H − x on dlog2 (H − x̂− ∆− 1)e];
15 Return B;
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Algorithm 2: Decode a general x by using TTP

Data: Bitstream B; prediction x̂, range [1, H], and triple threshold ∆;
Result: True value x;

1 if B(0) = 0 then
2 if B(1) = 0 then // R1 Range
3 signε ← B(2); εabs ← Dec2bin(B(3 : dlog2 δ1e+ 2);
4 else
5 if B(2) = 0 then // R2 Range
6 signε ← B(3); εabs ← δ1 + Dec2bin(B(4 : dlog2 δ2e+ 3);
7 else // R3 Range
8 signε ← B(3); εabs ← δ1 + δ2 + Dec2bin(B(4 : dlog2 δ3e+ 3);
9 x ← signε · εabs;

10 else
11 if B(1) = 0 then // R4 Range
12 x ← 1 + Dec2bin(B(2 : dlog2 (x̂− ∆)e+ 2);
13 else // R5 Range
14 x ← H − Dec2bin(B(2 : dlog2 (H − x̂− ∆− 1)e+ 2);
15 Return x;

Section 3.2.1 presents the deterministic cases that may occur. Section 3.2.2 analyses
the different algorithmic variations proposed to encode the data structures in the proposed
event representation that have different properties.

3.2.1. Deterministic Cases

In some special cases, some part of the information can be directly determined from
the current coding context. For example, if x1 or x2 is outside the finite range (see Figure 4a),
then R4 or R5 does not exist and the context tree is built without checking condition (c4), i.e.,
in such case one bit is saved. More exactly, steps 11–14 in Algorithms 1 and 2 are replaced
with either step 12 (encode/decode using R4) or step 14 (encode/decode using R5).

ො𝑥 𝑥2 = ො𝑥 + Δ𝑥1 = ො𝑥 − Δ 1 H

Δ 𝐻 − 𝑥2 + 1

R5

Δ

R4 

ො𝑥 𝑥2 = ො𝑥 + Δ𝑥1 = ො𝑥 − Δ1 H

Δ𝑥1

R5

Δ

R4 

(a)

1 2𝑛1−1 2𝑛1
𝑥1𝑥1 − 2𝑛1−1

𝑛1 bits

𝑏𝑛1−1 = 1𝑏𝑛1−1 = 0

𝑛1 bits
𝑛1 − 1 bits

𝑥(10) = 𝑏𝑛1−1…𝑏1 𝑏0(2)

𝑏𝑛1−1 = 0 𝑏𝑛1−1 = 1



1 ≤ 𝑥 ≤ 𝑥1

(b)

Figure 4. Deterministic cases: (a) if x1 < 1 or x2 > H, then condition (c4) is not checked when
building the context tree and one bit is saved. (b) If x ∈ (x1 − 2n1−1, 2n1−1], then x is represented by
using one bit less than in the case when x ∈ [1, x1 − 2n1−1] or x ∈ (2n1−1, x1].

Moreover, because x1 and x′2 = H − x2 + 1 are not power-2 numbers, the most
significant bit of x, bn1−1, is 0, thanks to the constraint 1 ≤ x ≤ x1 and 1 ≤ x ≤ x′2,
respectively. Figure 4b shows that if x ∈ (x1 − 2n1−1, 2n1−1] and bn1−1 would be set as
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1, then x > x1 and the constraint would be violated. Hence, bn1−1 is always set 0 if
x ∈ (x1 − 2n1−1, 2n1−1], (or similarly when x ∈ (x′2 − 2n′2−1, 2n′2−1]).

3.2.2. Algorithm Variations

The basic implementation of the TTP algorithm was modified for encoding differ-
ent types of data. Let us denote εxk

i
= xk

i − x̂k
i and εyk

i
= yk

i − ŷk
i . Then the sequence

{xk
i }i=1,2,...,Nk

e
is encoded by using version TTPx, where εyk

i
is used to detect another deter-

ministic case: if εyk
i
= 0, then x̂k

i = xk
i−1 and the sign bit is saved (see Figure 2 (ST order)).

