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Abstract: Developing new sensor fusion algorithms has become indispensable to tackle the daunting
problem of GPS-aided micro aerial vehicle (MAV) localization in large-scale landscapes. Sensor
fusion should guarantee high-accuracy estimation with the least amount of system delay. Towards
this goal, we propose a linear optimal state estimation approach for the MAV to avoid complicated
and high-latency calculations and an immediate metric-scale recovery paradigm that uses low-rate
noisy GPS measurements when available. Our proposed strategy shows how the vision sensor can
quickly bootstrap a pose that has been arbitrarily scaled and recovered from various drifts that affect
vision-based algorithms. We can consider the camera as a “black-box” pose estimator thanks to our
proposed optimization/filtering-based methodology. This maintains the sensor fusion algorithm’s
computational complexity and makes it suitable for MAV’s long-term operations in expansive areas.
Due to the limited global tracking and localization data from the GPS sensors, our proposal on
MAV’s localization solution considers the sensor measurement uncertainty constraints under such
circumstances. Extensive quantitative and qualitative analyses utilizing real-world and large-scale
MAV sequences demonstrate the higher performance of our technique in comparison to most recent
state-of-the-art algorithms in terms of trajectory estimation accuracy and system latency.

Keywords: MAV; multimodal sensing; localization; odometry; visual drifts; sensor fusion; Kalman
filter; calibration; optimization

1. Introduction

Robust localization of micro aerial vehicles (MAVs) in uncharted large-scale areas
can rely on complementary data gathered by many sensor modalities. The study of
simultaneous localization and mapping (SLAM), primarily used for MAV navigation in
expansive and dynamic settings, may be enriched and expanded by using multi-modal
datasets [1]. These settings have certain traits, such as the dynamic range of the scene’s
object intensities. For instance, mapping a small interior space with adequate illumination
might be of more outstanding quality than mapping a rural area at night with heavy rain,
wind, and fog (outdoors dynamic environment). The benefits of multimodal approaches
become apparent when systems rely on sensors with a high dynamic range and strong
sensing capabilities, such as event cameras, LiDARs, or radars, or typical inexpensive
cameras fused with other sensor modalities such as the inertial measurement units (IMUs)
and GPS sensors. These multimodal approaches can indeed fill some lack of data during
scene mapping and MAV localization.

Towards this aim, we develop a trustworthy (quick and precise) localization solution
that utilizes information from three sensor modalities: camera frame data, IMU measure-
ments, and GPS readings. Nevertheless, the GPS sensor readings are consistently slower
and noisier than those from the IMU or camera modules, and they frequently experience
signal loss in GPS-restricted locations. Therefore, a localization system that depends on
GPS data must perform effectively when GPS readings are lost.
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Visual-inertial odometry (VIO) is one of the most mature and well-established ap-
proaches in the localization field [2–4]. Efficient visual odometry can be achieved using
a high-quality perception of the surroundings. Sensors performing this perception task
can differ in their nature of data collection. On the one hand, the most common visual
odometry sensors are cameras such as RGB cameras [5], event cameras [6], and RGB-D
cameras [7]. On the other hand, using the LiDAR sensor [8] can provide point clouds and a
GPS sensor [9,10] can locate the MAV using satellite signals triangulation, as represented in
Figure 1.

Figure 1. An example for the on-map GPS readings of the large-scale environment of the Fast Flight
dataset [11] sequences: gps175, gps15, gps10, and gps5. The sequence number denotes the maximum
flight velocity of each sequence: 17.5, 15, 10, and 5 (m/s), respectively. The color bar (bottom) denotes
the map scale in (km) on the x axis and the altitude of each sequence in (m) on the y axis. In the
blue dotted box: Comparing the maximum MAV’s altitude at instance before the descent stage to
the height of an aircraft hangar. The estimated airport asset height is 54.72 (m), corresponding to the
maximum MAV altitude. Images are courtesy of Google Earth.

The accuracy of the state estimation process relies on an error-state extended Kalman
filter (ES-EKF) and the bootstrapping quality of its states. A well-established IMU-based
state estimator initialization technique was discussed in [5]. In this bootstrapping method,
the global metric scale of the trajectory and the IMU-camera gravity alignment is optimized
using a specific amount of IMU readings preintegration combined with an initial up-to-scale
trajectory estimated using the camera only. This bootstrapping process is prone to failure
due to insufficient IMU excitation, especially when the MAV navigates in a planar terrain.

The MAV should contain a localization system that continually calculates the pose
with high accuracy and low latency during search and rescue missions, for instance. The
MAV is equipped with restricted resources regarding the data processing unit and the
limited power source capacity for long-term navigation operations in large-scale situations.
In light of this, the state estimate approach should consistently have low computational
complexity and resist sensor readings that deviate from the norm.

Our work’s main contribution to tackle the aforementioned challenges is three-fold:

- In the case of state estimator initialization failure, we propose a unique instant boot-
strapping technique based on continuous-time manifold optimization via pose graph
optimization (PGO) and range factors, which depends on low-rate GPS signals.

- A closed-form estimation method without nonlinear optimization during IMU/CAM
fusion produces a reduced system latency with constant CPU computing complexity.
The mathematical modeling of a linear ES-EKF with a precise and quick gyroscope
integration strategy accounts for the simplicity of our proposed localization solution.

- The EuRoC benchmark [12], for MAV localization assessment in indoor environ-
ments, and the Fast Flight dataset [11], for large-scale outdoor environments, are
two real-world publicly available benchmarks on which our IMU/GPS-CAM fusion
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system has been thoroughly tested. With thorough ablation investigations into the
role of each sensor modality in the overall accuracy of the state estimation process,
the assessment is conducted using the most recent state-of-the-art visual-inertial
odometry methodologies.

2. Related Work
2.1. Sensor Fusion

Figure 2 presents a global overview of the current state-of-the-art approaches for
localization. The ability to continually estimate the robot’s ego-motion (position and
orientation) over time is a significant difficulty in autonomous navigation, path planning,
object tracking, and collision avoidance platforms [13]. The Global Positioning System
(GPS) is a well-known localization method applied to several autonomous system domains.
One kind of global navigation satellite system (GNSS) is GPS [10]. GPS is used as a self-
localization source, such as for MAVs security applications, and gives any user with a GPS
receiver positional information with meter-level precision. The satellite signal blockage,
high noise levels, multipath effects, and other issues with GPS, on the other hand, make
it a less trustworthy alternative sensor for self-localization modules. However, real-time
kinematic (RTK) and precise point positioning (PPP) [9], two GPS technologies that are
rapidly developing, can provide locations with decimeter- or centimeter-level precision.

