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Abstract: Speech emotion recognition (SER) is one of the most exciting topics many researchers
have recently been involved in. Although much research has been conducted recently on this topic,
emotion recognition via non-verbal speech (known as the vocal burst) is still sparse. The vocal burst
is concise and has meaningless content, which is harder to deal with than verbal speech. Therefore,
in this paper, we proposed a self-relation attention and temporal awareness (SRA-TA) module to
tackle this problem with vocal bursts, which could capture the dependency in a long-term period
and focus on the salient parts of the audio signal as well. Our proposed method contains three
main stages. Firstly, the latent features are extracted using a self-supervised learning model from
the raw audio signal and its Mel-spectrogram. After the SRA-TA module is utilized to capture the
valuable information from latent features, all features are concatenated and fed into ten individual
fully-connected layers to predict the scores of 10 emotions. Our proposed method achieves a mean
concordance correlation coefficient (CCC) of 0.7295 on the test set, which achieves the first ranking of
the high-dimensional emotion task in the 2022 ACII Affective Vocal Burst Workshop & Challenge.

Keywords: vocal burst; self-supervised model; self-relation attention; temporal awareness

1. Introduction

Human speech is one of the most valuable resources to help identify people’s emotions
or feelings [1]. Therefore, speech recognition is applied in many aspects of daily life, such
as voice searching, voice-to-text, or customer service applications [2]. Additionally, speech
emotion recognition (SER) is another application and plays an essential role because the
speech might carry meaningful information related to the speaker’s emotional state. Much
SER research has been conducted for more than two decades and is applied in many fields,
such as psychological assessment, call centers, and robotics. However, emotion recognition
is still challenging because the human perspective evaluates emotion. Therefore, sometimes,
we can detect the wrong emotion based on speech.

There are two main types of speech, including verbal and non-verbal speech. Recently,
tremendous research has been conducted in speech emotion recognition with verbal speech,
which is applied in human–computer interfaces. Non-verbal speech, known as a vocal
burst (VB), is a voice signal without meaning by a human being, but could be translated
into words such as laughter, groans, and grunts. Recent research [3] shows that vocal bursts
can express emotion, even if no meaning appears when we use the vocal burst. The recent
work [4,5] shows that the vocal burst could carry the information of 10 basic emotions
from a human being, which could make the accuracy of the existing SER system robust.
However, the research on the VB field is sparse because of the lack of data related to non-
verbal human speech. Therefore, to discover the new trend of speech emotion recognition
(SER), A-VB 2022 competition [6] provides us with the HUME-VB corpus [7] to find the
meaning of VB related to people’s emotions. For example, while laughter could have some
related emotion like amusement or triumph, groans might express fear or horror emotions.
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In supervised learning, data augmentation could enlarge the scale of data for over-
fitting prevention and model generalization improvements [8]. Additionally, self-supervised
learning [9] is a trending method, which could learn the generic representation from large-
scale data without manual annotations. From this point, recent research proved that the SSL
model could achieve competitive results compared to the supervised learning method [10].
Additionally, the pre-trained SSL model is utilized for feature extracting in many down-
stream applications [11]. Attention mechanisms significantly impact deep learning models
in many fields, which enrich the information the model could learn from inputs [12]. At-
tention mechanisms can select, modulate, and focus on the information most important to
the target of our problem, like human attention [13]. Therefore, this paper will investigate
the effectiveness of data augmentation, SSL models, and attention modules on emotion
recognition via vocal burst.

The first task of the A-VB 2022 challenge is the High-Dimensional Emotion Task (A-VB
High), which predicts the score of ten emotions. The scores will be in the range of (0, 1),
and the results are evaluated based on a Concordance Correlation Coefficient (CCC) metric.
Our contributions to this paper are listed below.

• We investigate the efficiency of self-supervised learning (SSL) for extracting the latent
features from both raw audio signal and its Mel-spectrogram by applying HuBERT [14]
and DINO [8] models.

• The Self-Relation Attention and Temporal Awareness (SRA-TA) module helps capture
the meaningful information from not only essential parts in the audio signal but also
the temporal information of latent features extracted from the HuBERT [14] model.

• The result improves slightly by utilizing a Mel-spectrogram containing the information
related to the frequency and loudness of VB.