The sequence {yk
i }i=2,3,...,Nk

e
having εyk

i
≥ 0 (thanks to ST order) is encoded by using version

TTPy, which is designed to encode a general value x found in range [x̂, H]. Figure 3c,d
show the TTPy range partitioning and decision tree, respectively.

Some data types have a very large or infinite support range. The sequence of number
of events of each timestamp, {Nk

e }k=0,1,...,T −1, is encoded by using version TTPe. Note
that Nk

e ∈ [0, HW]; however, there is a very low probability of having a large majority of
pixels triggered with the same timestamp. Therefore, because Ne is usually very small,
TTPe is designed to use the doublet threshold ∆e = (δ1, δ2), as experiments show that a
triplet threshold does not improve the coding performance. Figure 3e shows the TTPe
range partitioning, where the values 0, 1, . . . , δ2 − 2 are encoded by R2 as the last value,
δ2− 1 (having the binary representation as nδ2 bits of 1, i.e., 11 . . . 1︸ ︷︷ ︸

nδ2

), signals the use of R6 to

encode |ε| − ∆− 2 by using a simple coding technique, the Elias gamma coding (EGC) [19].
Figure 3f shows the decision tree, where Nk

e = 0 (i.e., Sk = ∅) is encoded by the first bit of
the decision tree.

Finally, TTPL is designed to encode the length of the package bitstream B`, denoted
as L` (see Section 3.3.3). TTPL defines seven partition intervals by using two triple thresh-
olds: ∆S = (δS

1 , δS
2 , δS

3 ) is used for encoding small errors using R1S, R2S, and R3S, and
∆L = (δL

1 , δL
2 , δL

3 ) is used for encoding large errors using R1L, R2L, and R3L. Similar to
TTPe, R6 is signalled in R3L by using the last value δL

3 − 1 and |ε| − ∆S − ∆L − 2 is encoded
by employing EGC [19].

3.3. Proposed Method

The proposed method, LLC-ARES, employs the proposed representation to gener-
ate the set of same-timestamp subsequences, {Sk}k=0,1,...,T −1 (see Section 3.1). Subse-
quence Sk is encoded as bitstream Btk by using Algorithm 3, which employs the proposed
coding scheme, TTP (see Section 3.2). The compressed file collects these bitstreams as
B = [Bt0 Bt1 · · · BtT −1 ].
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Algorithm 3: Encode the subsequence of ordered events

Data: Sk = {(xk
i , yk

i , pk
i )}i=1:Nk

e
of same timestamp tk, {N j

e}j=k−3:k−1, H, W;
Result: Output bitstream Btk ;

1 N̂k
e ← Predict Nk

e using {N j
e}j=k−3:k−1;

2 Btk ← Encode Nk
e using TTPe(N̂k

e , ∆e);
3 if Nk

e > 0 then
4 Btk ← Encode yk

1 using TTPx(ŷk
r , εyk

1
> 0, [1, W], ∆e1);

5 Btk ← Encode xk
1 using TTPx(x̂k

r , εyk
1
> 0, [1, H], ∆e1);

6 Btk ← Encode pk
1 as 0 for pk

1 = −1 and 1 for pk
1 = 1;

7 for i = 2, 3, . . . , Nk
e do

8 Btk ← Encode yk
i using TTPy(yk

i−1, [ŷk
i , W], ∆k

W);
9 x̂k

i ← Predict xk
i using {xk

j }j=1,2,...,i−1;

10 Btk ← Encode xk
i using TTPx(x̂k

i , εyk
i
, [1, H], ∆k

H);

11 Btk ← Encode pk
i as 0 for pk

i = −1 and 1 for pk
i = 1;

12 end
13 ∆k+1

H ← Update ∆k
H using εk = yk

Nk
e
− yk

1;

14 ∆k+1
W ← Update ∆k

W using εk = yk
Nk

e
− yk

1;

15 end
16 Return Btk ;

Algorithm 3 encodes the following data structures:

(i) Encode Nk
e by employing TTPe using N̂k

e , computed by (1), and ∆e;
(ii) Encode ek

1 as follows:

(ii.1) yk
1 by employing TTPx using ŷk

r computed by (2), range [1, W], and ∆e1;
(ii.2) xk

1 by employing TTPx using x̂k
r computed by (2), range [1, H], and ∆e1; and

(ii.3) pk
1 using binarization;

(iii) The remaining events are encoded as follows:

(iii.1) yk
i by employing TTPy using ŷk

i = yk
i−1, range [ŷk

i , W], and ∆k
W ;

(iii.2) xk
i by employing TTPx using x̂k

i computed by (3), εyk
i
, range [1, H], and ∆k

H ; and

(iii.3) pk
i using binarization.

