
Citation: Choi, Y.; Lim, Y. Deep

Reinforcement Learning for Edge

Caching with Mobility Prediction in

Vehicular Networks. Sensors 2023, 23,

1732. https://doi.org/10.3390/

s23031732

Academic Editors: Chun-Yen Chang,

Charles Tijus, Teen-Hang Meen and

Po-Lei Lee

Received: 30 November 2022

Revised: 30 January 2023

Accepted: 2 February 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Reinforcement Learning for Edge Caching with Mobility
Prediction in Vehicular Networks
Yoonjeong Choi and Yujin Lim *

Department of IT Engineering, Sookmyung Women’s University, Seoul 04310, Republic of Korea
* Correspondence: yujin91@sookmyung.ac.kr; Tel.: +82-02-2077-7305

Abstract: As vehicles are connected to the Internet, various services can be provided to users.
However, if the requests of vehicle users are concentrated on the remote server, the transmission
delay increases, and there is a high possibility that the delay constraint cannot be satisfied. To solve
this problem, caching can be performed at a closer proximity to the user which in turn would reduce
the latency by distributing requests. The road side unit (RSU) and vehicle can serve as caching nodes
by providing storage space closer to users through a mobile edge computing (MEC) server and
an on-board unit (OBU), respectively. In this paper, we propose a caching strategy for both RSUs
and vehicles with the goal of maximizing the caching node throughput. The vehicles move at a
greater speed; thus, if positions of the vehicles are predictable in advance, this helps to determine the
location and type of content that has to be cached. By using the temporal and spatial characteristics
of vehicles, we adopted a long short-term memory (LSTM) to predict the locations of the vehicles.
To respond to time-varying content popularity, a deep deterministic policy gradient (DDPG) was
used to determine the size of each piece of content to be stored in the caching nodes. Experiments in
various environments have proven that the proposed algorithm performs better when compared to
other caching methods in terms of the throughput of caching nodes, delay constraint satisfaction, and
update cost.

Keywords: vehicular network; edge caching; deep reinforcement learning; long short-term memory

1. Introduction

Numerous things are connected to the Internet, which helps it to provide unlimited
services to users. In particular, vehicles connected to the Internet are expected to grow faster
by 2023 compared to other applications [1]. Connected vehicles have become possible due
to multiple sensors of vehicles and the development of both intravehicle and intervehicle
communication. Connected vehicles can communicate with everything and provide various
services, such as road security notification and management, navigation systems, and media
sharing [2]. In addition, infotainment such as streaming videos or audio that the users are
interested in and information on the local environment are provided to vehicle users [3].
However, the download speed of video and audio contents, which are received from a
remote server is decreased, and the backhaul burden is increased. If caching is performed
at a distance closer to the vehicle user, this problem can be alleviated by distributing the
centralized requests.

Cacheable spaces, which are located closer to the vehicle user, include road side units
(RSUs) and vehicles. The installation of a mobile edge computing (MEC) server in the
RSU creates space for the caching content, further enabling the delivery of the content
from a location closer than that of the remote server. Caching to the RSUs decreases the
latency and relieves the backhaul burden [4]. However, because the vehicle is constantly
moving, the residence time in the RSU range is relatively shorter and the network topology
continues to vary [5]. The vehicle provides a space with the on-board unit (OBU) to store
the content. Caching in vehicles and receiving the content through device-to-device (D2D)

Sensors 2023, 23, 1732. https://doi.org/10.3390/s23031732 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031732
https://doi.org/10.3390/s23031732
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1169-1102
https://orcid.org/0000-0002-3076-8040
https://doi.org/10.3390/s23031732
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031732?type=check_update&version=2

Sensors 2023, 23, 1732 2 of 20

communication reduces the burden of backhaul without installing additional infrastructure.
However, compared to the RSU, the communicable distance of vehicles is shorter, and the
storage space of vehicles is smaller [6]. If both RSUs and vehicles are used to cache content,
their problems would be complementary to each other. However, both the MEC server of
the RSU and OBU of the vehicle have limited caching capacity compared to the remote
server; therefore, determining the content that has to be cached is an important issue.