The paper contains the list of content as follows. Section 2 summarises previous works
in SER for verbal and non-verbal speech (mainly about verbal speech). Next, the architec-
ture of the proposed method is described in detail in Section 3, and experimental results
are shown in Section 4. Section 5 not only discusses other approaches with this dataset, but
also mentions the limitations of our method and work in the future. Section 6 concludes
the overall content of the paper.

2. Related Works
2.1. Feature Selection for Speech Emotion Recognition

For traditional methods, the acoustic features are utilized for the SER task. Acous-
tic features (known as low-level descriptors) (LLDs) are aggregated by several feature
integration techniques such as statistics or spectral methods) to create the features at the
global level [15]. After that, a new research direction for SER is to find the optimal set
of descriptors. Therefore, the Mel frequency cepstral coefficients (MFCC) are proposed
to derivate emotion clues. Additionally, prosodic descriptors (such as pitch, duration or
intensity) are common indicators of human emotion [16]. There are many ways to extract
the appropriate features for SER. Therefore, the most common way is using the openSMILE
toolkit for extracting the feature. This package proposes several sets of features in some
emotion-related competitions, mainly in INTERSPEECH competitions. The extended Gen-
eve minimalistic acoustic parameter (eGeMAPS) [17] consists of 88 features, which are a set
of LLDs related the most to the primary emotion of people. Furthermore, ComParE [18] is
another set of LLDs features extracted from openSMILE toolkit, which is utilized mainly
for emotion recognition tasks. The ComParE set contains 6372 features based on 64 LLDs
and applying some statistical techniques. The traditional method for this task is extracting
the acoustic features from raw audio signals, after which the classifier is applied to dis-
tinguish the emotion [19,20]. For instance, Papakostas et al. [21] utilized a support vector
machine (SVM) and Ntalamiras et al. [22] trained simple logistic recognition as a classifier
model. Based on traditional methods, combining different descriptors contains essential
information about human emotion. Nonetheless, the cons of using these features are that
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high dimensional features cause the over-fitting problem and computational complexity.
Because of that, optimal feature choice is a challenging problem for the SER task.

With the development of deep learning, many end-to-end SER architectures have been
proposed recently. Instead of manually choosing features, convolutional neural networks
(CNN) are applied to extract deep features from the raw audio signal automatically. Based
on the experimental results, deep features extracted by CNN often outperform the acoustic
feature-based methods [21]. Wang et al. [22] proposed a DNN-ELM model to extract the
deep features, then an extreme learning machine (ELM) was applied to predict the emo-
tions. Additionally, CNN is also utilized for learning from 2D spectrograms or log-Mel
spectrograms of audio signals. Abdul et al. [23] generated a spectrogram from the raw
audio signal and applied deep CNN to extract high-level features to predict emotions. Ha-
jarolasvadi et al. [24] used acoustic features and deep features generated from spectrograms
in only necessary frames to predict emotions.

2.2. Attention Mechanism for Speech Emotion Recognition

Inspired by the effectiveness of attention mechanism (AM) in computer vision [25]
and natural language processing [26], there are various implementations of AM for SER.
In most implementations of AM, the core idea is considered a weight vector with the same
length as the input sequence. The weight value indicates the input’s importance at the
corresponding position [27]. Most AM applying in SER are based on Recurrent Neural
Networks (RNN) and their variations of it. RNN could capture the dependency in the
sequence data; however, this model could meet the gradient vanishing problem for a long
duration. To handle this problem, long short-term memory (LSTM) and gated-recurrent
unit (GRU) with modified internal architecture are established to capture the long-term
dependency over an extended time. Most of the AM focus on verbal speech because of
lots of datasets related to it. Lee et al. [28] proposed BiLSTM-ELM architecture, and the
expectation-maximization algorithm decides the importance of each frame. The pros of this
approach are that the model could capture long-term contextual information and handle
the uncertainty of labels in datasets. Mirsamadi et al. [29] mentioned that only a few words
expressed the speaker’s emotion and emphasized the importance of silence and emotionless
parts in the speech. Therefore, they proposed AM calculated using the softmax function on
the inner product between the attention weight vector and the output of the RNN model at
each time step. The authors demonstrated that this AM could focus on the necessary period
and its temporal variations at the utterance level. Recently, Zheng et al. [30] proposed
an ensemble method by combining three models, including CNN, GRU with attention
and BiLSTM with attention, which reduced the effect of data imbalance and got a better
generalization. Li et al. [31] proposed a self-attention CNN-BiLSTM model, with AM
concentrating on the salient parts of speech.