(iv) Update the triple thresholds ∆k
H and ∆k

W .

The decoding algorithm can be simply deducted by replacing the TTP encoding algorithm
in Algorithm 3 with the corresponding decoding algorithm.

Section 3.3.1 describes the prediction of each type of data used in the proposed event
representation. Section 3.3.2 provides information about the setting of the triple thresholds
used in the proposed method. Section 3.3.3 describes the variation of LLC-ARES algorithm
to provide RA to any time window ∆RA. Finally, Section 3.3.4 presents a coding example.

3.3.1. Prediction

To be able to employ each one of the four algorithm variations, TTPx, TTPy, TTPe, and
TTPL, four types of predictions, N̂k

e , (x̂k
r , ŷk

r ), x̂k
i , L̂`, are computed by using the following

set of equations:

N̂k
e =


τe if k = 0,
N1

e if k = 1,
N1

e +N1
e

2 if k = 2,
Nk−3

e +Nk−2
e +2Nk−1

e
4 if k ≥ 3.

, (1)
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(x̂k
r , ŷk

r ) =

{
(H

2 , W
2 ) if k = 0,

(xκ
1 , yκ

1 + τy) if k > κ > 0, Nκ
e > 0.

, (2)

x̂k
i =



xk
i−1 if i = 1 or εyk

i
= 0,

xk
i−1+xk

i−2
2 if i = 2,

med({xi−j}j=1:w1) if i > 2 and |εyk
i
| < τx,

med({xi−j}j=1:w2) if i > 2 and |εyk
i
| ≥ τx.

, (3)

L̂` =

{
27+dlog2∆RAe if ` = 1,
L`−1 otherwise.

. (4)

In (2), the prediction for the spatial information of the first event, e0
1, in the same-

timestamp subsequence Sk, is set as the sensor’s centre (H
2 , W

2 ), whereas the rest of the
values depend on the first event eκ

1 of the previously nonempty same-timestamp subse-
quence Sκ . In (3), if εyk

i
is small, x̂k

i is set as the median of a small prediction window of
size w1; otherwise it is of a larger prediction window of size w2. In our work, we set the
parameters as follows: τe = 10, τx = 23 + 24, τy = 3, w1 = 5, w2 = 15.

3.3.2. Threshold Setting

In this paper, the triple threshold parameters, ∆e, ∆e1, ∆S, ∆k+1
H , ∆k+1

W , and ∆L are se-
lected as power-2 numbers, and are set as follows:

∆e = (22, 22), (5)

∆e1 = (23, 24, 25), (6)

∆k+1
H =


∆e1 if k = 0
(25, 25, 26) if k > 0 & εk < 8
(24, 24, 25) otherwise

, (7)

∆k+1
W =



(22, 23, 24) if k = 0
(21, 21, 22) if k > 0 & εk < 4
(21, 22, 23) if k > 0 & εk < 8
(22, 22, 23) if k > 0 & εk < 16
(22, 23, 24) otherwise

, (8)

∆S = (28, 210, 212), (9)

∆L = (25+dlog2∆RAe, 27+dlog2∆RAe, 29+dlog2∆RAe). (10)

3.3.3. Random Access Functionality

LLC-ARES-RA is an LLC-ARES version which provides RA to any time window
of size ∆RA. Hence, ST is now divided into P = d T∆RA

e packages of ∆RA time-length,
denoted ST = {S`}`=1,2,...,P . The proposed LLC-ARES is employed to encode each pack-
age S` as the bitstream set {Btk}k=0,1,··· ,∆RA−1, which is collected as the package ` bit-
stream, B` = [Bt0 Bt1 · · · Bt∆RA ], having L` bit length. The TTPL version is employed
to encode L` using the prediction L̂`, computed using (4), and the two triple threshold
∆S and ∆L, and to generate the header bitstream, BH