Localization

Wheel Odometry Radar LiDARIMU Visual Odometry GPS

IMU/Vision IMU/Vision/GPS LiDAR/VisionIMU/Radar

Visual Sensor Type Pose Scene Information

Omnidirectional Perspective Unidirectional
Downward

ForwardMonocular
RGB-D
Stereo

Direct IndirectHybrid

Sparse Dense

3D Points
Event Spikes

Thermal Imaging
Depth Maps

Fisheye

Shutter

Global
Rolling

Strategy
Loosely-/Tightly-coupled

Technique
Optimization-/Filtering-based

Figure 2. Visual odometry is generally categorized together with self-contained and global localiza-
tion methods.

The effectiveness of GPS satellite signals heavily depends on the surrounding envi-
ronment; it works best in locations with clear skies and is ineffective for inside navigation
since walls and other obstacles impede it [14]. This makes the GPS module an unsuitable
primary sensor for reliable autonomous vehicle localization under adverse weather and en-
vironmental conditions. Hence, the fusion of GPS signals with other inertial and/or visual
sensors is indispensable for a reliable localization solution, especially in such environments.
The state-of-the-art sensor fusion systems are differentiated into two prominent families:
loosely- [15], and tightly-coupled [16] fusion strategies. In loosely-coupled fusion, the
camera frames for pose estimation are processed as a black-box. A filter or an optimization
model is developed to fuse the arbitrary-scaled poses from the visual sensor with the noisy
metric-scaled re-integrated IMU readings [17].

On the contrary, in the tightly coupled approach, scene information from the visual
sensor is fused with the IMU measurements (linear accelerations and angular velocities)
using a fusion filter or an optimization model that estimates the metric-scaled pose, visual
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odometry scale factor, IMU biases, and visual drift between the IMU-camera inertial frames.
One of the prominent advantages of a tightly-coupled fusion scheme is that it can estimate
accurate scene information to reconstruct a precise scene map, along with providing the
SLAM system with high confidence in loop closure during re-localization situations.

2.2. Fusion Strategies

The two sensor fusion strategies (loosely and tightly coupled) have two main execution
techniques: filter-based and optimization-based execution. Some filter-based state-of-
the-art approaches are deterministic, such as MSCKF [18], S-MSCKF [11], S-UKF-LG/S-
IEKF [19], and ROVIO [20]. At the same time, alternative strategies can be based on
nondeterministic filters such as particle filters [21].

Optimization-based methods such as VINS-Mono [22], OKVIS [23], ORB-SLAM [24],
and BASALT [25], can be deterministic or non-deterministic based on the optimization
strategy and the convergence constraints. The estimation and robustness of visual localiza-
tion frameworks have advanced significantly in recent decades, and this development may
be furthered by tightly integrating visual and inertial data. Most methods integrate data
utilizing optimization methods or filtering-based procedures.

Filtering approaches are ideally suited to real-time applications [26,27], which is the
main emphasis of this study. In contrast, optimization-based methods are more precise
but often have a more extensive processing complexity. The observability-constrained
technique addresses the consistency issue, a shortcoming of traditional VIO filter-based al-
gorithms [28]. The EKF/MSCKF and its cutting-edge variations are among the most widely
used solutions because they effectively balance accuracy and computational complexity.

A recent study [29] shows that if the air mass’s random character is considered, the
EKF system states of an MAV are observable. The drag and lift forces on the MAV will
directly impact the projected pose and velocity due to the nature of air mass randomization.
To make an online update for the uncertainties brought on by these random effects on
the precise position of the sensors’ reference frames, we contribute with a visual drift
augmentation technique to our EKF measurement model. The EKF’s ability to tolerate
significant disturbances in the MAV’s velocity state variable and still converge to the
undisturbed estimates is what we target.

2.3. Visual Odometry

The main objective of a visual odometry solution is to perform an accurate and
precise localization of the robot (ground or aerial vehicle) to estimate its pose during the
navigation task. Estimated poses can be on either discrete- or continuous-time manifolds.
Cioffi et al. [30] studied the reliability of the estimated poses on both manifolds using
IMU/Visual/GPS sensors. They came to an important conclusion: similar results are
produced by the two representations when the camera and IMU are time-synchronized.

In [13], the sliding window pose-graph optimization of the most recent robot states
uses global position data with poses predicted by a VIO method. Like [15], pose-graph
optimization employs an independent VIO technique to generate pose estimations fused
with GPS data. In contrast to [13], the pose-graph in [15] includes an extra node representing
the local coordinate frame’s origin to confine the absolute orientation. However, these
methods are loosely connected, meaning that a separate VIO algorithm generates the
relative pose estimations. Inspired by [13,15], we present a loosely coupled strategy that
considers the correlations between all measures by including them in a hybrid optimization
and filtering problem.

It is demonstrated in [23] that considering all measurement correlations is essential
for high-precision estimations in the visual-inertial situation. A tightly coupled sliding
window optimization for visual and inertial data with loosely connected GPS refinement
is presented in [14]. The GPS readings are given the same timestamp as the temporally
nearest image to be included in the sliding window because it is believed that they would
only be accessible at low rates. As opposed to [14], we efficiently compute the global
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positional factors by closely coupling the global position measurements using the Runge–
Kutta 4th-order gyroscope preintegration scheme [31]. This enables the sliding window to
incorporate numerous global parameters and each keyframe with barely any additional
processing load.

2.4. Methodology Background

We highlight the methodology that inspires our study in blue-dashed rectangles in
Figure 2. Where the loosely coupled fusion strategy [32] is adopted to keep constant
computational complexity for real-time performance, along with adding a reset mode for
the framework, as discussed in [33] as well as an online IMU-camera extrinsic calibration
paradigm [4]. Integrating the IMU/GPS readings with the global shutter visual sensor
monocular frames raises our localization solution’s accuracy level, leveraging the MAV’s
inertial and global localization information.

Pushing the limits of the extended Kalman filter to raise the robustness of our localiza-
tion solution towards a resilient system, we leverage the high accuracy of the optimization
to initialize the filter pose states using a novel instant approach utilizing the low-rate noisy
GPS readings when available. Sensor fusion on continuous-time (CT) manifolds, such as
B-splines [34], suffers from a high execution complexity, especially with the time derivatives
of high-order manifolds for integrating the IMU measurements in the estimation process.
Hence, in our novel method, we avoid this dilemma with a simple spline-fitting approach
for the GPS readings during the data pre-processing stage.

