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Abstract: 1,3-propanediol (1,3-PD) has a wide range of industrial applications. The most studied
natural producers capable of fermenting glycerol to 1,3-PD belong to the genera Klebsiella, Citrobacter,
and Clostridium. In this study, the optimization of medium composition for the biosynthesis of 1,3-PD
by Citrobacter freundii AD119 was performed using the one-factor-at-a-time method (OFAT) and a
two-step statistical experimental design. Eleven mineral components were tested for their impact
on the process using the Plackett–Burman design. MgSO4 and CoCl2 were found to have the most
pronounced effect. Consequently, a central composite design was used to optimize the concentration
of these mineral components. Besides minerals, carbon and nitrogen sources were also optimized.
Partial glycerol substitution with other carbon sources was found not to improve the bioconversion
process. Moreover, although yeast extract was found to be the best nitrogen source, it was possible to
replace it in part with (NH4)2SO4 without a negative impact on 1,3-PD production. As a part of the
optimization procedure, an artificial neural network model of the growth of C. freundii and 1,3-PD
production was developed as a predictive tool supporting the design and control of the bioprocess
under study.

Keywords: 1,3-propanediol; Citrobacter freundii; medium composition; experimental design; artificial
neural networks

1. Introduction

1,3-propanediol (1,3-PD) has a wide range of applications in the manufacture of poly-
mers, adhesives, cosmetics, detergents, solvents, laminates, lubricants, and medicines [1,2].
1,3-PD can be produced by chemical synthesis or microbial fermentation. However, chemi-
cal synthesis is expensive and generates waste streams containing environmental pollutants.
Thus, the research on the production of 1,3-PD is focused on microbial fermentation, which
is a more environmentally favorable process and creates the opportunity to use raw glycerol
as a carbon source [3,4]. Glycerol can be converted to 1,3-PD by various bacteria, includ-
ing those of the genera Klebsiella, Citrobacter, and Clostridium [5–8]. The enterobacterial
species are paid attention to because of their substrate tolerance, productivity, and high
yield [2,9,10]. Reported concentrations of 1,3-PD obtained using Citrobacter freundii range
from 4.35 g/L to 68.1 g/L and depend on the particular strain, medium composition and
culture conditions [7,11].

Reports are available that focus on the optimization of parameters that affect 1,3-PD
production. Among the methodologies used in such studies, both one-factor-a-time (OFAT)
and multifactorial design-of-experiment (DOE) approaches can be encountered. A wide
range of variables can be selected for optimization, including process conditions (tem-
perature, pH, sparging/agitation) and the chemical composition of the medium. Proper
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statistical methods, such as the Plackett–Burman design, allow the determination of fac-
tors that have a significant impact on the fermentation. These parameters can then be
further optimized in a more comprehensive manner with central composite, Box–Behnken,
or other designs. As the composition of the medium is critical, with the major roles
played by concentrations of nutritional sources [3], a large part of the research concentrates
on it. Regarding the production of 1,3-PD, most of the optimization studies use either
Clostridium [12,13] or Klebsiella species [14–18]. Thus, there is only limited information on
the relationship between the medium composition and 1,3-PD production by C. freundii.

Apart from the optimization of process parameters, models that describe the dynamics
of biological processes facilitate the quantitative analysis of alternative ways of process
intensification [19]. In recent years, machine learning-based techniques have gained promi-
nence as analytical tools for predictive modeling based on their good performance in
simulating complex and non-linear phenomena [20–23]. One of the significant advantages
of these techniques that include artificial neural networks (ANN) is the lack of the need to
make initial assumptions, which are necessary when using kinetic equations. Modeling
and simulation problems handled with the use of these techniques can be solved without
any a priori knowledge on the relationships existing in the considered systems [24].

In this study, the influence of various medium components on 1,3-PD production by
C. freundii AD119 was studied. Various minerals were screened for those with a significant
effect on 1,3-PD production with the use of the Plackett–Burman design. Moreover, the
optimal concentrations of selected minerals were investigated by employing response
surface methodology with a central composite design. The current study also addressed
the influence of carbon and nitrogen sources in qualitative and quantitative aspects. Finally,
a model simulating the growth of C. freundii and the production of 1,3-PD was developed
using artificial neural networks (ANN).

2. Materials and Methods
2.1. Microorganisms

C. freundii AD119 strain was isolated from pickled vegetables [25]. The strain was
deposited in the Polish Collection of Microorganisms under the number B/00044.

2.2. Media
2.2.1. Mineral Requirements

For mineral optimization studies, Plackett–Burman design was used. Each medium
contained a carbon source (glycerol—50 g/L), nitrogen source ((NH4)2SO4—3 g/L), and
phosphate buffer. Minerals were selected based on literature data. The quantities of other
examined minerals in the media were dependent on the experimental design (Tables 1 and 2).

Table 1. Experimental ranges and levels of the selected minerals tested via the Plackett–Burman design.

