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Abstract: Frequency lock-in-induced deadband phenomena are major problems of ring laser gyro-
scopes (RLGs), which deteriorate linear responses to changes in the applied rotation rate. In this
work, the frequency lock-in phenomenon occurring in the RLG was successfully investigated by
compensating for the Sagnac effect through frequency analysis using a newly defined error function.
Integrative and generalized viewpoints from the analyzed results provide new possibilities for rele-
vant performance improvements of optical gyroscopes, as well as a deeper understanding of locked
states in principle aspects.

Keywords: Sagnac interferometry; ring laser gyroscope; frequency lock-in; deadband; Sagnac ef-
fect compensation

1. Introduction

The ring laser gyroscope (RLG) is a representative angular velocity sensor [1] along
with the other modern gyro technologies based on such as the optical fiber interferom-
eter [2], the semiconductor waveguide ring resonator [3] or the microelectromechanical
systems (MEMS) [4]. It is widely used in various fields, such as inertial systems that require
precision performance at the navigation level. To guarantee the precise performance of an
RLG, it is necessary to identify performance-related error factors and find a way to solve
them. When a rotational physical quantity below a certain threshold is applied to the RLG,
the frequency difference between the light beams traveling in the clockwise (CW) and coun-
terclockwise (CCW) directions is negligible, known as the frequency lock-in phenomenon of
the RLG. It is the most important error factor affecting performance, and finding a solution
has been a major part of the efforts toward RLG development. To minimize the error factor
due to frequency lock-in, a dithering technique that mechanically applies an alternating
rotational physical quantity to the ring laser gyro body has been proposed and applied
extensively and successfully [5–11]. However, based on the results of previous studies,
when the frequency lock-in width is relatively large, or there is a restriction when applying
a fast and strong dithering force, it remains a challenge to secure precise performance
despite applying the dithering technique. Therefore, it is essential to find a new method
based on a deeper understanding of the frequency lock-in phenomenon to improve the
performance of the RLG.

In this study, a new error function was defined through the lock-in equation to ex-
plain the frequency lock-in phenomenon as well as the mechanism of the error function
compensating for the Sagnac effect occurring in proportion to the rotational input angular
velocity at the RLG output level. The results of numerical experiments to confirm this
relationship were presented. This analysis method enabled a deeper understanding of the
field of frequency lock-in and relevant nonlinear phenomena at a fundamental level; it can
simultaneously contribute to finding new methods for improving the performance of the
RLG in a more generalized category.
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2. Sagnac Effect for the RLG

The operating principle of an optical gyro, such as a ring laser gyro or fiber-optic
gyro, is based on the Sagnac effect [8,12–14]. Two light beams traveling in the CW and
CCW directions along a circular optical path from the starting point meet exactly at the
starting point in a stationary state where rotation is not applied. By contrast, when rotation
is applied to an object, including a circular optical path, as expressed in Equation (1), a
difference in the round-trip optical path proportional to the applied rotational physical
quantity occurs. Unlike in the stationary state, the light beams meet at a point other than
the starting point.

∆l =
4πρ2Ω

c
, (1)

where ∆l is the round-trip optical path difference; ρ is the radius of the circular beam path;
Ω is the angular velocity; and c is the speed of light. If the Sagnac effect is generalized
to a structure in the form of an arbitrary closed optical path rather than an ideal circular
optical path, it can be verified that the round-trip optical path difference owing to the
rotational physical quantity increases in proportion to the area enclosed by the closed path,
as expressed in Equation (2).

∆l =
4Ω·ẐA

c
, (2)

where A is the area enclosed by the light path and Ẑ is a unit vector normal to the surface of
the interferometer. Particularly, in the case of an RLG having the form of an active resonator,
a difference in the effective resonator length occurs because of the rotation applied between
the beams propagating in the CW and CCW directions. Therefore, when the laser resonance
condition is maintained in the RLG, an angular frequency difference a occurs between
the two beams traveling in opposite directions owing to the Sagnac effect, as expressed in
Equation (3).

a =
8πAΩ

Lλ
, (3)

where L is the perimeter of the light path and λ is the wavelength of the laser light.