3. System Architecture

Our core sensor setup consists of an inertial navigation sensor (IMU), a global posi-
tioning sensor (GPS), and a monocular camera, as illustrated in Figure 3. The pipeline starts
with the data acquisition and pre-processing for the initialization process, as discussed
in Section 3.1. The initialization is an optimization-based phase (see Algorithm 1) with a
considerably low complexity and processing time whose output is an instant metric-scaled
pose estimated from the camera, GPS, and gyroscope readings. Then, an ES-EKF (see
Algorithm 2) whose dynamic model is given in Section 3.2, is applied to estimate all the
system states, including the MAV’s trajectory, velocity, and a scale factor to recover the
initially estimated trajectory in the case of GPS readings loss. Finally, we present the mea-
surement model in Section 3.3 with a novel false pose augmentation paradigm to ensure
the observability of all the filter states, as analyzed in Appendix A.

Algorithm 1 Bootstrapping: Pose Graph Optimization and Range Factors
Input: RGB frames (c), camera matrix (Kc), GPS readings (DT-GPS), IMU readings (I)
Output: Metric-scaled trajectory (Tvc[pc

v, qc
v] ∈ SE(3))

1: T 0
vc ⇐ KLT-VO (c, Kc) . Arbitrary-scaled pose

2: p(u)⇐ spline_fit (DT-GPS) . CT-GPS by Equation (4)
3: [φ, θ, ψ]⇐ RK4 (Igyro(ω)) . Initial orientations
4: while not converged do . Initial trajectory optimization
5: Tvc ⇐ optimize (T 0

vc, p(u), [φ, θ, ψ]) . Equation (6)
6: end while

The state representation is a 31-element state vector X :

X =
[

pi
w
>

vi
w
>

qi
w
>

bω
> ba

> λ pc
i
> qc

i
> pw

v
> qw

v
>
]>

, (1)

where pi
w is the position of the IMU in the world frame (world frame is a gravity-aligned

frame.) (w), its velocity vi
w, and its attitude rotation quaternion qi

w describing a rotation
from the IMU frame (i) into the world frame (w). bω and ba are the gyro and acceleration
biases along with the visual odometry scale factor λ. R(q) is the quaternion q rotational
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matrix, g is the gravity vector aligned with the world frame (w), and Ω(ω) is the quaternion-
multiplication matrix of ω.

The IMU/camera calibration states are the rotation from the camera frame into the
IMU frame qc

i , and the position of the camera center with regard to the IMU frame pc
i .

Finally, the visual attitude drifts between the black-boxed visual frame (vision frame
is the frame to which the camera pose is estimated in the black-box vision framework) (v)
and the world inertial frame (w) are reflected in qw

v and the translational ones in pw
v . We

assume that all the visual drifts are spatial without any temporal drifts, i.e., the IMU and
the camera have synchronized timestamps.

State Estimation (ES-EKF)

Initialization Process (Optimization)

Update States &

Reset Filter

Data Pre-processing

ORB Feature Detection

Range Factor

Pose Graph Optimization Factor

Initialize Error States
Initialize ES-EKF

Measurement Noise and States
Covariance Matrices (R,Q,P)

Metric 
Scaled 

Pose

Arbitrary
Scaled
PoseC

T-
G

P
S

Spline Fit

Odometry Scale Factor

IMU biases (ba,b  )

Runge-Kutta 4th OrderRK4

CAM

Figure 3. Overview of our proposed entire system architecture.

Algorithm 2 End-to-End State Estimation Scheme
Input: IMU readings, initial optimized trajectory Tvc
Output: FilterStates X = {λ,Ki[ba, bω ], Tic, Twv, Twi, vwi}, ∀T[p, q] ∈ SE(3)

1: P, Qc,R_initialization, FilterStates_initialization
2: ErrorStates_initialization=0
3: while imuRead do
4: Read LastStep (k) P, FilterStates, ErrorStates
5: Read LastStep (k) IMU (Accel, Gyro) values
6: Read current (k+1) IMU (Accel, Gyro) values
7: Step 1: Propagate IMU states . Equation (12)
8: Step 2: Calculate Fd and Qd . Equations (14) and (16)
9: Step 3: Compute P state covariance matrix . Equation (18)

10: if camRead then
11: Read current (k+1) CAM Tvc values . Metric-scaled pose
12: Step 4: Estimate false pose . Equation (19)
13: Step 5: Calculate z̃, H . Equation (20)
14: Step 6: Calculate S, K, ErrorStates ˆ̃x, P . Equations (26) and (27)
15: Step 7: Update: FilterStates += ErrorStates
16: Step 8: RESET ˆ̃x = 0, P . Equation (29)
17: end if
18: end while
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The corresponding 28-elements error state vector is defined by:

x̃ =
[
∆pi

w
>

∆vi
w
>

δθi
w
>

∆bω
> ∆ba

> ∆λ ∆pc
i
> δθc

i
> ∆pw

v
> δθw

v
>
]>

, (2)

as the difference of an estimate x̂ to its quantity x, i.e., x̃ = x− x̂. We apply this to all state
variables except the error quaternions, which are defined by:

δqx
y = qx

y ⊗ q̂x
y ≈ [ 1

2 δθx
y 1 ]>. (3)

This error quaternion representation increases the numerical stability of the estimation
process and handles the quaternion in its minimal representation [35].

3.1. State Estimator Initialization

An incremental structure from motion (SfM) algorithm [36] is applied to the acquired
image frames, whose goal is to retrieve the camera poses and the 3D structure of the
scene, based on the five-point algorithm proposed in [37]. ORB features are detected,
and the highest quality points are tracked between 10 consecutive frames using the KLT
method [38].

To solve the arbitrary-scale problem of the camera trajectory only, we apply an on-
manifold cumulative B-spline (https://github.com/AbanobSoliman/B-splines (accessed
on 1 October 2022)) interpolation [34] to synthesize a very smooth continuous-time (CT)
trajectory in R3 from the low-rate noisy GPS readings.

The matrix form for the cumulative B-spline manifold of order k = n + 1, where n is
the spline degree, is modeled at t ∈ [ti, ti+k−1] as:

p(u) = pi +
k−1

∑
j=1

B̃(k)
j .ū(k)

j .di
j, (4)

where p(u) ∈ R3 is the continuous-time B-spline increment that interpolates k GPS mea-
surements on the normalized unit of time u(t) := (t− ti)/∆ts − Pn with 1/∆ts denoting
the spline generation frequency and Pn being the pose number that contributes to the
current spline segment Pn ∈ [0, · · · , k− 1]. pi is the initial discrete-time (DT) GPS location
measurement at time ti. The term di

j = pi+j − pi+j−1 is the difference vector between two

consecutive DT-GPS readings. The matrix B̃(k)
j is the cumulative basis blending and ū(k)

j is
the normalized time vector, both of which are defined as:

B̃(k)
j = b̃(k)j,n = ∑k−1

s=j b(k)s,n ,

b(k)s,n =
Cn

k−1
(k−1)! ∑k−1

l=s (−1)l−sCl−s
k (k− 1− l)k−1−n,

ū(k)
j = [u0, · · · , uk−1, uk]>, u ∈ [0, · · · , 1].