Factor Symbol
Ranges and Levels

1 0 −1

MgSO4·7H2O (g/L) A 0 0.2 0
CaCl2 (g/L) B 0 0.05 0.1

FeSO4·7H2O (mg/L) C 0 5 10
CoCl2 6H2O (mg/L) D 0 5 10
MnSO4·H2O (mg/L) E 0 8.5 17

ZnCl2 (mg/L) F 0 1 2
H3BO3 (mg/L) G 0 0.025 0.05

Na2MoO4·2H2O (mg/L) H 0 0.02 0.04
NiCl2·6H2O (mg/L) J 0 0.01 0.02
CuCl2·2H2O (mg/L) K 0 0.05 0.1

NaCl (g/L) L 0 0.25 0.5
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Table 2. Plackett–Burman design for 11 variables with coded values along with observed results for
1,3-PD production.

No. A B C D E F G H J K L 1,3-PD
Production

1 1 1 −1 1 1 1 −1 −1 −1 1 −1 12.71
2 −1 1 1 −1 1 1 1 −1 −1 −1 1 11.41
3 1 −1 1 1 −1 1 1 1 −1 −1 −1 11.76
4 −1 1 −1 1 1 −1 1 1 1 −1 −1 0.05
5 −1 −1 1 −1 1 1 −1 1 1 1 −1 9.76
6 −1 −1 −1 1 −1 1 1 −1 1 1 1 0.02
7 1 −1 −1 −1 1 −1 1 1 −1 1 1 12.07
8 1 1 −1 −1 −1 1 −1 1 1 −1 1 14.10
9 1 1 1 −1 −1 −1 1 −1 1 1 −1 14.29

10 −1 1 1 1 −1 −1 −1 1 −1 1 1 0.61
11 1 −1 1 1 1 −1 −1 −1 1 −1 1 9.03
12 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 9.34
13 0 0 0 0 0 0 0 0 0 0 0 11.54
14 0 0 0 0 0 0 0 0 0 0 0 11.48
15 0 0 0 0 0 0 0 0 0 0 0 11.32
16 −1 −1 1 −1 −1 −1 1 1 1 −1 1 8.03
17 1 −1 −1 1 −1 −1 −1 1 1 1 −1 13.55
18 −1 1 −1 −1 1 −1 −1 −1 1 1 1 8.86
19 1 −1 1 −1 −1 1 −1 −1 −1 1 1 8.20
20 1 1 −1 1 −1 −1 1 −1 −1 −1 1 11.49
21 1 1 1 −1 1 −1 −1 1 −1 −1 −1 10.96
22 −1 1 1 1 −1 1 −1 −1 1 −1 −1 0.09
23 −1 −1 1 1 1 −1 1 −1 −1 1 −1 0.00
24 −1 −1 −1 1 1 1 −1 1 −1 −1 1 0.00
25 1 −1 −1 −1 1 1 1 −1 1 −1 −1 7.35
26 −1 1 −1 −1 −1 1 1 1 −1 1 −1 7.04
27 1 1 1 1 1 1 1 1 1 1 1 12.60
28 0 0 0 0 0 0 0 0 0 0 0 11.94
29 0 0 0 0 0 0 0 0 0 0 0 10.56
30 0 0 0 0 0 0 0 0 0 0 0 9.94

The pH of each medium was adjusted to 7.0 and the media were autoclaved for 20 min
at 121 ◦C. The culture was maintained at 30 ◦C for 168 h without stirring. Quantitative
optimization of MgSO4 and CoCl2 was performed using response surface methodology.
The experimental designs and responses are shown in Table 3.

Table 3. Experimental design and experimental results for the central composite design.

No.

Design Matrix Experimental Responses
1,3-PD

(g/L)A: CoCl2·6 H2O
(mg/L)

B: MgSO4·7H2O
(g/L)

1 0 0 5.00
2 20 0 0.00
3 0 0.8 6.05
4 20 0.8 9.77
5 0 0.4 9.52
6 20 0.4 9.62
7 10 0 4.32
8 10 0.8 9.42
9 10 0.4 9.78

10 10 0.4 10.39
11 10 0.4 10.17
12 10 0.4 10.18
13 10 0.4 10.23
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The mathematical function for the response (1,3-PD concentration) is presented below
(Equation (1)):

y = b0 + b1A + b2B + b12AB + b11A2 + b22B2 (1)

where y—predicted yield of the response, b0—intercept; b1, b2—linear coefficients; b12
-interaction coefficient; b11, b22—quadratic coefficients.

Validity of the model was confirmed by performing three validation experiments using
factor values determined as optimal. Comparison of the actual results with the interval of
confidence of the calculated response was then performed.

2.2.2. Carbon Source Requirements

For optimization of carbon source, 20% of glycerol was substituted with different
carbon sources such as citric acid, glucose, fructose, xylose, mannose, arabinose, galactose,
sucrose, lactose, starch, maltose, and carboxymethyl cellulose. For optimization of glycerol
concentration, media containing different starting glycerol concentrations (ranging from 0
to 100 g/L) were used. Both pure and biodiesel-derived waste glycerol (Archer Daniels
Midland Company (ADM), Malbork, Poland) were used.