2.3. Self-Supervised Learning Model for Speech Emotion Recognition

Unlike the supervised learning approach, self-supervised learning (SSL) is a subset
of unsupervised learning, in which the model learns the meaningful features without the
label or human annotation. The core idea of SSL is hiding some parts of input and using the
information of remaining parts to predict the hidden parts. The advantage of this approach
is that the model could learn more powerful representations of the underlying structure
of the unlabeled data. In the speech recognition field, several popular SLL models, such
as Wav2vec2.0 [32] and HuBERT [14]. Both SSL models learn speech representation from
raw audio signals, which could be used as pre-trained models for extracting features for
SER. Lodagala et al. [33] proved that using self-supervised pre-trained representation is
beneficial for improving ASR systems. For nonverbal vocalization, Xin et al. [34] conduct
several experiments to demonstrate the effectiveness of the SSL model as a feature extractor
for SER.
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3. Materials and Methods
3.1. Overview

Our proposed method is shown in Figure 1. The input for this architecture is the pre-
processed audio waveform and the Mel-spectrogram. Then, the self-supervised learning
method includes Hidden-Unit Bert [14], and DINO [8] for extracting the latent features from
original inputs. While HuBERT is applied for the audio signal, Mel-spectrogram is treated
as images, and DINO is utilized to extract features from these input types. After that, latent
features extracted from HuBERT are fed into an SRA-TA module to accentuate the vital
time point in each audio signal. Finally, we concatenated all the features and fed them in
FC layers to predict the score of each emotion individually.

Figure 1. Overall architecture of our proposed method, which ⊕ means concatenation of features.

3.2. Dataset and Pre-Processing

The Hume Vocal Burst Database (H-VB) [7] is utilized for the ACII A-VB 2022 challenge,
which consists of 59,201 non-vocal audio from 1702 speakings from 4 different cultures,
including the U.S., South Africa, China, and Venezuela. Additionally, the dataset is split
into the train, validation, and test subsets. The labels for the A-VB High task are the scores
for each emotion, and we evaluate the results based on the mean CCC metric over ten
emotion scores. There are ten basic emotions for the A-VB High task: Awe, Excitement,
Amusement, Awkwardness, Fear, Horror, Distress, Triumph, Sadness, and Surprise.

There are two audio forms, including .wav and .webm files (a compressed format). We
utilize the .wav format with a sample rate of 16 kHZ converted from 48 kHZ and normalized
by −3 decibels compared to the raw unprocessed audio signal. For pre-processing, we trim
the silence in the audio file and set the duration of the audio input to 3.5 s because this is
the average length of most audio samples used for training, validation, and test dataset.
Then, we apply some augmentation techniques to a raw audio signal, including random
pitch shift and random time warping, to enlarge the scale of the data. If the duration
after trimming is smaller than 3.5 s, we add zero-padding at the beginning of the audio
file. Otherwise, we randomly cut the sample into an audio file with a duration of 3.5 s.
Additionally, after applying the pre-processing, we transform the processed audio signal to
Mel-spectrogram as the other input of our proposed method.

3.3. Feature Extractor

Self-supervised learning (SSL) is the method that learns from unlabeled sample data.
Recently, SSL has been utilized as a pre-task to learn nontrivial data representations.
Inspired by [34], we explore two pre-trained SSL models, HuBERT [14] for the audio signal
and DINO [8] for its Mel-spectrogram. For the audio signal, we hypothesize that HuBERT
can capture the general information, not only acoustic information, but also the phonemes
of VB. additionally, by utilizing the Mel-spectrogram, we capture helpful information on
the frequency and loudness of the sound.