(5)

Our GPS-IMU aided initialization system comprises two optimization factors: the
first is a pose graph optimization (PGO) factor rp that optimizes the 6-DoF of every pose,
whereas the second is a range factor rs that constraints the translation limits between every
two KLT-VO poses. Hence, the metric scale of the visual odometry pose is recovered using
the gyroscope and GPS readings, leveraging the high accuracy of the optimization process.
An illustrative scheme for the initialization process factor graph is shown in Figure 4.

Level 1’s objective function Lp,s is modeled as:

Lp,s = arg min
Twi

[ N

∑
(i,j)

(
||rp(i, j)||2

Σp
i,j
+ ||rs(i, j)||2Σs

i,j

)]
. (6)

https://github.com/AbanobSoliman/B-splines
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Σp
i,j, Σs

i,j are the information matrices associated with the GPS readings covariance,
reflecting the PGO and Range factors noises on the global metric scale estimation process
between two RGB-D aligned frames.

Ti Tk TjT0

PGO Factor Range Factor GPS reading Gyroscope reading T KLT-VO Pose

TN

RK4RK4 RK4RK4

CT-GPS

p(u)

Figure 4. Initialization factor graph. p(u) is the CT-GPS trajectory generated at high frequency. RK4 is
the Runge–Kutta 4th order gyroscope integration scheme. Dotted lines denote the error term (T̂−1

i T̂ j)

in Equation (7) between any two KLT-VO poses.

Pose Graph Optimization (PGO) factor. The PGO is a 6-DoF factor that controls the
relative pose error between two consecutive edges i, j and is formulated as:

rp =
∣∣∣∣∣∣(T̂−1

i T̂ j

)
	 ∆Tω,GPS

ij

∣∣∣∣∣∣
2

(7)

where ||.||2 is the L2-norm, T̂ i,j ∈ SE(3) is the T 0
wi estimated from the front-end pipeline

at frames i, j. The operator 	 is the SE(3) logarithmic map as defined in [39]. The er-
ror transformation ∆Tω,GPS

ij [δRω
ij , δpGPS

ij ] ∈ se(3), where δpGPS
ij = pj − pi is the CT-GPS

measurement increment and δRω
ij = [δφ, δθ, δψ]> ∈ so(3) is the gyroscope integrated incre-

ment δRω
ij =

∫ j
k=i (ωk).dk using the Runge–Kutta 4th order (RK4) integration method [31]

between the keyframes i and j.
Range factor. The range factor limits the front-end visual drift and keeps the global

metric scale under control within a sensible range defined by the GPS signal and is formu-
lated as:

rs =
∣∣∣∣∣∣||t̂ j − t̂i||2 − ||pGPS

j − pGPS
i ||2

∣∣∣∣∣∣
2

(8)

where t̂i,j, pGPS
i,j ∈ R3 are the translation vectors of two consecutive front-end (KLT-VO)

poses and CT-GPS signals, respectively.

3.2. Dynamic Model

The core state estimation is performed by fusing the RGB camera frames and the
IMU reading using an error states extended Kalman filter (ES-EKF). Figure 5 illustrates the
inter-sensor extrinsic relation between the IMU/GPS sensors and a monocular camera.

To use the linear states estimator, we assume that the IMU measurements contain a
particular bias ba ∈ N (0, σba), bω ∈ N (0, σbω) and a white Gaussian noise na ∈ N (0, σa),
nω ∈ N (0, σω).

Thus, the real angular velocities ω and accelerations a in the IMU body frame (i) can
be written as:

ω = ωm − bω − nω and a = am − ba − na, (9)

where the subscript m denotes the measured value. The dynamics of the non-static biases
are modeled as a random process:

˙bω = nbω
, ḃa = nba . (10)
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The standard deviation σbω
, σba , σw, σa values are generally given by the IMU manufac-

turer’s data in Allan deviation plots. For discrete time steps, it will be applied in the filter.
We need to convert these values according to their units:

dσ2
ω,a =

σ2
ω,a
∇t , dσ2

bω,a
= σ2

bω,a
∗ ∇t. (11)

The following differential equations govern IMU state propagation:

ṗi
w = vi

w,

˙vi
w = R>

(qi
w)
(am − ba − na)− g,

˙qi
w = 1

2Ω(ωm − bω − nω)qi
w,

˙bω = nbω
, ḃa = nba , λ̇ = 0,

ṗc
i = 0, q̇c

i = 0, ṗw
v = 0, ˙qw

v = 0,

(12)

For the quaternion integration inside the ES-EKF, we use the first-order integrator
defined in [35] as:

w̄ =
ωk+1+ωk

2 , κ = 1
2 .Ω(ω̄).∆t,

q̂i
wk+1 = [eκ + ∆t2

48 (Ω(ωk+1).Ω(ωk)−Ω(ωk).Ω(ωk+1))].q̂i
wk.

(13)

where the hat termˆmeans the estimated value. The exponential term eκ is expanded by
the Maclaurin series.

The states transition matrix Fd is modeled as:

Fd =



Id3 ∆t A B −R>
(q̂i

w)

∆t2

2 03×13

03 Id3 C D −R>
(q̂i

w)
∆t 03×13

03 03 E F 03 03×13
03 03 03 Id3 03 03×13
03 03 03 03 Id3 03×13

013×3 013×3 013×3 013×3 013×3 Id13


. (14)

Then, we apply the small-angle approximation for which |ω| → 0 apply the de l’Hopital
rule and obtain a compact solution for the six matrix blocks A, B, C, D, E, F [35]:

A = −R>
(q̂i

w)
bâc×(∆t2

2! −
∆t3

3! bω̂c× + ∆t4

4! bω̂c
2
×),

B = −R>
(q̂i

w)
bâc×(−∆t3

3! + ∆t4

4! bω̂c× −
∆t5

5! bω̂c
2
×),

C = −R>
(q̂i

w)
bâc×(∆t− ∆t2

2! bω̂c× + ∆t3

3! bω̂c
2
×),

D = −A,

E = Id3 − ∆tbω̂c× + ∆t2

2! bω̂c
2
×,

F = −∆t + ∆t2

2! bω̂c× −
∆t3

3! bω̂c
2
×,

(15)

with ω̂ = ωm − b̂ω, â = am − b̂a and bω̂c×, bâc× the skew-symmetric matrices for
IMU readings.