` , as depicted in Figure 1. Hence,
the bitstreams of the set {L`}`=1,2,...,P are collected by the header bitstream, denoted as
BH = [BH

1 BH
2 · · · BH

P ], whereas all package bitstreams are collected by the sequence bit-
stream, denoted as BS = [B1 B2 · · · BP ]. Finally, the compressed file with RA collects the
BH and BS bitstreams in this order.
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3.3.4. A Coding Example

Figure 5 presents in detail the workflow of encoding by using the proposed LLC-ARES
method an asynchronous event sequence of 2µs time-length, containing 23 triggered events.
The input sequence received from the event sensor is initially represented by using the
EE order. The proposed sequence representation is employed by first grouping and then
rearranging the asynchronous event sequence by using the ST order. Because the input
sequence contains two timestamps, the ST order consist of the same-timestamp subsequence
S0 of 10 events and the same-timestamp subsequence S1 or 13 events. LLC-ARES encodes
each data structure by using different TTP variations as described in Algorithm 3.

EE order ST order

Group &
Reorder

x       y       p     t

45   301     1     0
62   302     1     0

177   303     1     0
62   304     1     0
90   308     1     0

181   308     1     0
71   307     0     0

140   307     1     0
63   307     0     0

416   307     0     0
88   305     1     1

165   306     1     1
149   306     0     1

63   306     0     1
61   310     1     1
38   310     0     1
66   310     0     1
88   310     0     1

156   310     0     1
90   309     1     1
64   309     0     1
74   312     1     1

248   312     0     1

10
45   301     1
62   302     1

177   303     1
62   304     1
63   307     0
71   307     0

140   307     1
416   307     0

90   308     1
181   308     1

13
88   305     1 
63   306     0 

149   306     0 
165   306     1 

64   309     0 
90   309     1 
38   310     0 
61   310     1 
66   310     0 
88   310     0 

156   310     0 
74   312     1 

248   312     0 

Encode using LLC-ARES:
- 𝑁𝑒

0 = 10 as [1 0 0 0 0]
- 𝑦1

0 = 301 as [0 1 1 1 0 1 1 0 0]
- 𝑥1

0 = 45 as [1 0 0 0 1 1 0 1 0 0]
- 𝑝1

0 = 1 as [1]
- 𝑦2

0 = 302 as [0 0 1 0]
- 𝑥2

0 = 62 as [0 1 0 1 0 0 0 0 0]
- 𝑝2

0 = 1 as [1]
- 𝑦3

0 = 303 as [0 0 1 0]
- 𝑥3

0 = 177 as [1 1 1 1 1 0 0 1 1 1]
- 𝑝3

0 = 1 as [1]
- 𝑦4

0 = 304 as [0 0 1 0]
- 𝑥4

0 = 62 as [0 0 0 0 0 0 0]
- 𝑝4

0 = 1 as [1]
- 𝑦5

0 = 307 as [0 0 1 1]

- 𝑥5
0 = 63 as [0 0 1 0 0 0 0]

- 𝑝5
0 = 0 as [0]

- 𝑦6
0 = 307 as [0 0 0 0]

- 𝑥6
0 = 71 as [0 0 0 0 0 1]

- 𝑝6
0 = 0 as [0]

- 𝑦7
0 = 307 as [0 0 0 0]

- 𝑥7
0 = 140 as [0 1 1 1 0 1 0 1]

- 𝑝7
0 = 1 as [1]

- 𝑦8
0 = 307 as [0 0 0 0]

- 𝑥8
0 = 416 as [1 1 0 0 0 0 0 1 1 1]

- 𝑝8
0 = 0 as [0]

- 𝑦9
0 = 308 as [0 0 1 0]

- 𝑥9
0 = 90 as [0 1 0 1 1 0 0 0 0]

- 𝑝9
0 = 1 as [1]

- 𝑦10
0 = 308 as [0 0 0 0]

- 𝑥10
0 = 181 as [1 1 1 1 0 1 0 0 1 1 1]

- 𝑝10
0 = 1 as [1]

- 𝑁𝑒
1 = 13 as [1 0 1 1 1]