2.2.3. Nitrogen Source Requirements

Different nitrogen-containing compounds (yeast extract, meat extract, bactopeptone,
urea, corn steep liquor, and (NH4)2SO4) in the concentration of 5 g/L were used to optimize
the nitrogen source in the medium. For optimization of yeast extract concentration, media
containing different starting yeast extract concentrations (ranging from 0.75 to 10 g/L) were
used. Moreover, partial substitution of yeast extract with (NH4)2SO4 was examined. Each
medium contained 0.5 g/L of nitrogen originating from yeast extract and (NH4)2SO4 in
different proportions (Figure 1b).
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Figure 1. Influence of various nitrogen sources on 1,3-PD production (a) and effect of yeast extract
replacement by (NH4)2SO4 on 1,3-PD production (b).

2.2.4. Influence of Vitamin and Organic Acids

To test the influence of the addition of selected organic acids and vitamin B12 on 1,3-PD
production, media supplemented with vitamin B12 (3.7 µM), fumaric acid (25 mM), and
the mixture of organic acids (fumaric acid (3.8 mM), citric acid (3.8 mM), and succinic acid
(3.8 mM)) were prepared.

2.3. Fed-Batch Experiment in Bioreactor

Fed-batch bioreactor fermentation was conducted in a 5 L bioreactor Biostat B Plus
(Sartorius, Germany) with a working volume of 1 L. The optimized medium was inoculated
with 10% (v/v) of inoculum. The process conditions were as follows: temperature, 30 ◦C;
agitation, 80 rpm; pH, 7.0. Glycerol supply was coupled to the delivery of KOH—a single
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solution composed of 20% KOH and 41% glycerol was used for controlling pH. As the
fermentation progressed, the automatic pH regulation system controlled the delivery of
both the neutralizing agent and glycerol. Thus, the carbon source was simultaneously
delivered at a rate synchronized with the rate of acid generation by the bacteria.

2.4. Analysis of Fermentation Broth

After fermentation, samples were diluted 10-fold and filtered through a 0.45 µm sy-
ringe filter before analysis. Glycerol and 1,3-PD were quantified by HPLC using Agilent
Technologies 1200 series chromatograph (Agilent Technologies, Santa Clara, CA, USA)
equipped with a refractive-index detector (G1362A). Analyses were performed isocrati-
cally at 40 ◦C with 0.6 mL/min flow rate of 0.5mN H2SO4 on Rezex ROA-Organic Acid,
300 × 7.8 mm (Phenomenex, Torrance, CA, USA) column. Standard solutions (all from
Sigma-Aldrich, Merck, Germany) were used to identify peaks in chromatograms, and peak
area was used for quantification. ChemStation for LC 3D systems (Agilent Technologies,
Santa Clara, CA, USA) was used to analyze chromatographic data. Optical density at
600 nm was used to analyze bacterial growth.

2.5. Artificial Neural Network Model Development

ANNs were used to develop a model for the evaluation of the suitability of solutions
containing glycerol for C. freundii growth and 1,3-PD production. The experimental data
collected during the fermentation processes, i.e., 1,3-PD concentration and optical density,
were used to build the ANN model. Before the model design, the experimental data set
(308 vectors) was divided randomly into three groups, i.e., the training data set used to
build the model, the test data set used to verify the network quality during the training
process, and the validation data set (not involved in the construction process) used to verify
the network quality after the model elaboration. The ratio of data points in these data sets
was 70:15:15, respectively.

The ANN model was built on the basis of multilayer perceptron (MLP), which has
been proven in previous studies to work well in regression problems, especially in the
context of microbial growth modelling [26–29]. This type of fully connected feed-forward
network consisting of three layers, i.e., input, hidden, and output layers, was also used
in our research. The independent variables of the fermentation process (i.e., type of
glycerol source, glycerol content in the culture medium, fermentation time) were used
as inputs for the model. The outputs were designated based on the dependent variables,
i.e., the concentration of 1,3-PD and the optical density (a measure of C. freundii population
growth). In the output neurons, a linear function was used as the activation (transfer)
function. The development of the hidden layer structure was less straightforward, because
there are no simple and generally accepted principles for its design [30,31]. There are
some rules of thumb, which allow estimation of the number of neurons in the hidden
layer [28,32,33]. Nevertheless, the most common approach used to determine the number
of neurons in the hidden layer is the trial-and-error method, which was also used in our
study. Networks with a single hidden layer containing from 3 to 12 neurons with various
types of activation function in these neurons (linear (Lin), logistic (Log), exponential (Exp),
and hyperbolic tangent (Tanh)) were examined. For each studied topology, 1000 neural
network models were tested (40,000 networks in total). Simulations were performed
using Statistica 13.3 software (StatSoft, Tulsa, OK, USA). Network training was aimed at
minimizing the error between the target output vector and the ANN-calculated output
signal. To this end, the supervised learning algorithm Broyden—Fletcher—Goldfarb—
Shanno (BFGS) was used to fit the optimal values of the activation function coefficients,
the values of inter-neural synaptic weights and biases. The prediction performance of all
the tested ANN models was evaluated based on the errors computed for the learning, test,
and validation data sets. Additionally, the capability of the final ANN model predicting
the level of C. freundii population and the production of 1,3-PD was assessed on the basis
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of the explained variation (R2), mean absolute error (MAE), and the root mean square
error (RMSE).