We can now derive the discrete-time input noise covariance matrix Qd as:

Qd =
w

∆t

Fd(τ)GcQcG>c Fd(τ)
>dτ, (16)
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where Qc is the CT process noise covariance, and Gc is calculated in the form:

Gc =



03 03 03 03
−R>

(q̂i
w)

03 03 03

03 03 Id3 03
03 03 03 Id3
03 −Id3 03 03

013×3 013×3 013×3 013×3


. (17)

The closed-form solution of the complete derivation of the Qd covariance matrix is
given in detail in Appendix B.
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z z
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Figure 5. The frames of reference annotations.

Finally, the propagated state covariance matrix computation is defined as:

Pk+1|k = FdPk|kF>d + Qd. (18)

3.3. Measurement Model

The main contribution of our measurement model for an observable ES-EKF is the
false relative pose augmentation methodology of the visual drift quaternion state at the
previous time step (k) updated with the current camera measurement at a time (k+1) and
modeled as:

qw
v (k) = q̂i

w(k)
−1 � q̂c

i (k)
−1 � qc

v(k + 1). (19)

The camera position measurement model yields the position of the camera with respect
to the vision frame pc

v. The error in measurement modeled as z̃p and linearized as z̃pL:

z̃p = zp − ẑp = pc
v − R>(q̂w

v )
( p̂i

w + R>
(q̂i

w)
p̂c

i )λ̂ =̇ z̃pL = Hp x̃, (20)

with

H>p =



R>(q̂w
v )

λ̂

03×3
−R>(q̂w

v )
R>
(q̂i

w)

⌊
p̂c

i
⌋
×λ̂

06x3
R>(q̂w

v )
R>
(q̂i

w)
p̂c

i + R>(q̂w
v )

p̂i
w

R>(q̂w
v )

R>
(q̂i

w)
λ̂

06x3

−R>(q̂w
v )

⌊
( p̂i

w + R>
(q̂i

w)
p̂c

i )λ̂
⌋
×


, (21)

using the definition of the error-quaternion

qi
w = δqi

w � q̂i
w,

R(qi
w)
≈ (Id3 −

⌊
δθi

w
⌋
×).R(qî

w)
.

(22)
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The vision algorithm yields the rotation from the camera frame into the vision frame
qc

v. We can model the error measurement as

z̃q = zq − ẑq = qc
i � qi

w � qw
v � (qc

i � q̂i
w � q̂w

v )
−1. (23)

Finally, the measurements Jacobian H in z̃ = H.x̃ is calculated based on the method
in [33] and can be stacked together in the form[

z̃p
z̃q

]
=

[
Hp

03x6 H̃wi
q 03x10 H̃ic

q 03×3 H̃vw
q

]
x̃. (24)

with the Jacobian matrices H̃xy
q , known as the right Jacobian of SO(3), and are defined as:

H̃xy
q = Jr(θ

y
x) = limδθ→0

Log(Exp(θ)∗⊗Exp(θ+δθ))
δθ ,

Jr(θ
y
x) = Id3 − ( 1−cos‖δθ‖

‖δθ‖2 ).
⌊

δθ
y
x

⌋
×
+ ( ‖δθ‖−sin‖δθ‖

‖δθ‖3 ).
⌊

δθ
y
x

⌋2

×
.

(25)

3.4. States Update

To update the framework for the current time step (k+1), we compute the innovation
term S, Kalman gain K, and the states correction vector ˆ̃x defined as:

S = HPH> +R, K = PH>S−1, ˆ̃x = Kz̃ . (26)

The error state covariance is updated as follows:

Pk+1|k+1 = (Id28 − KH)Pk+1|k(Id28 − KH)> + KRK>, (27)

whereR[6x6] = diag(Rposition,Rorientation) is the measurement noise covariance matrix.
The error quaternion is calculated by (3) to ensure its unit length, and then update the

states vector: Xk+1 = Xk + ˆ̃x.
For the quaternions state update:

q̂k+1 =
[ 1 1

2 δθ1
k+1

1
2 δθ2

k+1
1
2 δθ3

k+1 ]� q̂k∥∥∥[ 1 1
2 δθ1

k+1
1
2 δθ2

k+1
1
2 δθ3

k+1 ]� q̂k

∥∥∥ , (28)

where δθi
k+1 is the ith error state of this quaternion.

3.5. Reset Mode

The ES-EKF reset mode is performed by setting ˆ̃x ← 0 and P← G.P.G>, where G is
the Jacobian matrix defined by

G = diag(Id6 , Jrwi , Id10 , Jric , Id3 , Jrvw),

Jrxy = ∂δθ
y+
x

∂δθ
y
x

= Id3 −
1
2

⌊
ˆδθ

y
x

⌋
×

.
(29)

4. Experiments
4.1. Setup

An extensive quantitative and qualitative evaluation is carried out to validate all the
state estimation process aspects. This thorough performance analysis is run on the EuRoC
benchmark [12] for an indoor system global positioning evaluation in low-speed flights
and on the Fast Flight dataset [11] for outdoor experimentation at relatively high-speed
flights. For a fair comparison, all the pipeline processing stages in both Algorithms 1 and 2
are performed on a 16 GB RAM laptop computer running 64-bit Ubuntu 20.04.3 LTS with
AMD(R) Ryzen 7 4800 h × 16 cores 2.9 GHz processor and a Radeon RTX NV166 Renoir
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graphics card. In Table 1, we represent the quantitative insights of our experiment settings
regarding the benchmarks statistical data and the sensors parameters in-detail.

Table 1. Insights into our experiments’ statistical information and sensor settings.