There are several factors that affect the caching performance, one of which is the
structure of the RSU network. Caching a variety of content when the coverage for RSUs
is overlapped and caching popular content when it is not overlapped can increase the hit
ratio [7]. In urban environments, infrastructures are densely installed, which create areas
where the coverage of RSUs overlaps. To determine the cache content for vehicle users in
an urban environment, it is necessary to consider the diversity of the content between the
RSUs with overlapping ranges. The mobility of the vehicle also affects the content caching
to the RSU. With respect to the movement of the vehicle, there are cases in which several
vehicles gather at a specific RSU or stay for a shorter time period. When user demand is
high, a more popular content is mainly requested, whereas when user demand is low, a
less popular content is mainly requested [8]. Therefore, earlier identification of the area
where vehicles are crowded would help to cache the appropriate content for each RSU.

In this study, we propose a caching strategy that uses both the RSU and vehicle as
caching nodes. We aim to maximize the throughput from caching nodes because the
distribution of content requests to caching nodes can reduce the content delivery time and
backhaul burdens. To achieve the goal, the location of vehicles was predicted through
LSTM and we tried to reduce duplicated content between overlapping RSUs. We adopted
the deep deterministic policy gradient (DDPG) method, which is a deep reinforcement
learning method, for two reasons. The first is to deal with a complex environment: for
example, the location of the vehicle changes over time, and the caching nodes that could
be connected to the vehicles vary depending on the location of the vehicle. Second, a
continuous space can be provided by the DDPG. For each time slot, the content popularity
and the number of vehicles in the service area of RSUs were defined as the states of a
Markov Decision Process (MDP). The agent of the DDPG understood the environment
and learned the appropriate caching strategy. We used a coded caching technique, and the
coded caching is used to store the content in a divided form. Coded caching makes the
action space continuous, because the content is stored in a segmented form.

The movement of the vehicle is considered through the process of predicting the
mobility of the vehicle using long short-term memory (LSTM) to determine the number
of vehicles in each RSU. The LSTM can memorize long-term and short-term memories.
Because the data used for prediction consisted of the current and past trajectories of the
vehicles, LSTM was selected as the prediction model. The main contributions of this study
are as follows:

(1) We designed a content-caching scheme using RSUs and vehicles as caching nodes.
There are both advantages and disadvantages associated with this. The vehicles and
RSUs were configured to act as complementary each other.

(2) An LSTM-based vehicle location prediction model is designed to estimate the number
of vehicles staying in the service area of each RSU. Based on the latitude and longitude
coordinates of vehicles, future coordinates could be predicted through past trajectories
of real vehicle mobility data. The number of vehicles in the RSU coverage at each
time is computed by the LSTM model and this information is forwarded to the
caching algorithm.

(3) A DDPG-based caching algorithm is proposed to effectively use caching nodes with
limited capacity in the urban environment. The agent of DDPG decides the types
and sizes of content to cache in RSUs and vehicles. The diversity of contents in areas
where the service ranges of RSUs are overlapped, and the popularity of contents
that changes over time is identified to ensure efficient caching strategy. To maximize

Sensors 2023, 23, 1732 3 of 20

the caching nodes throughput, an appropriate MDP is designed by considering the
time-varying content popularity and duplicate content.

The remainder of this paper is organized as follows: Section 2 analyzes the related
works. Section 3 describes the system model, and Section 4 proposes a DDPG-based
caching algorithm. In Section 5, the comparison of the performance improvement of the
delay constraint satisfaction, the update cost and the edge throughput with respect to other
algorithms is depicted through experiments. Finally, Section 6 presents the conclusions and
future research directions.

2. Related Works

Several studies have been conducted on caching algorithms for vehicle users who
request contents or files. Facilities that can cache at a nearer proximity to vehicles than
remote servers can include fixed spaces such as the RSU, small base station (SBS), and macro
base station (MBS). In addition, vehicles can cache content and form ad-hoc networks.