- …
- 𝑝13

1 = 0 as [0]

11000001
01001101
00101100
01001001
01000001
11111010
00111100
00000001
00110010
00000001
10000000
11000000
00110101
00001100
10001110
00110100
10000100
10010111
11101111
00010000
01100001
01001001
00001110
10110110
00000000
10101100
01100100
00000011
00111010
01000101
00000011
00110111
00101000
10000000
00000101
00010011
00000010
00100100
00100010
00000110 Bitstream

193    77    44   73    65
250    60      1    50     1
128  192    53   12  142
52  132  151  239   16
97    73    14  182     0

172   100     3    58   69
3     55    40 128     5

19       2    36   34     6

Output bytes 
written to file

Figure 5. The encoding workflow using the proposed LLC-ARES method as an asynchronous event
sequence of 2µs time-length, containing 23 events. The input sequence, represented by using the EE
order, is first grouped and rearranged by using the proposed ST order. LLC-ARES encodes each data
structure by using different TTP variations as an output bitstream of 316 bits stored by using 40 bytes,
i.e., 40 numbers having an 8-bit representation.

4. Experimental Evaluation
4.1. Experimental Setup

In our work, the experimental evaluation is carried out on large-scale outdoor stereo
event camera datasets [33], called DSEC. They contain 82 asynchronous event sequences
captured for network training (training data) by using the Prophesee Gen3.1 event sensor
placed on top of a moving car, having a W × H = 640× 480 pixel resolution. All results
reported in this paper use the DSEC asynchronous event sequences sorted in the ascending
order of their event acquisition density. By driving at different speeds and in different
outdoor scenarios, the DSEC sequences provide a highly variable density of events (see
Figure 5a, in which one can see that the event density variates between 5 and 30 Mevps).
Figure 6b depicts the cumulated number of events over the first 10 s of the DSEC sequences
having the lowest, medium, and highest acquired event density shown in Figure 6a. To limit
the runtime of state-of-the-art codecs, for each event sequence, only the first T = 108 µs



Sensors 2022, 22, 10014 13 of 20

(100 s) of captured event data are encoded in this work. The DSEC dataset is made publicly
available online [34].
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Figure 6. (a) The DSEC sequence time length (s) and event density (Mevps), where the asynchronous
event sequences are sorted in ascending order of the sequence acquisition density and the sequence
time length was constrained to contain only the first T = 108 µs (100 s) of the captured event data.
(b) The cumulated number of events (Mev) over the first 10 s of the DSEC sequences having the
lowest (SeqID: 01), medium (SeqID: 41), and highest (SeqID: 82) acquired event density.

The proposed method, LLC-ARES, is implemented in the C programming language.
The LLC-ARES-RA version is tested by using a time window of ∆RA of 102 µs, 103 µs, and
104 µs, where for each event sequence only the first T = 107 µs of captured event data are
encoded. The raw data size is computed by using the sensor specifications of 8 B per event.

The compression results are compared by using the following metrics:

(c1) Compression ratio (CR), defined as the ratio between the raw data size and the
compressed file size;

(c2) Relative compression (RC), defined as the ratio between the compressed file size of a
target codec and the compressed file size of LLC-ARES; and

(c3) Bit rate (BR), defined as the ratio between the compressed file size in bits and the
number of events in the asynchronous event sequence, measured in bits per event
(bpev), e.g., raw data has 64 bpev.

The runtime results are compared by using the following metrics:

(t1) Event density (ρE), defined as the ratio between the number of events in the asyn-
chronous event sequence and the encoding/acquisition time, measured in millions of
events per second (Mevps);

(t2) Time ratio (TR), defined as the ratio between the data acquisition time and the codec
encoding time; and

(t3) Runtime, defined as the ratio between the encoding/decoding time (µs) and the
number of events.
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The LLC-ARES performance is compared with the following state-of-the-art traditional
data compression codecs:

(a) ZLIB [21] (version 1.2.3 available online [35]);
(b) LZMA [22]; and
(c) Bzip2 (version 1.0.5 available online [36]).

One can note that the comparison with [12] was not possible, as the codec is not publicly
available and the dataset is made available only for academic research purposes.