Parameter EuRoC Benchmark [12] Fast Flight Dataset [11]

St
at

s

Total processed sequences 6 (Vicon room) 4 (airport runway)
Total sequences duration 11.6111 min 8.8867 min
Total sequences length 411.5425 m 2539.0599 1 m
Maximum speed 2.3 (m/s) 17.5 (m/s)

C
am

er
a

Total processed frames 13,736 21,312
Frame resolution 752 × 480 pixels 960 × 800 pixels
Intrinsics ( fx, fy, cx, cy) 458.65 457.30 367.22 248.38 606.58 606.73 474.93 402.28
Distortion (k1, k2, p1, p2) −0.2834 0.0739 0.0001 0.000018 −0.0147 −0.0058 0.0072 −0.0046
Camera-IMU pc

i (x,y,z,1) (m) −0.0216 −0.0647 0.0098 1.0000 0.1058 −0.0177 −0.0089 1.0000
Camera-IMU qc

i (x,y,z,w) [-] −0.0077 0.0105 0.7018 0.7123 −1.0000 0.0042 −0.0039 0.0015
Frame rate 20 (Hz) 40 (Hz)

IM
U

Gyroscope noise density (σnω ) 1.6968× 10−4 [rad/s/
√

Hz] 6.1087× 10−5 [rad/s/
√

Hz]
Gyroscope random walk (σnbω

) 1.9393× 10−5 [rad/s2/
√

Hz] 9.1548× 10−5 [rad/s2/
√

Hz]
Accelerometer noise density (σna ) 2.0000× 10−3 [m/s2/

√
Hz] 1.3734× 10−3 [m/s2/

√
Hz]

Accelerometer random walk (σnba
) 3.0000× 10−3 [m/s3/

√
Hz] 2.7468× 10−3 [m/s3/

√
Hz]

Data rate (1/∆t) 200 (Hz) 200 (Hz)

G
PS

Type/operation Indoors/Vicon system Outdoors/satellite Triangulation
Readings X (m), Y (m), Z (m) Long. (deg), Lat. (deg), Alt. (m)
Data rate 1 (Hz) (down-sampled) 5 (Hz)

1 Denotes the exact value of the total trajectories lengths for all of the sequences of Fast Flight dataset shown on
the x axis of Figure 1 (≈2.5 (km)).

The front-end of the pipeline, including both the data acquisition and pre-processing
steps, is developed as a Python API that sends the optimization variables to the factor graph
implemented in C++ using the Ceres solver [40] to achieve the lowest possible system
latency before the state estimation process. The Sparse Normal Cholesky linear solver
by the Ceres solver is employed to solve the least-squares convex optimization problem
formulated in Equation (6) along with the Levenberg–Marquardt trust region strategy with
the automatic differentiation tool for Jacobian calculations. The sparse Schur linear method
is applied to utilize the Schur complement for a more robust and fast optimization process.
The pipeline’s back-end for the state estimation process is developed entirely in MATLAB
(https://github.com/AbanobSoliman/VIO_RGB_IMU (accessed on 30 October 2022)) and
all the initialization parameters are given explicitly in Table 2.

Table 2. The ES-EKF initialization parameters for both the EuRoC and Fast Flight sequences.

Parameter Initialization EuRoC Benchmark [12] Fast Flight Dataset [11]

28-element error state vector ( ˆ̃x) 028×1 028×1

31-element state vector 1 (X )
(

03×1 03×1 q̄> 03×1 03×1 1 pc
i
> qc

i
> 03×1 q̄>

)>
States propagation covariance (P) 10−7 × Id28 10−12 × Id28

CT process noise covariance 2 (Qc) diag(dσ2
na

.Id3 , dσ2
nba

.Id3 , dσ2
nω

.Id3 , dσ2
nbω

.Id3 )

Measurement noise covariance (R) diag(0.01, 0.01, 0.03, 10−4, 10−4, 10−4)
1 q̄ denotes the unity quaternion [0,0,0,1]. 2 IMU noise density values for each dataset are from Table 1 and
discretized using Equation (11).

The performance analysis is performed using the two trajectory evaluation metrics:
root mean square error (RMSE) for the Fast Flight dataset compared to the GPS trajectory
pgps, and the RMS absolute trajectory error (ATE) for the EuRoC benchmark compared to
the ground truth trajectory Tgt provided with Vicon room sequences. The positional RMSE

https://github.com/AbanobSoliman/VIO_RGB_IMU
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metric for the Fast Flight sequences is chosen because the ground truth GPS trajectories
exist with unknown ground truth orientations. However, for EuRoC sequences, we select
the RMS ATE metric for two reasons: 1. the Vicon system provides ground truth poses
(positions and orientations); and 2. to ensure a fair comparison with the latest state-of-
the-art methods based on the same error metric. The two trajectory evaluation metrics are
formulated as follows:

RMSE =

√
1
n

n

∑
i=1

∣∣∣∣ p̂(i)− pgps(i)
∣∣∣∣2, ATE =

√
1
n

n

∑
i=1

∣∣∣∣∣∣p(T−1
gt (i).Trel .T̂(i))

∣∣∣∣∣∣2 [m], (30)

where p̂ is the estimated translation vector of the T̂ ∈ SE(3) trajectory; p(.) is the translation
vector of the T ∈ SE(3) pose; and Trel is rigid-body transformation corresponding to the
least-squares solution that maps the T̂ trajectory onto the Tgt trajectory calculated by
optimization. We set it constant for all sequences that belong to the same benchmark.

4.2. The EuRoC MAV Benchmark

The two main characteristics of the EuRoC MAV sequences are the complex combined
6-DoF motions and the relatively low speeds compared to the Fast Flight sequences. These
prominent characteristics allow an accurate evaluation of the ES-EKF marginally stable
states, such as the velocity and the visual drift. In Table 3, we report the ATE values as
an evaluation parameter for the trajectory estimation accuracy compared to the ground
truth. Moreover, Table 3 shows an ablation study that investigates the contribution of the
GPS sensor to the overall estimation accuracy, especially for the monocular vision-based
optimization methods: ours (PGO) and the recent work of Cioffi et al. [30]. The selection of
the six Vicon room sequences from the EuRoC benchmark is because a comparison with
an alternative method such as [30] incorporating GPS signals simulated from the Vicon
system readings better emphasizes the findings of this ablation study.

Table 3. Ablation study on the contribution of the GPS sensor on the system accuracy. The latest
state-of-the-art (monocular/stereo) VI-SLAM systems are compared to our proposed trajectory
initialization (PGO factors) and ES-EKF state estimation methods. Bold denotes the most accurate.