3. Results and Discussion

A sequential approach was applied in the present study to optimize the medium
for 1,3-PD production by C. freundii. First, qualitative optimization of minerals, carbon,
and nitrogen sources was performed. This was followed by quantitative optimization of
selected variables.

3.1. Qualitative Optimization
3.1.1. Plackett–Burman Design—Mineral Composition Optimization

The Plackett–Burman design was employed to evaluate the influence of 11 minerals
on 1,3-PD production by C. freundii AD119. Minerals were selected based on available
literature data. Experimental levels tested in this design are shown in Table 2. The data
showed a wide variation of 1,3-PD production that ranged from 0 to 14.29 g/L. While
relatively high 1,3-PD production was observed when MgSO4 was added to the medium,
there was almost no 1,3-PD production when CoCl2 was present in a medium devoid
of MgSO4 (8.20–14.29 g/L of 1,3-PD and 0–0.61 g/L of 1,3-PD, respectively, Table 2). To
determine the significance of the impact of the variables on the response, statistical analysis
of variance (ANOVA) was performed (Table 4).

Table 4. Statistical analysis results according to ANOVA for Plackett–Burman design.

Source Coefficients of
Regression Equation SS df MS F-Value p-Value

Model - 41.91 4 10.48 211 <0.0001
Intercept 2.50 - - - - -

A—
MgSO4

0.88 18.47 1 18.47 372 <0.0001

B—CaCl2 0.14 0.47 1 0.47 9.46 0.0054
D—CoCl2 −0.66 10.48 1 10.48 211 <0.0001

AD 0.72 12.49 1 12.49 251.4 <0.0001
Residual - 1.142 23 0.05 - -

Lack of fit - 1.094 19 0.06 4.77 0.0702

R2 = 0.97, Adj-R2 = 0.97, SS—sum of squares, df—degree of freedom, MS—mean square.

Three variables, namely MgSO4, CoCl2, and CaCl2, were found to influence the
fermentation process significantly. The values of regression coefficients indicate a negative
effect of CoCl2 and positive effects of MgSO4 and CaCl2. Furthermore, an interaction
between the concentration of CoCl2 and MgSO4 was found to have a significant positive
impact. The concentration of CaCl2 showed relatively low significance compared to the
other factors and was thus not a subject of optimization in further studies (Figure 2).
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There is no literature data concerning the effect of minerals (magnesium or cobalt)
on 1,3-PD production by C. freundii. However, Huang et al. [34] showed the positive
effect of cobalt ions addition on 1,3-PD production by Klebsiella pneumoniae. Magnesium is
essential to the mechanism of cell division, and increases growth yield [35], and buffers
the cell against adverse environmental effects [36]. Moreover, Kajiura et al. [37] reported
the reactivation of inactivated glycerol dehydratase of K. pneumoniae in the presence of free
adenosylcobalamin, Mg2+, and ATP. Cobalt ions also might play a role in the reactivation of
this enzyme, as the B12-dependent glycerol dehydratase of C. freundii contains an atom of
cobalt in its center [38,39]. Interestingly, the addition of cobalt ions to the medium inhibited
cell growth and 1,3-PD production. Similar observations were made by Ranquet et al. [40]
and Babai [41], who noticed cell growth inhibition of Escherichia coli in the presence of
cobalt in a medium. Moreover, Babai [41] found that the toxicity of cobalt was markedly
reduced in the presence of magnesium. Thus, the interaction between Mg2+ and Co2+

concentration demanded further studies. It was done using a central composite design
during the quantitative optimization of selected variables.

3.1.2. Carbon Source Optimization

Glycerol is the only carbon source that can be converted to 1,3-PD by non-engineered
microorganisms. No microorganisms have the ability to ferment sugars directly to 1,3-
PD [1]. Sugars, however, can be used as additional carbon sources. An example of such
an approach can be found in the study by Abbad-Andaloussi et al. [42], where it was
reported that the introduction of glucose into the medium increased the amount of glycerol
metabolized through the 1,3-PD pathway. In the co-substrate–glycerol medium, the co-
substrate was metabolized by the cells to produce energy, whereas glycerol was used
mainly for the utilization of reducing power and the production of 1,3-PD. Thus, 20% of
glycerol was replaced with other carbon sources. In almost all cases where co-substrates
were used, a decrease in the production of 1,3-PD was observed, from 15.2 ± 0.2 g/L of
1,3-PD (control) to the range of 8.4 ± 0.2–13.3 ± 0.2 of 1,3-PD (Figure 3).
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In some cases (galactose, arabinose, starch), the effect was negligible (14.5 ± 0.3,
14.4 ± 0.7 and 14.3 ± 0.4 g/L of 1,3-PD, respectively, compared to 15.2 ± 0.2 g/L in control).
Similar results were obtained by Metsoviti et al. [43], who tested the effect of partial glycerol
substitution with glucose and reported no increase in 1,3-PD production. An increase in
1,3-PD production, productivity, and yield was observed only when glucose was added to
the medium with no change to the concentration of glycerol [15,44,45].