4.2. Compression Results

Figure 7 shows the CR results and Figure 8 shows the BR results over DSEC [34]. One
can note that, for state-of-the-art methods, the proposed ST order provides an improved
performance of up to 96% compared with the sensor’s EE order. LLC-ARES (designed
for low-power chip integration) provides an improved performance compared with all
state-of-the-art codecs (designed for SoC integration) over the sequences having a small
and medium event density, and a close performance over the sequences having a high
event density as more complex coding techniques are employed by the traditional lossless
data compression methods.
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Figure 7. The compression ratio (CR) results over the DSEC dataset [34], where the asynchronous
event sequences are sorted in ascending order of the sequence acquisition density.

Table 1 shows the average CR and BR results over DSEC [34].One can note that,
compared with the state-of-the-art performance-oriented lossless data compression codecs,
Bzip2, LZMA, and ZLIB, the proposed LLC-ARES codec provides the following:

(i) an average CR improvement of 5.49%, 11.45%, and 35.57%, respectively;
(ii) an average BR improvement of 7.37%, 13.40%, and 37.12%, respectively; and
(iii) an average bitsavings of 1.09 bpev, 1.99 bpev, and 5.50 bpev, respectively.
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Figure 8. The bitrate (BR) results over DSEC [34], where the asynchronous event sequences are sorted
in ascending order of the sequence acquisition density.

Table 1. Average performance over DSEC by using the EE and ST order.

Method ZLIB [35] LZMA [22] bzip2 [36] Proposed
LLC-ARES

CR EE order 2.21 3.51 2.11 –
ST order 3.22 3.92 4.14 4.3

EBR (bpev) EE order 29.65 18.91 30.50 –
ST order 20.32 16.80 15.91 14.8

ρE (Mevps) ST order 1.392 0.275 2.453 5.736

TR ST order 0.133 0.027 0.246 0.531

4.3. Runtime Results

Figure 9 shows the event density results and Figure 10 shows the TR results over
DSEC. One can note that compared with runtime performance of state-of-the-art codecs,
LLC-ARES provides a performance much closer to real time for all sequences, and an
outstanding performance for the sequences having a high event density. More exactly,
LLC-ARES provides a much faster coding speed than the state of the art for the case of
high event acquisition density. Whereas the asynchronous event sequences have a very low
event acquisition density, LLC-ARES provides an encoding speed as close as approximately
90% of the real-time performance (see Figure 10). Moreover, the software implementation
was not optimized, as it can be further improved by a software developer expert to provide
an improved runtime performance when deployed on an ESP chip.
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Figure 9. The encoded event density results over the DSEC dataset [34], where the asynchronous
event sequences are sorted in ascending order of the sequence acquisition density.
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Figure 10. The time ratio (TR) results over the DSEC dataset [34], where the asynchronous event
sequences are sorted in ascending order of the sequence acquisition density.

Table 1 shows the average event density and TR results over DSEC. One can note that,
compared with the state-of-the-art lossless data compression codecs, Bzip2, LZMA, and
ZLIB, the proposed LLC-ARES codec provides the following:

(i) an average event density improvement of 234×, 412×, and 2086×, respectively; and
(ii) an average TR improvement of 216×, 401×, and 1969×, respectively.

Figures 11 and 12 show the encoding and decoding runtime over DSEC, respectively.
Note that LLC-ARES is a symmetric codec, wherein the encoder and decoder have similar
complexity and runtime, whereas the traditional state-of-the-art lossless data compression
methods are asymmetric codecs, as the encoder is much more complex than the decoder.
Table 2 presents the average results over DSEC by using the EE order and the proposed ST
order. Note that the LLC-ARES performance is approximately 10µs/ev for both encoding
and decoding, while the traditional state-of-the-art lossless data compression methods
achieve an encoding time between 135% and 515% higher than LLC-ARES and a decoding
time between 92% lower and 58% higher than LLC-ARES.