Method EuRoC Benchmark [12] (RMS ATE [m]) Avg.V1-01 V1-02 V1-03 V2-01 V2-02 V2-03

M
on

o-
V

I

OKVIS [23] 0.090 0.200 0.240 0.130 0.160 0.290 0.185
ROVIO [20] 0.100 0.100 0.140 0.120 0.140 0.140 0.123
VINS-Mono [22] 0.047 0.066 0.180 0.056 0.090 0.244 0.114
OpenVINS [41] 0.056 0.072 0.069 0.098 0.061 0.286 0.107
CodeVIO 1 [42] 0.054 0.071 0.068 0.097 0.061 0.275 0.104
Cioffi et al. 2 [16] 0.034 0.035 0.042 0.026 0.033 0.057 0.038

St
er

eo
-V

I VINS-Fusion [13] 0.076 0.069 0.114 0.066 0.091 0.096 0.085
BASALT [25] 0.040 0.020 0.030 0.030 0.020 0.050 0.032
Kimera [43] 0.050 0.110 0.120 0.070 0.100 0.190 0.107
ORB-SLAM3 [24] 0.038 0.014 0.024 0.032 0.014 0.024 0.024

M
on

o-
(V

/I
/G

)3

CT (V+I+G) [30] 0.024 0.014 0.011 0.012 0.010 0.010 0.014
CT (V+G) [30] 0.011 0.013 0.012 0.009 0.008 0.012 0.011
CT (I+G) [30] 0.062 0.102 0.117 0.112 0.164 0.363 0.153
DT (V+I+G) [30] 0.016 0.024 0.018 0.009 0.018 0.033 0.020
DT (V+G) [30] 0.010 0.025 0.024 0.010 0.012 0.029 0.018
DT (I+G) [30] 0.139 0.137 0.138 0.138 0.138 0.139 0.138
Ours (PGO) 0.008 0.017 4 0.023 4 0.008 0.022 0.025 4 0.017
Ours (ES-EKF) 0.009 0.012 0.011 0.010 0.011 0.010 0.011

1 Denotes the only learning-based baseline in the table and incorporates point clouds using LiDAR. 2 Denotes
values from the original work with four GPS readings connected to each optimization state. 3 V,I,G: Vision, IMU,
and GPS (generated from the Vicon system readings). 4 Denotes KLT-VO tracks features in 5 consecutive frames
instead of 10 due to the rapid movement of the MAV.
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A prominent finding of this ablation study is that vision is the most significant type of
sensor. In most sequences, the lowest ATE is obtained by fusing the camera trajectory from
the vision KLT-based SfM algorithm to a gravity-aligned frame using the noisy simulated
GPS data, and adding inertial measurements does not provide a measurable benefit in
this case. However, adding the gyroscope measurements to the visual-GPS fusion has
led to the least ATE achieved by our PGO model compared to all other discrete-time (DT)
methods. Figures 6 and 7 show our trajectory and velocity estimations after incorporating
the accelerometer readings in the ES-EKF model, resulting in the lowest achievable errors
that can compete with the continuous-time optimization model in [30].

X [m]

−3
−2

−1
0

1

Y
[m
]

−1
0

1

2

3

4

Z
[m
]

−1 2

−1 0

−0 8

−0 6

−0 4

−0 2

0 0

GT
Proposed

V1-01 V1-02 V1-03

V2-01 V2-02 V2-03

Figure 6. EuRoC 3D trajectory estimation compared to the ground truth.

Time [sec] Time [sec] Time [sec]

V2-01 V2-02 V2-03

Figure 7. Estimated velocity profile validation with the ground truth. Comparison of sample
sequences from EuRoC benchmark.

4.3. The Fast Flight Dataset

The main observation, which is validated upon both the EuRoC and Fast Flight
sequences (see Table 4 and Figure 8), is that for velocities less than 5 (m/s), the monocular
loosely coupled ES-EKF can achieve considerably lower estimation errors concerning the
other filter- or optimization-based methods. For velocities more than 5 (m/s), our proposed
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optimization-based initialization scores the lowest RMSE compared to all other methods in
comparison in Table 4. On the contrary, the monocular ES-EKF scores the lowest RMSE,
especially for velocities more than 10 (m/s), compared to the best-performing Kalman filter
stereo model of the S-MSCKF.

Table 4. Ablation study on the effect of the high MAV speed on the accuracy of the filtering approaches
compared to optimization approaches. The first sub-section compares monocular (VINS-Mono
and Ours) to stereo (OKVIS) optimization-based VI systems. The second sub-section compares
stereo filtering-based approaches to our proposed method. Bold denotes the most accurate in
each sub-section.

Method Fast Flight [11] (RMSE (m)) Avg.gps5 gps10 gps15 gps175

OKVIS [23] 3.224 4.987 3.985 4.535 4.183
VINS-Mono [22] 5.542 8.753 2.875 3.452 5.156
Ours (PGO) 0.417 0.759 0.180 0.927 0.571

S-MSCKF [11] 4.985 2.751 4.752 7.852 5.085
S-UKF-LG [19] 4.875 2.589 5.128 7.865 5.114
S-IEKF [19] 4.986 2.544 5.124 8.152 5.201
Ours (ES-EKF) 4.751 7.924 7.221 9.488 7.346

gps5 (Max. Speed 5 m/s)gps10 (Max. Speed 10 m/s)gps15 (Max. Speed 15 m/s)gps175 (Max. Speed 17.5 m/s)

Figure 8. Fast Flight (X (top)−Y (middle)−Z (bottom)) trajectory estimation compared to the
GPS readings.

Since the maximum achieved velocity of the EuRoC MAV is nearly 2.3 (m/s), the
quantitative results in Table 3 further support this conclusion, where our ES-EKF scores the
best performance compared to the other state-of-the-art methods. In-depth reasoning for
this degraded performance at high speeds (more than 5 (m/s)) can be clarified based on
the hardware characteristics of the MAV sensors’ properties, such as the data rate, latency,
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and noise effects at high speeds. Our optimization-based (PGO) initialization outperforms
all other optimization- or filtering-based methods with high-rate visual-inertial sensors.

An insightful overview of the velocity profiles estimated by our ES-EKF is represented
in Figure 9. The main conclusion is that the estimated velocity profile during the planar
motion of the MAV in the X–Z plane optimally fits the upper and lower bounds of the
top speed for each sequence. Towards an in-depth investigation to understand the high
perturbations in the estimated velocity when approaching the maximum limit, we plot the
velocity error states in the ES-EKF showing a high error at the instances when approaching
top speeds due to the strong vibrations in the MAV structure affecting the IMU readings.

gps5 (Max. Speed 5 m/s)gps10 (Max. Speed 10 m/s)gps15 (Max. Speed 15 m/s)gps175 (Max. Speed 17.5 m/s)

Figure 9. (Top): Fast Flight velocity profile validation with the top speed of each sequence. (Bottom):
velocity error states in the ES−EKF.

The high estimation accuracy of our ES-EKF model compared to GPS readings and the
PGO optimization-based initialization process is further verified by the Y axis trajectory
estimation in Figure 8. The maximum estimated altitude for all sequences by the ES-EKF
is nearly 60 (m), whereas both the GPS readings and the initialization optimizer estimate
a maximum altitude of nearly 100 (m). To physically validate which is a more accurate
altitude estimation, we took snippets of the scene at a time instance in the exact halfway of
all trajectories as shown in Figure 1. We can observe that the MAV is nearly on the same
level as the roof of a commercial aircraft hangar, which is in the range of 30 (m) to 66 (m).
This observation validates the high estimation accuracy of the altitude using our ES-EKF.