Furthermore, by using pre-trained models on large-scale dataset like HuBERT and
DINO, we can fine-tune, which lead to better latent features for the following stages in our
proposed method. All the pre-trained models are based on the Transformer architecture.
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While HuBERT model is pre-trained on the Libri-light dataset [35] for speech recognition
without supervision, DINO pre-trained weights on the Google Landmark v2 dataset [36] are
utilized for extracting features from the Mel-Spectrogram of audio signals. The architecture
of the feature extractor is shown in Figure 2. The feature extractor consists of CNN and a
stack of transformer encoders.

Figure 2. Overall architecture of feature extractor.

3.4. Self-Relation Attention and Temporal Awareness Module

The Self-Relation Attention and Temporal Awareness (SRA-TA) module consists of
two parts, including the Self-Relation Attention (SRA) and Temporal Awareness (TA)
Module. While the SRA module is inspired by [37], which teaches self-attention for each
feature and the relationship between all the time-point features, the TA module is based
on Bi-Directional GRU, which captures the dependency along forward and backward
period time.

Self-Relation Attention is shown in Figure 3. We hypothesize that this could automati-
cally capture the vital part of each latent feature because the vocal burst is concise, and the
meaningful information only appears for a short time, not all the duration of an audio
sample. The SRA module contains two attention sub-modules, including Self Attention and
Relation Attention. First, we calculate the self-attention weight αi for each latent feature and
the global feature fg , which represents the information of all latent features by applying
Equations (1) and (2). Next, we concatenate each latent feature with the global feature, then
calculate the relation weight βi, which shows the relative information between each feature
and global feature by Equation (3). Finally, the output latent vector fO is calculated using
Equation (4). The exact formulas of the SRA module are shown below.

αi = σ( fi × WT
1,i) (1)

where αi, σ, WT
1,i and fi are self-attention weight, sigmoid function, and learnable weight of

the linear layer in Self Attention and latent feature, respectively.

fg =
∑i=0

n αi × fi

∑i=0
n αi

(2)

where fg is global feature, which represents all information of latent features extracted from
the SSL model.

βi = σ([ fi : fg]× WT
2,i) (3)

where βi, WT
2,i, and [ fi : fg] are relation attention weights between latent features, learnable

weight of linear layer in Relation Attention, and concatenation between each latent feature
and global feature, respectively.

fO =
∑i=0

n αi × βi × [ fi : fg]

∑i=0
n αi × βi

(4)

where fO is output feature of SRA module.
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(a)

(b)

Figure 3. Self-Relation Attention (SRA) Module. This module has 2 attention sub-parts including Self
Attention and Relation Attention. (a) Self Attention (SA) sub-module and (b) Relation Attention (RA)
sub-module.

Additionally, the TA module consists of a Gated Recurrent Unit (GRU), which captures
the temporal information and the dependency of different time scale. Basic GRU consists
of 2 gates, including the update gate and reset gate, described in Figure 4. Two gates
decide how much information can be passed into output. Especially, while the update
gate determines how much of the past information needs to be passed along to the future,
the reset gate is utilized by the model to decide the amount of the previous information
to forget.

Figure 4. Illustration of GRU. r, z, h, and h are reset gate, update gate, the activation and the candidate
activate, respectively. This GRU diagram is from Chung et al. [38].

Based on a bi-directional approach, the TA module could capture the temporal in-
formation from the forward and backwards sides of the latent feature extracted from the
HuBERT model. At the end of the TA module, global pooling is applied to convert the
latent feature into a fixed-length vector. The detailed architecture of the TA module is
shown in Figure 5.
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Figure 5. Architecture of TA module. TA module is based on the architecture of Bi-directional
GRU model.

3.5. Multi-Label Regression Module.

The latent features from DINO [8] go through the Global Pooling module to be a
one-dimensional vector. After that, we concatenated all the features from the previous
module and fed them into fully connected (FC) layers. Because of the multi-regression
problem, we use ten separate FC layers to predict the score of each emotion. Each FC layer
consists of five basic blocks and a sigmoid activation function in the last layer. A basic
block consists of Batch Normalization, Leaky ReLU and Linear layer except for the first
block (not including Leaky ReLU). The FC layer’s detail is shown in Figure 6.

Figure 6. The architecture of a fully-connected layer. This FC layer consists of 5 blocks, which contain
Batch Normalization, Leaky ReLU and Linear Layer for each block. Multi-regression Module contains
10 FC layers for predicting ten emotions individually.