3.1.3. Nitrogen Source Optimization

The impact of both organic and inorganic nitrogen sources on 1,3-PD production
by C. freundii AD119 was investigated. In general, media that contained organic nitro-
gen sources were found to yield better results (Figure 1a). Organic nitrogen sources are
known to contain vitamins and growth factors [46,47]. Maximum 1,3-PD production of
19.47 ± 0.3 g/L was obtained with the use of yeast extract. It was followed by a result of
16.44 ± 0.23 g/L of 1,3-PD determined in cultures that contained meat extract. Similar re-
sults were obtained by Jalasutram and Jetty [15]. They found that among 12 tested nitrogen
sources, yeast extract was the optimum nitrogen source for the production of 1,3-PD by a
K. pneumoniae strain. Yeast extract was thus selected for use in further research.

3.2. Quantitative Optimization
3.2.1. Optimization of Nitrogen Sources

To determine the optimum amount of nitrogen source for 1,3-PD production, media
containing yeast extract at concentrations ranging from 0.75 to 10 g/L were prepared. As
yeast extract concentration increased from 0.75 to 5 g/L, 1,3-PD, production also increased
(Table 5).

Table 5. Effect of yeast extract concentration on 1,3-PD production C. freundii AD119.

Yeast Extract Concentration g/L 1,3-PD g/L Glycerol Utilization (%)

0.75 6.52 ± 0.27 24.37 ± 2.88
2 17.57 ± 0.15 73.73 ± 0.71
5 19.47 ± 0.3 84.66 ± 0.37

7.5 18.73 ± 0.26 84.76 ± 1.12
10 19.15 ± 0.06 86.09 ± 0.53
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Increasing the yeast extract concentration further did not result in higher 1,3-PD produc-
tion. Maximum production was observed at 5 g/L of yeast extract. In further studies, aimed
at reduction of the content of this expensive component of the medium, the possibility of
partial replacement of yeast extract by (NH4)2SO4 was investigated. The results showed that
yeast extract had a positive effect on the formation of 1,3-PD by C. freundii AD119 (Figure 1b).
The reduction of yeast extract to 0.5 g/L caused an almost five-fold reduction of 1,3-PD
concentration (from 9.6 ± 0.1 to 2.3 ± 0.1 g/L) obtained after 24 h of fermentation. The
addition of 2 g/L of yeast extract and 1.4 g/L of (NH4)2SO4 to the medium allowed obtaining
the maximum 1,3-PD concentration after 24 h of fermentation. Further studies showed that
reduction of (NH4)2SO4 to the level of 1.1 g/L did not decrease 1,3-PD production (data
not shown), thus the mixture of 2 g/L of yeast extract and 1.1 g/L of (NH4)2SO4 was used
for further studies. Other scientists also tried to avoid the usage of yeast extract in media.
Himmi et al. [48] replaced all yeast extract with biotin. Clostridium butyricum was able to
produce the same amount of 1,3-PD in the medium without yeast extract, but the process
was prolonged. Pflugl et al. [49] replaced yeast extract with vitamin B12, riboflavin, and
nicotinic acid, and obtained a 1,3-PD concentration comparable to the cultivation with yeast
extract. Their medium, however, contained other organic nitrogen sources (meat extract and
casein peptone) besides yeast extract. Dietz and Zeng [50] used yeast extract-free medium
containing, among others, citric acid, L-cysteine, biotin, and pantothenate. Results showed
by these scientists are promising, as no prolongation of the fermentation was observed, and a
high concentration of 1,3-PD was obtained. However, L-cysteine, biotin, and pantothenate
are expensive components.

3.2.2. Carbon Sources Optimization

To determine the optimum glycerol concentration for 1,3-PD production, media con-
taining from 0 to 100 g/L of glycerol were prepared. Both pure glycerol and crude glycerol
from biodiesel production were used, and the results were similar for both these substrate
types. As glycerol concentration increased, the lag phase was prolonged and the rate of
1,3-PD production decreased (Figure 4).
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Figure 4. Effect of initial glycerol concentration on 1,3-PD production using pure glycerol (a) and
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The maximal rate of 1,3-PD production reached the highest value for 20 and 40 g/L
glycerol in the medium (Figure 5). Thus, the concentration of glycerol chosen for use in
further studies was 40 g/L. It is known that excessive glycerol concentration (70–90 g/L)
can result in a decrease in both productivity and yield [15,51]. The optimum glycerol
concentration in the medium for bacteria belonging to the Enterobacteriaceae family was
found to be between 20 and 60 g/L [7,52,53].
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3.2.3. Minerals Optimization—Central Composite Design

Based on the results of the initial screening with Plackett-Burman design, a central
composite design was developed for variables that were found to affect 1,3-PD production
significantly. The design matrix and the values of 1,3-PD concentration after 24 h of
fermentation (response) are given in Table 3. There was no 1,3-PD production in run
no. 2, where no magnesium sulfate was added and the highest concentration of cobalt
chloride was used. The highest 1,3-PD production was observed in media containing
both magnesium sulfate and cobalt chloride. This confirmed the positive interaction and
influence of the tested compounds on 1,3-PD production. Statistical analysis of variance
(ANOVA) was performed (Table 6) and the following Equation (2) was formulated:

(1,3-PD concentration) = 5.11439 − 0.016803 A + 20.20390 B + 0.54462 AB − 0.011040 A2 − 23.77220 B2 (2)

Table 6. Statistical analysis results according to ANOVA for the central composite design.