4.4. Real-Time Performance Analysis

The filter-based approaches are more advantageous for real-time onboard applications
because they use the CPU more efficiently than the monocular and stereo optimization-
based methods. Due to its computationally intensive front-end pipeline for both temporal
and stereo matching, OKVIS uses more CPU than VINS-Mono. Additionally, OKVIS’s
back-end operates at a speed that is much faster than the set 10 (Hz) rate of VINS-Mono.
Approximately 90% of the work in our back-end, ES-EKF, is brought on by the front-end,
which includes ORB feature detection, KLT-based tracking, and matching. At 200 (Hz),
the filter uses approximately 10% of a core. Our suggested technique offers the maximum
estimation frequency, which provides the optimal balance between the precision and
computing cost.

Figure 10 contrasts how much CPU time various VIO solutions used on the EuRoC
benchmark and the Fast Flight dataset. Since V2-03 has considerable scale drift with S-IEKF
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and S-UKF-LG techniques and hence has significantly worse accuracy when compared to
other methods, the CPU consumption of V2-03 is excluded from the comparison. According
to the testing, the ES-EKF achieves the lowest CPU consumption while retaining a similar
level of accuracy in comparison with other methods. We notice that the proposed method
puts more computing work into the image processing front-end than the tests using the
EuRoC dataset. Higher imaging frequency and resolution are one explanation, while Fast
Flight results in a shorter feature lifetime, necessitating frequent new feature identification,
is another reason.

Ours

Figure 10. CPU usage as a real-time performance analysis indicator.

5. Conclusions

Our work aimed to provide an accurate and computationally inexpensive localiza-
tion solution during MAVs’ long-term navigation in large-scale environments. We repre-
sented a loosely coupled IMU/GPS camera fusion framework with pose failure detection
methodology toward this goal. Moreover, we proposed a novel decoupled optimization-
and filtering-based sensor fusion technique that achieves a high estimation accuracy and
minimum system complexity compared to the other methods in the literature. We used
real-world indoor and outdoor settings for the MAV localization studies to validate and
test the findings of our proposed method.

The vision-based black-box pose estimation accuracy is first examined in a controlled
laboratory Vicon room of the EuRoC benchmark. The outcomes confirmed the system’s
reliance on monocular vision. The experiments on EuRoC and Fast Flight sequences
have shown remarkable accuracy in the trajectory estimation studies. We also evalu-
ated the proposed scheme in terms of computational complexity, measured by CPU us-
age, where our monocular-vision optimization/filtering solution outperformed all the
competing techniques.

This conclusion enforces our work’s contributions to a reliable (fast and accurate)
sensor fusion solution for challenging and large-scale environments. From a future per-
spective, it will be necessary to comprise situations where GPS sensor constraints, such
as the multipath effects on the optimizer. Finally, further generalizing the optimization
problem will be necessary to extend the algorithm’s pose estimation capability to include
multiple vision sensors (stereo RGB, for instance).
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Abbreviations
The following abbreviations are ordered according to the mentioned precedence in this article:

MAV Micro Aerial Vehicle
VO Visual Odometry
VIO Visual Inertial Odometry
SLAM Simultaneous Localization Furthermore, Mapping
CT/DT Continuous Time/Discrete Time
KLT Kanade–Lucas Tracking
PGO Pose Graph Optimization
ES-EKF Error States Extended Kalman Filter
S-MSCKF Stereo Multi-State Constraint Kalman Filter
S-UKF-LG Stereo Unscented Kalman Filter on Lie Groups
S-IEKF Stereo (Invariant-)Extended Kalman Filter
ATE Absolute Trajectory Error
RMS Root Mean Square
RMSE Root Mean Square Error

Appendix A. Observability Analysis

The EKF-based VIO for 6-DOF motion estimate contains four unobservable states
corresponding to the global position and rotation around the gravity axis, or yaw angle,
as demonstrated in [44]. A simple EKF VIO implementation will gather false information
about yaw. The different processes and measurements’ linearizing point causes this unob-
servability. To ensure that the uncertainty of the current camera states in the state vector is
not impacted by the uncertainty of the current IMU state during the propagation step, in
our implementation, the camera poses in the state vector can be represented with respect
to its inertial frame (v) instead of the latest IMU frame. Besides the efficient gyroscope
RK4 integration scheme during the initialization process, our ES-EKF implementation
minimizes the effect of the unobservable modes of the basic EKF. Figure A1 shows the IMU
intrinsics, IMU-CAM extrinsic parameters, and odometry scale ES-EKF states plotted for
sample EuRoC and Fast Flight sequences.

The main observation from Figure A1 is that when the motion of the MAV is smooth
with no abrupt rotations and translations, our optimization-based initialization estimates
an optimal metric-scaled trajectory with λ = 1. Moreover, we also observe that when the
IMU-camera setup is not accurately calibrated, the ES-EKF can optimally align the sensor
setup in a robust online calibration process. Furthermore, the estimated IMU biases using
our ES-EKF model are accurate and in a sensible range. One crucial observation is the
estimated attitude visual drift of the visual sensor and the detection of consistent drift
patterns based on the MAV speed (Fast Flight sequences) and abrupt motions (EuRoC

https://challenge-malin.fr
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://github.com/KumarRobotics/msckf_vio/wiki/Dataset
https://github.com/KumarRobotics/msckf_vio/wiki/Dataset
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sequences). These observations validate the contribution of the ES-EKF to the sustainability
of the proposed method to achieve a resilient system that observes all the state vector
parameters in addition to all the 6 DoF of the MAV trajectory. Finally, after the initial
trajectory optimization, the filtering process is indispensable to estimate the false camera
poses during long-term navigation caused by the visual attitude drifts.

Figure A1. Our ES−EKF estimated states. Columns from left to right: IMU (accelerometer/gyroscope)
biases ba, bω , odometry scale factor λ, visual drift orientations qw

v , and IMU-camera translation online
calibration pc

i . Rows 1,2 for sample Fast Flight sequences (gps5, gps10) and rows 3, 4 for sample
EuRoC sequences (V2-02, V2-03), respectively.

Appendix B. Qd Derivation Equations

The Qd in Equation (16) can be obtained after the consecutive matrix multiplications
are performed using the following formulas. For simplicity, let t = ∆t, σ = dσ, β = −R

(q̂i
w)

:
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[(βbâc×)(Id3 .

t4

8
− t5

60
bω̂c× +

t6

144
bω̂c2×)(βbâc×)
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