The implementation of LLC-ARES was not optimized, as the implemented method
must be redesigned for integration into low-power chips. These experimental results
show that a proof-of-concept implementation of the algorithm on a CPU machine provides
an improved performance compared with the state-of-the-art methods when tested on
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the same experimental setup. Please note that only LLC-ARES employs simple coding
techniques so that it is suitable for hardware implementation into low-power ESP chips.
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Figure 11. Encoding runtime results over the DSEC dataset [34], where the asynchronous event
sequences are sorted in ascending order of the sequence acquisition density.
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Figure 12. Decoding runtime results over the DSEC dataset [34], where the asynchronous event
sequences are sorted in ascending order of the sequence acquisition density.

Table 2. Average runtime results over DSEC using EE and ST order.

Method ZLIB [35] LZMA [22] bzip2 [36] Proposed
LLC-ARES

Encoding Runtime EE order 67.20 µs/ev 210.39 µs/ev 40.91 µs/ev –
ST order 44.70 µs/ev 227.27 µs/ev 25.75 µs/ev 10.92 µs/ev

Decoding Runtime EE order 0.78 µs/ev 7.46 µs/ev 16.09 µs/ev –
ST order 1.14 µs/ev 5.71 µs/ev 10.58 µs/ev 10.21 µs/ev

4.4. RA Results

Figure 13 shows the RC results over DSEC. One can note that the RC results are
quite similar, as the size of the header bitstream is neglectable compared with the time-
window sequence bitstream. When providing RA to the smallest tested time window of
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∆RA = 100µs, compared with LLC-ARES, the coding performance of the proposed LLC-
ARES-RA method decreases with less than 0.19% when the encoded header information is
stored in memory and less than 0.35% when the decoded header information is stored in
memory, denoted here as memory usage (MU) results.
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Figure 13. The relative compression (RC) results for RA results over the DSEC dataset [34], wherein
the asynchronous event sequences are sorted in ascending order of the sequence acquisition density.

5. Conclusions

In this paper, we proposed a novel lossless compression method for encoding the
event data acquired by the new event sensor and represented as an asynchronous event
sequence. The proposed LLC-ARES method is built based on a novel low-complexity
coding technique so that it is suitable for hardware implementation into low-power ESP
chips. The proposed low-complexity coding scheme, TTP, creates short-depth decision
trees to reduce either the binary representation of the residual error computed based on
a simple prediction, or the binary representation of the true value. The proposed event
representation employs the novel ST order, whereby same-timestamp events are first
grouped into same-timestamp subsequences, and then reordered to improve the coding
performance. The proposed LLC-ARES-RA method provides RA to any time window by
employing a header structure to store the length of the bitstream packages.

The experimental results demonstrate that the proposed LLC-ARES codec provides
an improved coding performance and a closer to real-time runtime performance com-
pared with state-of-the-art lossless data compression codecs. More exactly, compared with
Bzip2 [36], LZMA [22], and ZLIB [35], respectively, the proposed method provides:

(1) an average CR improvement of 5.49%, 11.45%, and 35.57%;
(2) an average BR improvement of 7.37%, 13.40%, and 37.12%;
(3) an average bitsavings of 1.09 bpev, 1.99 bpev, and 5.50 bpev;
(4) an average event density improvement of 234×, 412×, and 2086×; and
(5) an average TR improvement of 216×, 401×, and 1969×.

To our knowledge, the paper proposes the first low-complexity lossless compression
method for encoding asynchronous event sequences that is suitable for hardware im-
plementation into low-power chips.
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Abbreviations
The following abbreviations are used in this manuscript:

DVS Dynamic Vision Sensor
APS Active Pixel Sensor
DAVIS Dynamic and Active-pixel VIsion Sensor
EF Event Frame
RA Random Access
TALVEN Time Aggregation-based Lossless Video Encoding for Neuromorphic sensor
ESP Event Signal Processing
SoC System-on-a-chip
EMI Event Map Image
CPV Concatenated Polarity Vector
HEVC High Efficiency Video Coding
SNN Spike Neural Network
EGC Elias-Gamma-Coding
LLC-ARES Low-Complexity Lossless AsynchRonous Event Sequences
LLC-ARES-RA LLC-ARES with RA
ZLIB Zeta Library
LZMA Lempel–Ziv–Markov chain Algorithm
G-PCC Geometry-based Point Cloud Compression
CR Compression Ratio
BR Bitrate
TR Time Ratio
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