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Abstract: In spite of increasing point density and accuracy, airborne lidar point clouds often exhibit
point density variations. Some of these density variations indicate issues with point clouds, potentially
leading to errors in derived products. To highlight these issues, we provide an overview of point
density variations and show examples in six airborne lidar point cloud datasets that we used in our
topographic and geospatial modeling research. Using the published literature, we identified sources
of point density variations and issues indicated or caused by these variations. Lastly, we discuss the
reduction in point density variations using decimations, homogenizations, and their applicability.

Keywords: airborne lidar; laser scanning; point density pattern; nonuniform point distribution;
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1. Introduction

Point clouds acquired by airborne lidar have transformed how Earth’s ground surface,
vegetation structure, and urban environments are mapped and analyzed. This has led
to major advances in terrain modeling, flood prediction, coastal monitoring, forestry and
ecosystem studies, and many other disciplines [1–4]. As with all data collection methods,
the process of acquiring point cloud data introduces inconsistencies and errors. Although
recent technological advancements aim to minimize the measurement errors, various issues
are still present in current datasets. Additionally, datasets captured by legacy systems
continue to be a valuable source for many studies detecting long-term changes of the
environment [5–8]. It is, therefore, important to understand errors and anomalies in data
acquired by both new and older data acquisition systems to ensure the proper processing,
harmonization, and interpretation of point cloud datasets.

Although errors in lidar point clouds were extensively studied [9–14] and local varia-
tions of point density were recognized in the literature [15–21], there is less emphasis on
studying these density variations and their potential impact on derived products [22–27].
Understanding point density variations is important, as lidar point cloud density mea-
surements are used in numerous applications, such as estimating biomass [28], forest fuel
mapping [29–31], subcanopy solar radiation modeling [32], and mapping forest struc-
tures [3,33–36]. Furthermore, products derived from point clouds such as 3D meshes and
digital elevation models (DEMs) are influenced by the presence and absence of points [37].
Lastly, density anomalies may be an indicator of errors in point elevations and issues with
other properties of the point cloud, such as missing or vertically unaligned swaths.

In this work, we provide an overview of point density variations and associated errors
in airborne lidar point clouds, and discuss their impact on the derived products. We
demonstrate the variations using six point cloud datasets (Table 1) used in our topographic
and geospatial modeling research [5,33,38–41]: North Carolina (NC) Floodplain Mapping,
2015 [42], Wake County, 2013 [43], Nantahala 2009 by the National Center for Airborne
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Laser Mapping (NCALM) [44], and three coastal mapping datasets by NOAA, NASA, and
USGS from 1999, 2003, and 2008 [45–47]. We reference the current literature to support
the examination of the datasets, and to identify potential sources of density variations.
Lastly, we discuss decimation and homogenization approaches for reducing point density
variations and their appropriate use.

Table 1. Overview of the six airborne lidar datasets used for demonstrating density variations. All
datasets are for parts of North Carolina (NC), USA.

Name Year Area Collected by Reference

NC Floodplain Mapping Program 2015 Selected counties in Piedmont State of North Carolina [42]
Wake County 2013 Wake County Wake County government [43]
NCALM 2009 Nantahala National Forest NCALM [44]
NOAA/NASA/USGS 1999 Coast of NC NOAA, NASA, USGS [45]
NASA/USGS 2003 Cape Hatteras NASA, USGS [46]
NOAA 2008 Coast of NC and Virginia NOAA [47]

2. Point Density Variations

In an idealized case [48–50], an aircraft flies at a constant speed, direction, and altitude
above ground level with zero roll, pitch, and yaw, and a known position. A line scanner
aboard the aircraft scans the mapped area in the direction perpendicular to the line of flight.
The scanner instantly captures a complete scan line with constant spacing between the
points on the ground. The speed of the aircraft is constant to ensure that the point spacing in
the scan line is the same as the spacing between the scan lines (Figure 1). Lastly, the aircraft
flies in straight parallel lines separated by the width of the scan line (swath or flight strip),
so that the individual swaths have minimal overlap, and cover the surveyed area without
gaps. For a flat terrain without vegetation or other objects, the result would be a regular grid
of points. However, none of these idealized procedures is fulfilled in real world conditions.
Scanner type, flight plan execution, environmental conditions, data georeferencing, and the
presence of vegetation and ground structures all influence airborne lidar data acquisition
and the resulting variations in point density. The following paragraphs describe common
density variations and related errors for airborne lidar point clouds.