3. Frequency Lock-In Dynamics in the RLG

The main cause of the frequency lock-in phenomenon is backscattering from the
mirrors that constitute the ring laser. If there is a backscattering component in the laser
resonator, the frequency difference between the beam traveling in the CW direction and
the beam traveling in the CCW direction in the ring laser optical path cannot be expressed
simplistically by Equation (3), and a theoretical analysis considering the cross-coupling
characteristics is required. At present, the mathematical theory explaining the frequency
lock-in phenomenon of the RLG is well-established, and the results have been successfully
verified through numerical calculations and actual experiments [5–11]. In this section, with
reference to the same notation as in [8], a summary and arrangement of the related content
will be presented. The RLG frequency lock-in equation, showing the effect of backscattering,
is well-established and can be expressed as Equation (4).

.
ψ = a + bsinψ , (4)

where ψ is the phase difference with a unit of radian between the CW and CCW propagating
laser beams and b is the backscattering coefficient, which is expressed as

b =
πνχ0rs

ε0
, (5)

where ν is the optical frequency that is obtained with the dispersive effects of the active
medium; χ0 and ε0 are the dielectric susceptibility and vacuum permittivity, respectively;
and rs is the amplitude of the coupling factor owing to backscattering. Equation (4) can be
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analytically divided into two parts and examined according to the relationship between a
and b when determining the value of ψ. That is, when a is smaller than b, the right side
of Equation (4) becomes zero, regardless of the value of a, even though a is not zero. In
this case, the frequencies between the two beams traveling in opposite directions inside
the ring laser resonator are locked to the same value. By contrast, when a is larger than
b, the right side of Equation (4) is outside the frequency-lock state and has a nonzero
value corresponding to a. If the average period T for

.
ψ is defined, it can be expressed as

Equation (6).

T ≡
∫ 2π

0

dψ

a + bsinψ
=

2π√
a2 − b2

(6)

As shown in Equation (7), the average angular frequency difference ∆ωout in the
unlocked region recognized by the RLG can be defined in response to a.

∆ωout ≡ Γ =
√

a2 − b2 (7)

From Equation (7), when the difference between the a and b values is not large, the
change in the average frequency difference with respect to a shows a nonlinear relationship
characteristic owing to the square root function relationship. However, when the difference
between the a and b values is sufficiently large, the average angular frequency difference
converges to a, showing a linear relationship.

Therefore, if the value of b is large, the frequency lock-in region is widened, making it
difficult to implement a precise RLG in the low rotational input angular velocity region.
As noted in previous research, values of b as large as 1000 rad/s are common in regard
to real-life development and application [8], whereas the error level of the ring laser gyro
according to the b value is far from the level required by the navigation grade system. For
this reason, finding a way to reduce the effect of frequency lock-in, even in a situation with
a relatively high b value, has been prioritized in the development history of the RLG. The
dithering technique, which mechanically applies periodic angular vibration in the form
of a sinusoidal wave to the body of an RLG, is the most widely and successfully applied
method to solve the problem caused by frequency lock-in. This is usually done by the
angular piezoelectric deformation to oscillate the gyro body about the rotation axis [15].
When sinusoidal dithering is included, the previous frequency lock-in equation can be
rewritten as Equation (8).

.
ψ = a + bsinψ + αcos(ωDt) , (8)

where α and ωD are the amplitude and angular frequency of the sinusoidal dithering
waveform, respectively. In principle, changing the cosine function for the dithering term in
Equation (8) to a sine function is equivalent to the time translation of t→ t + π/(2ωD) ,
and the phase difference increments should not depend on this change. However, if the
sine function is used instead of the cosine function for the dithering term, it is inevitable
that ψ in Equation (8) has changes in the initial values which can cause slightly different
features in the temporal evolution of ψ, according to the possible practical situations. The
solution of Equation (8), ψ, can be expressed in the form of Equation (9).

ψ(t) = ψi(t) + δ(t) = at +
α

ωD
sin(ωDt) + δ(t) , (9)

where δ is the solution of Equation (10).