3.6. Loss Function

Because all results are evaluated by Concordance Correlation Coefficient (CCC) metric,
our loss function is designed based on the CCC metric below. CCC is the concordance
between prediction (1) and the ground truth (2), which identifies the agreement between
two variables from the machine learning model.

LCCC = 1 − CCC = 1 − 2ρ12σ1σ2

(µ1 − µ2)2 + σ2
1 + σ2

2
(5)

where ρ12, σ, µ are denoted by Pearson coefficient correlation between 2 variables, standard
deviation and mean, respectively.

4. Results
4.1. Experimental Setup

As input features, we use both raw audio signal and its Mel-spectrogram. Some func-
tion in the Torchaudio package augments each raw audio signal. Through the experiments,
the Adam optimizer is applied with a learning rate of 1 × 10−5, and early stopping is
utilized with an patience of 10 epochs to prevent over-fitting. Additionally, the learning
rate is halved if the loss on the validation dataset does not decrease. The maximum epochs
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of the training process are set to 50, and the batch size is 4. All the model is trained with
Nvidia RTX 2080Ti GPU and Pytorch 1.7.1.

4.2. Evaluation Metrics

The results are evaluated based on the average Concordance Correlation Coefficient
(CCC) or Pearson correlation coefficient across a score of 10 emotions [39]. All metrics
show the correlation and agreement between the ground truth and the predicted score.
Because the test results are evaluated in the CCC metric, we choose CCC as a primary
metric for evaluation. CCC is in range (−1, 1), in which 0 is no relation between two
valuables and 1 is perfect agreement between them. The formula of the CCC metric is
shown below.

CCC =
2ρ12σ1σ2

(µ1 − µ2)2 + σ2
1 + σ2

2
(6)

where ρ12, σ, µ are denoted by Pearson coefficient correlation between 2 variables, standard
deviation and mean, respectively. This CCC metric is based on Lin’s equation [40].

4.3. Experimental Results

Firstly, we investigate the efficiency of recent SSL models for audio signal including
Wav2vec2-large [41] and HuBERT-large [14]. These two models were trained on public
large datasets such as Libri-Light and Librispeech.

From Table 1, the HuBERT model is better for non-verbal emotion recognition tasks
than Wav2vec2. Additionally, the large version of SSL models is chosen because the
effectiveness is illustrated in previous research [42].

Table 1. The mean CCC on validation dataset from different models.

Model Mean CCC

Baseline [6] 0.5686
Wav2vec2-large 0.6902
HuBERT-large 0.7012

DINO 0.5920
HuBERT-large + SRA 0.7211
HuBERT-large + TA 0.7127

HuBERT-large + SRA-TA 0.7265
HuBERT-large + DINO + SRA-TA 0.7303

Non-verbal speech is always expressed in a short duration. Therefore, the valuable
information is only in a short time or several time-point during the audio signal. Therefore,
we use the SRA-TA module to help the model focus on valuable parts from latent features
extracted from HuBERT. Using this module, the average CCC on the validation dataset
increases by 0.02 compared to using only the HuBERT model for extracting features.
The result of the SRA-TA module is shown in Table 1.

Finally, by using DINO for extracting features from Mel-spectrogram and global
pooling module, we obtain slightly better results than the baseline model [6] from the
organizer, which achieves 0.5920 of the mean CCC metric. However, using the feature
from the DINO model is not good compared to those from HuBERT because the dataset
for DINO is in another domain, not trained in the speech signal domain like the HuBERT
pre-trained model. By combining both features from DINO and HuBERT models, we find
that the improvement of mean CCC by up to around 0.005 compared to using only raw
audio signal. The result shows that the information about the frequency and the loudness of
the sound is valuable for emotion prediction related to non-verbal human speech. Figure 7
shows that the loss curves for both datasets only have a little gap due to the difference
between their distribution and the outliers. However, the curve for the validation dataset
is not pretty smooth due to the choice of the learning rate, which is quite sensitive to
transformer architecture. Figure 8 shows the result based on average CCC metrics over ten
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emotions. The average CCC result is saturated after the 150k step and peaks at 0.7303 on
the validation dataset.