Flight direction

Scan direction

Swath
width

Figure 1. Conceptual illustration of airborne lidar scanning. Scan direction (scan line) is typically
perpendicular to the flight direction. The area covered during scanning while an aircraft flies in a
constant direction is called the swath or flight strip.

2.1. Scan Patterns

The spatial pattern of points is largely dependent on the type of scanner (Table 2,
Figure 2). Rotating mirror scanners and oscillating mirror scanners produce parallel
scan lines (assuming constant flight direction) or a zigzag line [51]. While parallel scan
lines result in equal point density (Figure 2a,b), a zigzag line always results in variable
point density (Figure 2c). Fiber scanners capture the whole scan line at once, producing
parallel scan lines that are perpendicular to the flight direction, thus potentially leading
to more uniform point distribution [49,52]. Scanners with conical (elliptical) scan patterns
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(Figure 2d), such as Palmer scanners and some single-photon scanners, measure with a
constant scan angle in all directions [53–55]. Consequently, each location is scanned twice
from different angles, and the conical pattern causes very high density on the edges of
each swath unless the scanner accounts for that by changing the speed of scanning. The
1999 dataset by NOAA/NASA/USGS [45] had several overlapping swaths, but clearly
shows a conical (elliptical) pattern and the resulting high point density on the swath edges
(Figure 3).

(a) (b) (c) (d)

Figure 2. Scan patterns for basic types of sensors [49,52,53]: (a) line scanner or fiber scanner pattern;
(b) rotating polygon or rotating mirror pattern; (c) oscillating or swinging mirror pattern; and
(d) conical, elliptical, or Palmer scan pattern.

Figure 3. Point cloud from several overlapping swaths with an elliptical scan pattern (two swaths in
the middle of the stripe of points). Elliptical scanning causes a higher point density at the edge of
each swath. Dataset: NOAA/NASA/USGS 1999 [45].

Table 2. Point density variations related to scanner and flight.

Source of Density Variation Possible Effect on Point Density

Scanner type Change in overall pattern
Variable line scanner point spacing Lower or higher density along the scan line
Variable speed or pitch Stripes of higher and lower density in the flight direction (banding)
Variable altitude Higher or lower overall density
Altitude change preventing swath overlap Gaps without points
Roll change preventing swath overlap Gaps without points
Missing or additional swath due to navigation error Gaps without points or higher point density
Missing or additional swath due to error in flight planning Gaps without points or higher point density

2.2. Variations Along Scan Line

Point spacing in the direction of a scan line is influenced by the inner working of the
scanner and is another source of scanning-related point density variations (Table 2). Older
line scanners usually scan in equal angle steps, which results in higher point density in the
middle of the scan line, and lower density toward the ends of the scan line [49]. On the
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other hand, newer scanners can achieve equal point spacing in the middle of the scan line,
but anomalies can still occur at the end of a scan line due to the acceleration of the inner
mechanical parts of mirror scanners. For example, the NC Floodplain Mapping Program
dataset exhibited higher point density at the end of the scan line (Figure 4).

(a) (b)

Figure 4. For some scanners, point density (a) increases towards the end of the scan line and (b) peaks
at the very end. The extent of (b) is highlighted in (a). Only points with specific source ID, scan
direction, and user data field are displayed to highlight the scan line. Dataset: NC Floodplain
Mapping Program 2015 [42].

2.3. Banding

Lidar scanners are usually synchronized with the speed of the aircraft to achieve
constant density in all directions [56]. However, variable aircraft speed due to wind, when
not accounted for by the scanner, results in stripes of higher and lower densities along the
flight line [56]. These periodical changes in densities are called banding [37] and can be
observed easily by computing the number of points per grid cell. Such an examination
of the NCALM and NOAA datasets shows strong banding effect (Figure 5). To mediate
speed-related banding, helicopters may be used to obtain high-resolution coverage with
more uniform distribution of points because they can more easily control their speed [57].

(a) (b)

Figure 5. Variable aircraft speed and pitch results in areas with higher and lower point density along
the flight line (here approximately north-south direction). Point density is expressed as the number
of points per grid cell at 6 m resolution (a) and 5 m resolution (b). Darker areas indicate lower
point density while lighter areas indicate high density. Datasets: NCALM 2009 [44] (a) and NOAA
2008 [47] (b).

Another cause of banding is a change in the pitch of the aircraft. In addition to irregular
point density, this can also cause errors in measured elevation [37]. When the pitch value
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recorded by the navigation system is different from the actual pitch, the resulting point is
assigned an incorrect position, causing artificially undulating terrain. To determine if the
banding is just in density or also in elevation, the DEM can be compared to another DEM
or a profile of the point density and the DEM can be examined.