.
δ(t) =

∞

∑
m=−∞

bJm

(
α

ωD

)
sin[(a + mωD)t + δ(t)] , (10)
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where Jm is the mth Bessel function of the first kind. The sum of Equation (10) has a special
meaning when a is near an integer multiple of ωD, as expressed in Equation (11).

a = rωD + ã , (11)

where |ã| � ωD. That is, when m = −r, (a + mωD) = ã and the related term changes
slowly. However, when m 6= −r, all other terms change rapidly to at least ωD or more.
Therefore, if the average is taken over several dithering cycles, only the term corresponding
to m = −r remains; thus, by substituting ϕ = ãt + δ(t), Equation (10) can be rewritten as:

.
ϕ = ã + bJ−r

(
α

ωD

)
sin(ϕ) . (12)

Therefore, by comparing Equations (4), (8) and (12), whenever a becomes an integer
multiple of ωD through dithering, a frequency lock-in region in which ψ does not change,
despite changes in the value of a, is generated near that value. Meanwhile, the size of the
lock-in region is reduced by J−r(α/ωD) times compared to the original b.

For the case of r = 0, the related characteristic change due to dithering can be con-
firmed through a numerical experiment using Equation (8), and the results are shown in
Figure 1. The parameters used in the numerical experiment were b/2π = fb =172.38 Hz,
α/2π = fα =137.905 kHz, and ωD/2π = 800 Hz. The Runge–Kutta method was used to
solve Equation (8). 〈

.
ψ〉∆t, which is the average

.
ψ during the observation time ∆t, according

to the change in a value, can be calculated using Equation (13) [16], and the RLG output
〈fout〉∆t in Figure 1 corresponds to the calculated result for ∆t = 10 s,

〈fout〉∆t =

.
ψ∆t
2π

=
ψ(t + ∆t)−ψ(t)

2π∆t
. (13)
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Figure 1. Numerically calculated RLG outputs 〈fout〉∆t with sinusoidal dithering as a function of
fa = a/2π.

The used observation time of 10 s has 8000 dithering cycles, considering the dithering
frequency, ωD/2π is 800 Hz in this study. This large number of dithering cycles can ensure
a high precision in the extraction of RLG outputs with the evolutional information on the
phase difference, ψ in Equation (13). From Figure 1, typical frequency lock-in characteristics
are confirmed when b 6= 0, unlike the ideal case at b = 0. Additionally, the size of the
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frequency lock-in region that appears in this case is reduced to fbJ0(α/ωD) ≈ 3.87 Hz, as in
Equation (12), instead of fb = 172.38 Hz.

4. Interpretation of Lock-In Mechanism with Sagnac Effect Compensation

How can the typical frequency lock-in phenomenon of the RLG shown in Figure 1
be interpreted in relation to the Sagnac effect discussed in Section 2? As a first step in
explaining that the output of the RLG becomes zero even though a nonzero a clearly exists
in the region where a is smaller than b, the following two different perspectives can be
considered depending on whether a reinterpretation of the Sagnac effect is necessary.

First, there may be an interpretive view that the RLG frequency lock-in phenomenon
is caused by the Sagnac effect itself being affected by the existence of a nonzero b; Equation
(3) is the result obtained assuming that there are only two beams traveling in the CW and
CCW directions inside the laser cavity, and the effect of cross-coupling between the two
beams from backscattering is not considered. The new development of the Sagnac effect
theory, including the effect of cross-coupling caused by the backscattering, can stimulate
a compelling and new perspective in the field of physics itself, as well as explore various
possibilities in terms of improving the performance of the RLG. However, a challenge
remains in that a major revision of the well-established theory from the basic principle level
is inevitable for this purpose.