Source Coefficients of
Regression Equation SS df MS F-Value p-Value

model - 122.46 5 24.49 139.02 <0.0001
Intercept 5.11439 - - - - -

A—CoCl2 ·6 H2O −0.016803 0.23 1 0.23 1.33 0.2869
B—MgSO4 ·7H2O 20.20390 42.23 1 42.23 239.7 <0.0001

AB 0.54462 18.98 1 18.98 107.75 <0.0001
A2 −0.011040 3.37 1 3.37 19.11 0.0033
B2 −23.77220 39.96 1 39.96 226.81 <0.0001

Residual - 1.23 7 0.18 - -
Lack of fit - 1.03 3 0.34 6.81 0.0474

R2 = 0.99; Adj-R2 = 0.98; SS—sum of squares, df—degree of freedom, MS—mean square.

The factors A and B are specified in their real units. The model showed significant
positive linear effects for magnesium. An interaction between magnesium and cobalt was
found to have a positive effect of high significance, which indicates that both factors are
required for effective 1,3-PD production. The coefficients of quadratic variables, i.e., b11
and b22 in Equation (2), had both negative signs, indicating the existence of a maximum
point in the model. In Figure 6, the calculated response surface is shown. The analysis of
variance demonstrated that the presented model is statistically significant (p < 0.0001). The
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R2 value of 0.99 indicated that only 1% of the total variation is not explained by the model.
The adjusted R2 value of 0.98 is also satisfactory and confirms the significance of the model.
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Figure 6. Response surface for the 1,3-PD production according to the central composite design.

Equation (2) was used to predict the maximum value of 1,3-PD production, and thus
validate the model. The prognosed response was 10.86 g/L of 1,3-PD (confidence interval
from 10.44 to 11.28 g/L) with CoCl2·6 H2O and MgSO4 7H2O concentrations at 13.55 mg/L
and 0.58 g/L, respectively. All other factors (concentrations of glycerol, yeast extract,
(NH4)2SO4) were kept at their optimal levels determined in the previous stages of the study.
In three validating experiments, 1,3-PD concentrations of 10.86, 11.0, and 10.7 g/L were
obtained, confirming the model validity.

3.2.4. Addition of Organic Acids and Vitamin B12 to the Culture Medium

It is reported that the addition of organic acids (e.g., succinic acid, citric acid fumaric
acid) and vitamin B12 may benefit 1,3-PD production by Klebsiella oxytoca or
K. pneumoniae [34,54,55]. However, there is no information about the influence of the
above-mentioned substances on 1,3-PD production by C. freundii. For this reason, experi-
ments with the addition of vitamin B12 (5 mg/L), fumaric acid (25 mM), and the organic
acid mixture (fumaric acid (3.8 mM), citric acid (3.8 mM), and succinic acid (3.8 mM)) to
the fermentation broth were performed. Obtained results are presented in Figure 7.
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Figure 7. Effect of the addition of organic acids and vitamin B12 on metabolite production and
glycerol utilization by C. freundii AD119.

No significant increase in 1,3-PD production was observed in the cultures with organic
acids. The addition of vitamin B12 caused a significant decrease in 1,3-PD production
(from 19.25 ± 0.13 to 17.93 ± 0.37 g/L). These results are similar to the ones reported by
Jalasutram and Jetty [15] and Jun et al. [56]. The lack of a positive effect of vitamin B12 on
the process might have been a result of the ability of the strain to synthesize this vitamin
or the fact that the glycerol dehydratase of this bacterial strain is B12-independent [15]. A
sufficient supply of vitamin B12 with the yeast extract contained in the medium is another
possibility [56].

3.2.5. Fed-Batch Bioreactor Experiment

Following the complete optimization process, a fed-batch culture with C. freundii
AD119 was performed under the optimized conditions which yielded 41.7 g/L of 1,3-PD
in a 48-h fermentation (Figure 8). The obtained 1,3-PD concentration was relatively high,
which was the result of the feeding strategy. The glycerol supply rate was coupled to the
rate at which KOH was delivered since both substances were present in the solution used
for pH regulation. Acids constitute the main by-products of 1,3-PD fermentation, and their
level reflects the amount of substrate consumed. With the rate of glycerol supply coupled
with the rate at which the main by-products (acids) are formed, the system self-adapts
to the kinetics of bacterial metabolism. Such an approach prevents sudden variations in
substrate concentration over the course of the process (Figure 8). As evidenced by the
results, the ratio of KOH and glycerol amounts demands further optimization in order to
enable complete substrate utilization.