2.4. Variations Due to Aircraft Altitude Variations

Point density is also influenced by the altitude of the aircraft above ground or sea
level [58]. A lower altitude causes smaller point spacing in the scan line, resulting in
variable point density when the aircraft altitude varies during the flight. Additionally, too
low altitude may cause a swath to be too narrow to overlap with or touch an adjacent
swath. For some scanners, such as those with an elliptical scan pattern, changes in altitude
also influence spacing in the flight direction. For line scanners, the dynamically adjusted
speed of scanning based on the altitude can mitigate density variations in all directions.

In mountainous areas, the changes of terrain elevation together with a constant altitude
(height above sea level) of the aircraft cause variable densities in the higher and lower
situated areas when the sensor is not adjusted. Similarly, steep slopes result in fewer points
capturing the surface. Although the horizontal density stays the same in this case, there are
fewer points covering a given surface in a sloped area in comparison to a flat area.

2.5. Swath Overlaps

Airborne lidar point clouds are collected in parallel swaths (passes). To ensure that
there are no gaps in between swaths, individual swaths usually overlap, as in the Wake
County [43] dataset (Figures 6 and 7). Another reason for collecting overlapping swaths is
to mitigate errors introduced by the acquisition of the position and orientation of the aircraft,
which are used to derive point coordinates. Collecting swaths with overlap generates redun-
dant information that can be used to align individual swaths by eliminating the horizontal
and vertical time-dependent shifts [48]. These shifts, occurring due to systematic naviga-
tion system errors, can then be minimized via, for example, least-squares matching [56,59].
However, swath overlaps are a significant source of point density variations [60,61]. There-
fore, overlaps are often removed from the dataset, especially if classification is performed,
for example, classified ground points in the Wake County dataset do not include any swath
overlaps (Figure 7). Although overlap removal eliminates the issue of higher point density,
the new issue of having abrupt changes in the point density patterns arises.

For vegetation-related metrics, such as the subcanopy solar radiation model [32],
any variable point density at the swath overlap may be an issue. For example, the
NCALM dataset had two sets of north–south swaths overlapping each other (Figure 8). As
a result, the dataset contains areas with high point density caused by two or more swaths
overlapping and areas with low point density caused by a gap in between the swaths in
one of the sets. Derived skewness of point elevations, used in forestry applications [62],
then shows both actual features (e.g., vegetation types) and artifacts representing the gaps
(Figure 8).

For terrain reconstruction, an abrupt change in density between two swaths may
highlight an abrupt change in point elevations that are a result of uncorrected errors in
positioning [63]. A positioning error that was not corrected by aligning swaths resulted
in a flawed terrain reconstruction using the Wake County dataset. In the dataset, an
abrupt change in elevation corresponds to an abrupt change in the point density pattern
and is visible on the shaded relief model and when the dataset is compared with the
NC Floodplain Mapping Program dataset (Figure 9). This is an issue for further time
series analysis because it prevents direct comparison of time steps. The flawed terrain
reconstruction causes issues for further analysis. For example, simulated water flow may
follow the abrupt change in elevation instead of the actual terrain (Figure 9c).

Furthermore, the width of swath overlaps may vary. While modern scanning systems
try to adjust the scan line and apply on-board checks, changes in the aircraft’s altitude and
roll, and navigation errors may lead to overlap width variations or gaps (Table 2). Lastly, a
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difference in the number of swaths can cause point density differences between otherwise
comparable datasets [64].

Figure 6. Example of a complex point distribution. The area is completely covered by one swath
and partially covered by another. The border of the second one reveals the doubled scan pattern
and higher density at the end of the scan line. There are bands of higher and lower densities in the
direction of the flight (approximately diagonal direction). Other density variations are related to
vegetation and the small area with missing points on the left is caused by a water body. Dataset:
Wake County 2013 [43].

(a) (b)

Figure 7. Swath overlap as the main source of variation in point density. (a) Overlap of two swaths
in red and orange around the image diagonal. (b) An abrupt change in the pattern that follows
a straight line (close to image diagonal) marks the transition between swaths and removed swath
overlap in classified ground points. Additionally, both figures showed a Moiré effect in the point
density. Figures show the number of points per grid cell at 1 m resolution. Dataset: Wake County
2013 [43].
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(a) (b) (c)

Figure 8. Places with low point density cause differences in skewness of point elevations. (a) Larger
area showing two sets of north–south swaths. Color represents the number of points per square
meter. (b) Dark violet areas represent places with low point density (<10 points per square meter).
(c) Skewness of point elevations. Some areas with zero skewness (in white) are associated with areas
with low point density. Most prominent places are marked by red arrows. Skewness is smoothed
using circular 23x23 moving window to remove local extremes. Dataset: NCALM 2009 [44].