In addition, there may be a phenomenological analysis in which the frequency differ-
ence due to the Sagnac effect in Equation (3) is compensated for by an error component
generated by the existence of a nonzero b. The typical RLG frequency lock-in phenomenon
shown in Figure 1 makes this interpretation intuitive. In this case, the RLG output with the
frequency lock-in characteristic of the solid orange line adopts the viewpoint that the ideal
RLG output of the solid blue line is compensated for by the corresponding error component.
Alternatively, it may be interpreted as the gain in terms of the frequency difference; that is,
the energy difference caused by the Sagnac effect is attenuated owing to the loss caused
by the cross-coupling effect triggered by backscattering. To examine the detailed process
of compensating for the Sagnac effect in the RLG, the equation for the interference of two
beams with a phase difference of ψ is expressed as

E = E0ei(ωt+φ0) + E0ei(ωt+φ0+ψ) = E0ei(ωt+φ0)F, (14)

where E0 is the amplitude, ω is the angular frequency; φ0 is the initial phase of the light
wave; and F = 1 + eiψ is the normalized interference. The intensity-type interference
signal is obtained by FF∗, where F∗ is the complex conjugate of F. The frequency difference
.

ψ/2π was extracted from the measured interference signal. A complex error function ε is
defined as

ε ≡ eiψ − eiψi = ReiΦ. (15)

Then, the normalized interference can be rewritten as

F = 1 + eiψ = 1 + eiψi + ReiΦ. (16)

Therefore, Equation (16) can be interpreted as two complex functions formed through
interference taking the form of causing interference again at a higher level. Broadly stated,
when the normalized interference F is measured using a photodetector, frequency com-
ponents corresponding to the difference between frequency components due to eiψi and
frequency components appearing due to ε = ReiΦ are provided as an output. In conclusion,
ε has a role as a compensator of the Sagnac effect, and the corresponding compensation is
realized through the interference at a higher level.
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5. Analysis of Sagnac Effect Compensations with the Error Function

In this section, we summarized the results of the analysis of the Sagnac effect compen-
sation related to the frequency lock-in characteristic using the error function ε defined in
Section 4.

First, to determine the frequency component corresponding to ε, we defined Ra
by taking the average in the interval during the dithering period TD = 2π/ωD for the
alternating component of R, as expressed in Equation (17).

Ra ≡ 〈R−Rave〉TD , (17)

where Rave is the overall average of R over the observation time. In the case of Φ, it
did not have meaningful information to compensate for the Sagnac effect owing to the
high-frequency component caused by dithering. Therefore, to compensate for the Sagnac
effect, the time-varying property of ε approximately followed Ra.

Figures 2 and 3 show the Ra oscillating characteristics with respect to time as a changes
within and outside the frequency lock-in region, respectively. To obtain Ra, for ψ- and
ψi- related data, the same conditions as in Figure 1 were used. The frequency component
that dominates Ra increased in proportion to the increases in a in the frequency lock-in
region, whereas it was generally lowered in inverse proportion to the increase in a when
it was outside the frequency lock-in region. When recalling the typical frequency lock-
in characteristic that the RLG has a zero-output value when a is within the frequency
lock-in region, whereas the outputs of the RLG approach a as a result of increases in a
when it is outside the frequency lock region, it was inferred that the frequency component
that dominates Ra acted in a form that compensates for the given Sagnac effect. It is
particularly noteworthy from Figures 2 and 3 that, outside the frequency lock-in region,
different frequency components are mixed, unlike inside the frequency lock-in region. It
was observed that phase transitions occurred based on the frequency lock-in threshold, and
the mechanism for compensating the Sagnac effect outside the frequency lock-in region
was not simple, unlike inside the frequency lock-in region where the Sagnac effect was
completely compensated by a single frequency component.
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Figure 3. Ra outside the lock-in area.