Lactic and acetic acids were the main by-products (both about 10 g/L). Ethanol and
succinic acid were also present in the fermentation broth, but at a lower level (both below
1 g/L). Qualitatively, such a profile of by-products is characteristic of C. freundii [7,11,57].
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The ability to ferment glycerol to 1,3-PD is a known feat among C. freundii strains. The
actual efficiency of this process is, however, dependent on the capacity of the strain itself
and the process conditions, which include medium composition. Over the years, many
studies of this bioconversion process have been performed in batch, fed-batch, immobilized,
and continuous cultures (Table 7). A fed-batch fermentation using C. freundii FMCC-B 294
(VK-19) that yielded 68.1 g/L 1,3-PD was reported, proving the potential of this species.
Our result, 41.7 g/L of 1,3-PD in fed-batch culture, indicates that further studies, including
the optimization of culture conditions, may lead to improved production of 1,3-PD by
C. freundii AD119.

Table 7. 1,3-PD production by C. freundii dependent on types of culture and strain.

No. Type of Culture Strain Concentration
of 1,3-PD (g/L) 1 Ref.

1 Batch C. freundii ATCC 8090 4.35 [11]
2 Batch (flask) C. freundii AD119 0–8.0 2 [25]
3 Batch C. freundii FMCC-B 294 (VK-19) 10.1 [58]
4 Immobilized C. freundii 11.3 [59]
5 Fed-batch C. freundii CF-5 11.8 [60]
6 Batch C. freundii Zu 12 [61]
7 Batch C. freundii K2 12.4 [61]
8 Batch: Membrane bioreactor C. freundii 12.4 [62]
9 Immobilized cell reactor C. freundii DSM 30040 16.4 [63]
10 Immobilized C. freundii 18.2 [59]
11 Batch (bioreactor) C. freundii AD119 23.3 [25]
12 Batch C. freundii 1.4–25.6 3 [57]
13 2-stage continuous C. freundii DSM 30040 41.5 [64]
14 Fed-batch C. freundii AD119 41.7 This work
15 Batch C. freundii FMCC-B 294 (VK-19) 45.9 [7]
16 Fed-batch C. freundii VK-19 FMCC-B 294 (VK-19) 47.4 [4]
17 Fed-batch C. freundii FMCC-B 294 (VK-19) 68.1 [7]

1 final (maximal) concentration of 1,3-PD was converted into unit g/L; 2 depend on the medium used; 3 depend
on the type of glycerol used and its pretreatment.

3.3. Artificial Neural Network Model

Modeling biological processes has always been a challenge for scientists, as simu-
lating dynamic and continuous processes with a single mathematical equation that must
fulfill certain assumptions is not an easy task. The use of intelligent simulation in the
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design and optimization of biological processes offers new possibilities related to the fast
prediction of microbial activity through computer processing, without or before micro-
bial detection [65]. Artificial neural networks are one of the machine-learning techniques
used in such applications. They enabled the prediction of the population dynamics of
Pseudomonas aeruginosa in Frankfurter sausage containing Satureja bachtiarica extracts [26].
Ebrahimi et al. [27] compared ANN and multivariate regression (MLR) models for the
prediction of Azotobacteria population in soil under different land uses. The performance
of ANN was found to be better than MLR. In another study, ANNs and kinetic equations
were used to model and simulate Streptomyces peucetius var. caesius N47 cultivation and
ε-rhodomycinone production, and ANNs were found to be the superior approach [24].

In this study, ANNs were used to develop a model for predicting the growth of
C. freundii population and 1,3-PD production as a function of the type of glycerol source,
glycerol concentration in the culture medium, and incubation time (ANN-MCf_PD). De-
termination of a neural network model is a process that requires experience. The process
of ANN structure development includes the selection of an appropriate structure of the
hidden layer in the network topology, the definition of a transfer function in its neurons,
and the determination of both values of the transfer function coefficient and the values of
synaptic weights and biases (ANN model parameters). A total of 40,000 networks were
tested during the model design process. They differed in the number of neurons in the
hidden layer and the activation functions operating in them. The predictive quality of
the constructed networks was assessed on the basis of the values of learning, test, and
validation errors. Changes in the average value (out of 1000) of the mentioned network
errors are shown in Figure 9 as a function of the number of neurons in the hidden layer
and with respect to the type of their activation function.
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neurons in the hidden layer equipped with an activation function in form of (a) a linear (Lin), (b) an
exponential (Exp), (c) a logistic function (Log), and (d) a hyperbolic tangent (Tanh).
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The presented graphs depict that the networks with the Lin activation function were
characterized by the highest and constant errors regardless of the network topology. These
outcomes suggested that mentioned structures are not suitable to simulate the growth of
C. freundii population and the production of 1,3-PD. Significantly better results were ob-
tained for networks containing non-linear activation functions (Log, Tanh, and Exp) in the
neurons of the hidden layer. The common feature of these three groups of networks was the
initial decrease in the value of all errors, and then their stabilization at an almost constant
level for networks containing eight and more neurons in the hidden layer. The final values
of computed errors for the networks, which contained Log and Tanh activation functions in
the neurons of the hidden layer, were at comparable levels. In the case of the networks with
the Exp transfer function, the values of the analyzed errors in hidden neurons were slightly
higher. When developing a neural network, it is important to remember that to ensure
accurate simulations and prediction of the ANN model, the network topology cannot be
too small, as it may constitute a powerless structure for a given modeling problem. On the
other hand, too excessive network topology usually leads to “memorization” of individual
cases and poor ability to generalize when working on new data [66]. Taking into account
the above considerations, further research on designing the structure of the ANN model
for the development of the C. freundii population and the production of 1,3-PD was carried
out on the basis of the networks, in which the hidden layer consisted of no more than eight
neurons. The network with the best predictive quality, expressed as the lowest sum of
learning, test, and validation errors, was adopted as the ANN-MCf_PD. The metrices of
this MLP network model are depicted in Table 8. The selected network contained eight
neurons in the hidden layer equipped with Tanh as a transfer function, and it constituted a
compromise between simplicity of structure and generalization capability.