(a) (b) (c)

Figure 9. Error in swath elevation registration (a line close to the image diagonal): (a) Split view
between point density and shaded relief (1 meter resolution, year 2013). (b) Elevation difference in
meters; year 2015 minus year 2013. (c) Water discharge in m3 s−1 simulated by SIMWE [65] with
default parameters. Datasets: Wake County 2013 [43], NC Floodplain Mapping Program 2015 [42].

2.6. Moiré and Corduroy Effects

When the number of points per grid cell is computed to spatially analyze the point
density, the overlap of the grid pattern and the point pattern may cause a Moiré effect
(pattern) in the resulting image of point density [66–68] . Wake County dataset shows
the Moiré effect in the point density of classified ground points (Figure 7b). Additionally,
when two alternating series of scan lines overlap as a result of swath overlap, scanning
back and forth with a line scanner, or doubled scan pattern, a detailed digital elevation
model contains stripes of higher and lower elevation when the points are not accurately
georeferenced [66,69,70]. This Corduroy effect can be observed in the NASA/USGS dataset
where two sets of scan lines cause corduroy lines in the east-west direction (Figure 10).
While the corduroy effect can be grouped together with the Moiré effect into oscillatory
patterns [50], unlike Moiré, the corduroy effect is associated with elevations of points rather
than just their positions in relation to a 2D grid.
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(a) (b)

Figure 10. Corduroy effect visible on (a) the interpolated DEM visualized in 3D and (b) the source
point cloud (red) overlaid with a DEM-derived skyview factor visualization [71] that shows the low
places between corduroy ridges in dark gray. The DEM was interpolated at 0.5 meter resolution.
Dataset: NASA/USGS 2003 [46].

2.7. Surface Material Properties and Obstructions

Other commonly recognized sources of lower densities or gaps in point clouds are
signal noise, surfaces absorbing the pulses, and small obstructing objects such as small
details on building roofs [72]. Depending on the wavelength used by the lidar sensor, some
surfaces, mainly water and dark asphalt, return a weaker signal or do not return any pulses,
which results in lower point return intensities or no recorded points at all. The surfaces
that are most likely to suffer from these issues are water bodies, wetlands, and some types
of roads and roofs. Examples from the Wake County dataset show almost no points for a
water body and reduced number of points for a specific building roof (Figure 11).

(a) (b)

Figure 11. Areas without points caused by (a) a water body and (b) by a dark asphalt roof. Dataset:
Wake County 2013 [43].

2.8. Variations Due to Vegetation

Density and spatial distribution of points in vegetated areas typically differ from
nonvegetated areas due to occlusion or multiple returns in the canopy as opposed to a
single return from the bare ground [53,62]. For example, the NC Floodplain Mapping
Program dataset had a regular point pattern in nonvegetated areas; in vegetated areas,
distribution is irregular, and classified ground points have lower density (Figure 12).
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(a) (b)

Figure 12. Horizontal point pattern in vegetated and nonvegetated areas: (a) Points from all returns
had a regular pattern in open areas combined with irregular distributions in the vegetated areas.
(b) Classified ground points in areas without vegetation had the original pattern, while in the areas
with vegetation the distribution is much sparser. Dataset: NC Floodplain Mapping Program 2015 [42].

Point density is also variable in the vertical direction depending on several factors
related to the structure of vegetation (which can be used for classification). For example,
a planted forest is characterized by significantly skewed distributions in comparison to
a natural one [73] that is visible on a transect from the NC Floodplain Mapping Program
dataset (Figure 13). In the natural forest, lidar pulses penetrate the canopy and reveal
complex structure and understory (Figure 13, left). In the planted forest, most of the
points are concentrated in the canopy suggesting thick canopy and no understory, given the
presence of the ground points (Figure 13, right). This difference can be used for classification
to distinguish these two forest types. The forest type also influences the wintertime and
summertime rates of penetration through the canopy [48]. Lastly, a so-called blind zone
may cause gaps in vertical point distribution [63]. A blind zone is a distance where no
subsequent returns are recorded after a previously recorded return due to a limited response
time of the detector (Figure 14). For example, lidar sensor Leica ALS80-HP reports a blind
zone distance of 2.8 m [74].