Figure 4 shows the frequency fm at the point with the maximum value when Ra is
analyzed in the frequency domain using a Fast Fourier Transform (FFT), and the difference
in the output of the RLG fe for the case where b is nonzero compared to the ideal case of
Figure 1. From Figure 4, it is observed that fm and fe are in good agreement overall, but
there is a significant difference near the frequency lock-in threshold.
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To improve the understanding of this phenomenon, Figure 5 shows the FFT analysis
results for Ra, F{Ra} according to the change in a. When a is away from the frequency
lock-in threshold, fm moves in a linearly increasing fashion with respect to changes in a
when a is within the frequency lock-in region, and nonlinearly decreases when a is outside
the frequency lock-in region, so that fm is equivalent to fa and fe. However, at fa = 4.14 Hz,
which is near the frequency lock-in threshold, fm still shifts linearly with the change in a
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and coincides with fa, while fe in Figure 4 has a lower value of ~2.69 Hz. This difference is
due to the combined action of the following two characteristics.
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First, as a exceeded the frequency lock-in threshold, the harmonic components were
generated. Although this phenomenon disappeared as a increased, it became more pro-
nounced as a approached the frequency lock-in threshold. The second feature is the intrinsic
method, in which the RLG recognizes the frequency difference owing to the Sagnac ef-
fect. As mentioned in Section 3, the RLG output expressed by Equation (13) represents
the average frequency, and, for this reason, fe also corresponds to the average frequency
corresponding to the center of gravity of the related frequency distribution, not a single
frequency. Therefore, when Ra was dominated by one specific frequency component,
there was no significant difference between fm and fe. However, when various frequency
components were evenly and widely distributed as in fa = 4.14 Hz, there was a significant
difference between fm and fe.

It is evident from the detailed graphs in Figure 5 that a frequency component that
increases linearly with an increase in fa loses its qualification of fm at some point because
its magnitude decreases as it crosses the frequency lock-in threshold. This contributed to
the Sagnac effect compensation through fe. The correlation between the frequency char-
acteristics that increased linearly with the increase in fa and the frequency characteristics
that increased nonlinearly with the decrease in fa together with the generation of multiple
frequency components occurring near the frequency lock-in threshold, was considered a
key factor in determining the frequency lock-in dynamics.

6. Discussion and Conclusions

The harmonic characteristics that occurred as phase transitions near the critical point
were also confirmed in recent studies [17]. The results of this study showed that the RLG
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frequency lock-in phenomenon is connected to the optics and photonics research field that
is receiving considerable attention, which is called an exceptional point in the physical
situation with a non-Hermitian Hamiltonian (NHH) [18–22]. The methodology regarding
the Sagnac effect compensation for the frequency lock-in phenomenon presented in this
study has many similarities with the research field of the exception point. For example, one
of the basic concepts describing the field is related to the phase transition observed in a
structure in which the properties of gain and loss are combined. In this case, the Sagnac
effect corresponds to the gain, the Sagnac effect compensation related to the frequency
lock-in phenomenon corresponds to the loss, and the nonlinear characteristics occurring
near the frequency lock-in threshold correspond to the phase transition. This field is related
to finding a new direction to improve the performance of RLG, and the study of realizing a
precise sensor using the sensitivity enhancement phenomenon that appears at the exception
point is a promising future-oriented research direction related to the RLG [23,24].

From another perspective, it is noteworthy that the results in this work are basically
unlimited to the conventional gyroscopes based on He-Ne gas lasers. This is because
the integrative analysis with the complex error function gives a chance to treat critical
points about the lock-in phenomenon in the fundamental and principal aspects; the results
have sufficient room for help in the other laser gyroscope technologies based on such
as semiconductor ring resonators that also usually suffer from the lock-in and mode
competition effects [25]. In addition, the nonlinear characteristics that occur when encircling
the critical point analogous to the dithering situation with the RLG are not only meaningful
when considering fundamental research in the field of physics but also have high research
value because of their application potential in various fields [26,27]. Therefore, future
research on the RLG in connection with the relevant field is meaningful in that it can
pioneer and develop a new research field with locked phases.

In summary, the main sources and mechanisms of the locked states of the RLG with
dithering were thoroughly reviewed and analyzed through numerical experiments. The
analyzed results showed typical phase-transition characteristics based on the frequency
lock-in threshold. The analyzed results showed that the essential physical properties
are strongly related to Sagnac effect compensation. To fundamentally understand the
frequency lock-in phenomenon more deeply, it was concluded that additional integrative
and generalized research on peculiar phenomena appearing near the frequency lock-in
threshold is necessary.
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