Table 8. Basic information on the structure and values of learning, test, and validation error computed
for MLP neural networks adopted as the neural network model to predict the C. freundii population
and the production of 1,3-propanediol on glycerol-based media.

Network Parameters
Artificial Neural Network

MLP 3-8-2

Number of observation points (total) 308
Learning 216

Test 46
Validation 46

Activation functions in hidden layer Tanh
Activation functions in output layer Lin

Learning error 0.350
Test error 0.233

Validation error 0.338
Learning accuracy 0.987

Test accuracy 0.990
Validation accuracy 0.977

The predictive effectiveness and the possibility of practical application of the selected
ANN model were assessed using statistical indicators computed for all data sets (training,
test, and validation). Figure 10 shows good agreement between the model predictions
and the experimental points, which was confirmed by the high values of R2 (Table 9).
Additionally, low values of both MAE and RMSE for training, test, and validation data sets
showed the high-performance accuracy of the model. It is worth noting that an extremely
important aspect related to the application of the model is its performance when operating
on new process data, unrelated to the model construction. Hence, the values of the used
indicators, determined on the basis of validation data set, confirmed not only the high
precision of the prediction, but also revealed the high generalization ability of the developed
ANN model.
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Figure 10. A comparison of the artificial neural network model (ANN-MCf_PD) predictions against
the experimental data describing the growth of C. freundii population and the production of 1,3-
propanediol on pure (a,b) and biodiesel-derived waste glycerol (c,d), respectively.

Table 9. Values of indicators used to evaluate performance of the ANN-MCf_PD model to predict the
growth of C. freundii population and the production of 1,3-propanediol on used glycerol-based media
computerized for all data sets: L—learning, T—test, V—validation, F—full.

Statistical Index
Data Set

L T V F

C. freundii population level

Coefficient of determination (R2) 0.971 0.976 0.931 0.967
Root mean square error (RMSE) 0.018 0.120 0.198 0.143

Mean absolute error (MAE) 0.091 0.088 0.141 0.098

1,3-propanediol concentration

Coefficient of determination (R2) 0.976 0.982 0.979 0.978
Root mean square error (RMSE) 0.826 0.672 0.798 0.801

Mean absolute error (MAE) 0.570 0.475 0.589 0.559

The obtained results suggest that the elaborated ANN-MCf_PD model can be a useful
tool for simulating the process of fermentation of glycerol-based substrates by C. freundii. It
could be applied for the determination of the suitability of wastes containing this compound
for the production of 1,3-propanediol.

4. Conclusions

In the presented study, medium components that play significant roles in shaping
the efficiency of glycerol conversion to 1,3-PD in C. freundii AD119 were identified and
optimized with the use of one-factor-at-a-time (OFAT) and two-step statistical experimental
design (Plackett–Burman and central composite design [CCD]) approaches. Among the
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studied mineral components, MgSO4 and CoCl2 were found to have the greatest impact.
Their respective optimal concentrations, found using CCD, were 13.55 mg/L (CoCl2·6H2O)
and 0.58 g/L (MgSO4·7H2O). Yeast extract has shown to be the best nitrogen source. It
was, however, possible to partially replace it with (NH4)2SO4. A partial substitution of
glycerol with other carbon sources resulted in decreased process effectiveness. Moreover,
the developed ANN-MCf_PD model was able to predict the growth of C. freundii and 1,3-PD
production in batch cultivation in media containing both pure and crude glycerol in a wide
range of concentrations. The obtained results prove that ANN models have the potential to
become a useful decision-making tool for supporting the design and control of the 1,3-PD
production bioprocess. This research fills an important gap, as no comprehensive reports
exist on the nutrient and mineral requirements for 1,3-PD production by C. freundii. It
also indicates that with further optimization, the bioconversion of glycerol to 1,3-PD by
C. freundii AD119 can be effectively improved. With an optimized medium, it seems natural
that other culture conditions should also be taken into account in the future.
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