(a)

(b)

Figure 13. (a) Vertical distribution of lidar points in natural forest (left) and a planted forest (right) in
a 220 m long and 30 m wide transect of a forested area. (b) Skewness of point elevations along the
same transect without ground points. Dataset: NC Floodplain Mapping Program 2015 [42].
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Figure 14. The blind-zone effect, i.e., no points recorded after a given record, may cause the omission
of points in certain parts of the vegetation or on the ground. Emitted pulse penetrates the canopy
and produces returns. The first return is from top of the canopy and is registered by a detector. Then,
no further returns from the canopy are registered until the detector is ready to record another return
(top gray rectangle). When the detector is ready to register again, the second return is recorded from
the lower parts of the canopy. Again, no further returns from the canopy or ground are registered
because the detector is not ready to record (bottom gray rectangle).

2.9. Ground Points

The NC Floodplain Mapping Program dataset demonstrated that points classified as
ground may have much higher variability in both pattern and overall density compared to
the variability of all points in the point cloud. (Figure 12). Depending on the vegetation
density, fewer pulses penetrate the vegetation all the way to the ground, resulting in lower
ground point density in vegetated areas than that in nonvegetated areas [48,53]. The gaps
may also be caused by buildings or objects that do not reflect the pulses. The interpolation
of these gaps to derive a digital terrain model (DTM) representing ground surface results in
smooth areas where the level of detail is generally lower than that in areas with full point
coverage (Figure 15). Additionally, ground points classified by data providers often have
points from overlapping swaths (scan lines) removed as in the case of Wake County dataset
(Figure 7). Together with other ground point density variations, such as abrupt changes
(Figure 9) or banding (Figure 5), occlusion-caused gaps (Figure 15) may indicate an issue
with accuracy of resulting DTMs (Table 3).

(a) (b)

Figure 15. Lower density of ground points in vegetated areas or lack of points in wet areas usually
causes these areas to be smoother than the rest of the area when points are interpolated into a DEM:
(a) Lower density of all return points around a stream and in a vegetated, supposedly wet area
(marked in blue). (b) Classified ground points (red) missing in some areas completely. The influence
on the DEM becomes most apparent when the DEM is used to derive additional products such as the
shaded relief here. Dataset: NC Floodplain Mapping Program 2015 [42].



Sensors 2023, 23, 1593 11 of 18

Table 3. Errors in interpolated DEM, their relations to density, and their causes.

Cause of DEM Error Possible Indication in Density or Pattern Effect in DEM

Occlusion, low reflectivity Gaps, very low density Smooth areas (missing information)
Pitch changes and recording errors Dense stripes Elevation banding (waves)
Vertically unaligned swaths Abrupt changes in pattern Abrupt changes in elevation (break lines)
Vertically unaligned scan lines Moiré effect, double scan lines Corduroy effect (stripes)

2.10. Redundant Points

Point redundancy, i.e., whether certain points in a dataset are needed, depends on
a particular application rather than being an inherent property of a point cloud. Point
redundancy can be a result of several aforementioned local density variations such as scan
line anomalies (Figure 4), banding (Figure 5), and swath overlaps (Figure 9). Additionally,
modern sensors generate point cloud densities that exceed the needs of most applications
resulting in evenly distributed redundant points, for example, a Geiger-mode sensor may
produce 25 points per square meter [54]. Lastly, when combining multiple adjacent point
clouds with inconsistent point densities into one spatially continuous dataset or multiple
overlapping point clouds with inconsistent densities into a time series, points in higher
density point clouds would be considered redundant.

For the creation of DTMs, the minimal point density depends on the desired resolution
of the surface [75]. Even though high-precision DTMs generally do not need the full density
of the current point cloud [24,40,76–79], redundant points do not negatively influence the
resulting DTM. However, redundant points can significantly increase the processing time
or storage requirements [80–82], causing practical issues for many applications.

3. Reducing Point Density Variations in Point Clouds

Point density variations in point cloud datasets, including point redundancy, can be
mitigated or removed using various decimation and homogenization techniques. While
decimation removes redundant points, homogenization makes point distribution more
uniform. Both approaches are commonly used during point cloud processing to improve
the point cloud properties for a particular application.