(a)

(b)

Figure 7. The loss curve of training and validation, respectively. (a) Loss curve for training dataset.
(b) Loss curve for validation dataset.

Figure 8. The average CCC curve on validation dataset.

We evaluate the CCC metric on each emotion by applying the proposed method,
shown in Table 2. From the empirical experiment, our method works better on Awe and
Surprise emotions than others. Furthermore, the result on the test dataset is 0.7295, almost
the same as the validation dataset, which means the model has a good generalization ability.

Table 2. Evaluation on each emotion on validation and test dataset based on CCC metric of our
proposed method.

Dataset Awe Excite Amuse Awkward Fear Horror Distress Triumph Sadness Surprise Mean CCC

Validation 0.8084 0.6895 0.7886 0.6080 0.7614 0.7370 0.6959 0.6813 0.7069 0.8125 0.7303
Test 0.8140 0.6817 0.7956 0.6100 0.7623 0.7362 0.6935 0.6778 0.7128 0.8113 0.7295

5. Discussion

The proposed method proved the effectiveness of SSL models as feature extractors
for SER via vocal burst. All participants in A-VB 2022 challenge utilized the most famous
speech SSL models such as Wav2vec2.0 or HuBERT [43–46] and obtained good results
compared to the baseline from the organizer [6]. It demonstrates that a pre-trained SSL
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model could learn the meaningful representation of speech signals. By applying the SRA-
TA module, the result improves because this module could focus on the most salient parts
of embedding features instead of all information from the fixed-length vector. Besides,
the dependency over time is also beneficial for this task. In the ablation study, we eval-
uate sub-module effectiveness in Table 1, including self-relation attention and temporal
awareness in the SRA-TA module, which achieves 0.7211 and 0.7127, respectively. These
results mean that the salient parts of latent features play an essential role in identifying the
emotion on vocal burst compared to the temporal information over time. The information
about the frequency and loudness is utilized; however, the improvement is insignificant.
The reason is that the SSL model (DINO) is trained in another domain, which could not fit
our task.

Moreover, the result on some emotions is still low compared to others, even though the
number of samples is relatively high such as Awkwardness or Excitement. We hypothesize
that the model cannot capture some straight pattern from these emotions and the audio
signal type of these emotions is not diverse. While most of the previous emotion recognition
problem is a classification task, which means one sample has only one class label, the output
of this vocal burst dataset is a multi-regression problem. Each sample has a score of all ten
emotions; therefore, the relationship between emotions is still challenging and plays an
essential role in identifying the emotion.

Therefore, in the future, we need to modify the DINO model by training in the Mel-
spectrogram dataset to adapt to the audio domain and improve the SRA-TA module to
handle some background noise and straight vocal burst sound. Besides, we will investigate
the relationship of different emotions by applying a graph convolution network or other
methods in future work.

6. Conclusions

In this study, we proposed an end-to-end speech emotion recognition system for
vocal bursts, evaluated in the High-Dimensional Emotion Task of the A-VB 2022 challenge.
The proposed architecture uses SSL models to extract the latent feature from a raw signal
and its Mel-spectrogram. The SRA-TA module is the most critical part of the system, which
helps focus on the salient parts and utilize the temporal information of extracted latent
features. Finally, the embedding features are concatenated and fed into the multi-regression
module to predict the score of each emotion. Our proposed method’s effectiveness is
evaluated on the H-VB dataset, which is new to speech emotion recognition for vocal bursts.
Experiment results show that our proposed method achieves 0.7295 mean CCC, which
obtains the first ranking in the High-Dimensional Emotion Task of the A-VB challenge 2022.
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SER Speech Emotion Recognition
SRA-TA Self-Relation Attention and Temporal Awareness
SA Self-Attention
RA Relation-Attention
CCC Concordance Correlation Coefficient
VB Vocal Burst
SSL Self-supervised Learning
LLD Low-level Descriptors
MFCC Mel Frequency Cepstral Coefficients
eGeMAPS extended Geneve minimalistic acoustic parameter
SVM Support Vector Machine
CNN Convolutional Neural Network
ELM Extreme Learning Machine
AM Attention Mechanism
LSTM Long Short-term Memory
GRU Gated Recurrent Unit
FC Fully Connected
RNN Recurrent Neural Network
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