3.1. Applicability of Decimation and Homogenization

Decimation, also referred to as thinning, downsampling, or simplification, is a reduc-
tion in the number of points in a point cloud that preserves selected properties of the point
cloud. While many decimations lead to homogenization of the point density across a point
cloud, full or true homogenization may include adding points where density is low, i.e.,
filling. Decimations and homogenizations can be applied to one or more point clouds to
harmonize point densities across a time series or spatially adjacent datasets.

Given the prevalence of point density variations, algorithms working with point clouds
should consider the effect of these variations [72,83]. However, not all applications can or
need to remove the density variations from the point cloud. For example, such metrics
as above-ground biomass (AGB) estimates [28], leaf area density (LAD) distribution [35],
subcanopy solar radiation model [32], and the analysis of point density percentiles used as a
measure of crown density [36] would be negatively affected by adding or removing points.

Decimation is advantageous for deriving DTMs and other products from point clouds
at different resolutions in order to reduce processing time and computing resources
needed [81,84,85]. Additionally, decimation can remove density variations resulting from
swath overlaps. On the other hand, deriving high resolution digital surface model (DSM)
and reconstruction of 3D objects, such as buildings or full 3D models of trees [86,87], may
benefit more from higher point density than the creation of (usually smooth) DTMs.

For point cloud classification, high point density is usually advantageous to distinguish
ground surface points from points that represent returns from trees, buildings, and other
objects [9,14,88], and to preserve sharp edges of the objects such as building roofs.
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3.2. Decimation and Homogenization

Decimation techniques range from simple ones, such as random sampling, to complex
decimations based on shape of the objects described by the point cloud [82,89–96]. Random
sampling can be based on the ordinal number of a point within the point cloud (count-based
decimation). The resulting point cloud contains only every n-th point, but the overall point
distribution remains the same; possibly preserving some of the variations such as higher
density at the end of scan lines (Figure 16b). This technique works well for lidar point
clouds when points are ordered by collection time and are used for creation of DTMs [97,98].

(a) (b)

(c) (d)

Figure 16. (a) Point cloud decimated using (b) count-based decimation keeping 1% of points (pre-
serving every 100th point); (c) grid-based decimation preserving one point per 5 meter grid cell;
(d) grid-based decimation with snapping to grid using the same 5 meter grid. Dataset: Wake County
2013 [43].

Grid-based decimation (Figure 16c) is based on binning of the points into a 2D or 3D
raster (grid) and is similar to creating a raster image from a point cloud (as opposed to
creating a subset of a point cloud). Decimation can also be based on dividing space using
kd-trees, quad-trees, oct-trees, or Voronoi diagrams [99–101]. These decimations typically
work within the neighborhoods of the points and take into account distances between the
points, size of the neighborhood, or a number of points in the neighborhood. At the cost of
higher complexity, algorithms focused on surfaces and curvatures better preserve objects
represented by the point cloud [61,95,102].

Many decimation techniques, such as grid-based decimation, aim at the homogeniza-
tion of the point density by, e.g., snapping to a grid (Figure 16d). However, decimations
can make the distribution of points more regular only in the areas with redundant points.
For full homogenization, resampling based on regular grids can add points to areas with
low point density [100,101,103].

3D raster (grid) creation or space voxelization, i.e., replacing groups of points by 3D
cubes or single points, is used by some 3D metrics and object reconstruction methods to
remove redundant points while characterizing, e.g., forest canopy fuel properties [104],
internal patterns of vegetation [33], fine-scale bird habitat [105], and detailed tree mod-
els [106,107]. These methods often use relative point counts based on absolute point counts
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in the neighborhood [3,40], thus reducing the overall data and potentially reducing the
influence of variable point density in the point cloud.

4. Conclusions

Despite the advancements in airborne lidar technology, different types of point density
variations and related errors are common in currently used datasets as the cost of equip-
ment and repeated airborne surveys remains high. To bring attention to these issues, we
provided an overview of the different types of density variations that may indicate errors
in the acquired data and may lead to artifacts or distortions in the derived products. We
demonstrated point density variations and related artifacts by examples from six point
cloud datasets and by referenced literature. Further, we discussed how density variations
can be reduced in a point cloud by various decimation and homogenization techniques,
along with the limitations of those methods.

While some authors include point density analysis [23,25,108,109] or take into account
local density variations when processing lidar point clouds [87,103,110–115], our overview
further highlights the importance of point density analysis as a starting point for studies
using lidar point clouds. Special care should be given to point clouds used as input
for analytical methods that are highly influenced by point cloud density, such as many
vegetation-related metrics.
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