In the case of RSU and SBS, because they are fixed in one place, the content could
be cached by installing RSU and SBS at a location where the vehicle stays for a relatively
longer period of time. In [9], RSUs were installed at an intersection where the residence
time of vehicles was long. By considering the amount of time the vehicle stays in the RSU,
the number of vehicles staying in the RSU, and bandwidth, Ref. [9] decides whether to
store the file chunk to maximize the hit probability. The vehicles download file chunks
as they pass through the routes and recover the original file after they obtain all chunks.
In [10], another caching method was proposed, in which the files were divided according
to the vehicle movement to reduce the duplicated content and backhaul burden. Each
RSU was installed in the direction in which the vehicle traveled, and the content size to
be cached was determined based on the probability of the direction in which the vehicle
moved. In [11], proactive caching was used to solve problems caused by vehicle mobility.
This was because the mobility of vehicles significantly decreased the residence time in
one RSU, thereby making it difficult for the vehicles to download the content. In addition,
federated learning was applied to determine popular contents while protecting the personal
information of the vehicle users. In [12], a caching algorithm was proposed to minimize the
RSU cache update cost and file download cost. Because the speeds of vehicles and RSU file
are different, two time-scale models were used. Ref. [12] determined the content popularity
over time. This method maintained the balance between changes in the popularity and
updates of contents.

The advantage of ad hoc networks composed of vehicles is that they serve as caching
nodes while moving. This is because the requestor can stay closer to the caching node
for a longer period of time if the requesting vehicle has a similar route. In [13], a cache
replacement algorithm was proposed for a vehicular ad hoc network (VANET) with RSUs.
Because user characteristics do not change easily, the social characteristics of vehicle users
and traffic patterns were considered to identify vehicles with similar routes. In [14], a
caching method was proposed based on content popularity in VANET. It predicted the
hot-spot region to which the vehicles would go through the past trajectory and used the
vehicles that seemed to stay in the hot-spot region for a longer period of time as caching
nodes. One of the disadvantages of VANET is that it lacked personal privacy because
the personal vehicle directly delivers the content. The use of named data networking
(NDN) helps to protect the privacy because it uses the named content more than host
identifiers. The application of vehicular networks to NDN is called vehicular named
data networking (VNDN). In [15], a cooperative caching approach was proposed based
on clustering vehicles with similar mobility in a VNDN. A mobility prediction model
was created through relationships with surrounding vehicles and was used for clustering
formation. In [16], a popularity-incentive-based caching scheme was proposed for the
VNDN. The Stackelberg game was used to take account of the different characteristics of
individual vehicles.

Sensors 2023, 23, 1732 4 of 20

The environment in which vehicles move on roads is complex, and changes rapidly
over time. Reinforcement learning was used to identify complicated environments and
propose effective caching algorithms. In [17], a cooperative caching strategy was proposed
to store the content of vehicles and RSUs through a Q-learning algorithm. It reduced
the interference by clustering nearby vehicles and limiting itself to only one vehicle that
provided content inside the clustering. In addition, a request prediction model using
the LSTM was used. Algorithms for simultaneously optimizing caching and offloading
computational tasks have also been proposed. In [18], a method using a deep Q-network
(DQN) was proposed to optimize the caching and computing resources together. The speed
of vehicles, file size, backhaul capacity, and cloud resources were considered to minimize the
communication, storage, and computational costs. In [19–21], deep reinforcement learning
was applied to determine the content that had to be cached and offload computation to
RSUs. In [22,23], a DDPG-based caching method that determines the content to be cached
in both RSUs and vehicles and the bandwidth to be allocated was proposed. In [22], the
authors considered the requested content and deadlines, size of the remaining content
to be delivered, and vehicle location, with the goal of reducing both the content update
cost and bandwidth usage cost. Because there was a difference in the vehicle’s speed and
cache update speed, two different timescales were used. In [23], the authors considered the
surrounding vehicles of each vehicle, data rate of caching nodes, and directions of vehicle
movement with the aim of minimizing the content transmission delay. To maintain the delay
constraint, if delivery was not performed within the time limit, a penalty was imposed.

The above studies were conducted in environments where the RSU ranges did not
overlap or the overlapping areas were not specifically considered. However, in an urban
environment, the density of infrastructure is very high; thus, areas with overlapping
service ranges must be created. If the redundancy of cached contents between overlapping
RSUs is reduced and various contents are cached, vehicle users are more likely to access
various contents. As the size of the content obtained from the caching nodes increases,
the latency decreases, and the delay constraint is satisfied. Therefore, in this study, we
propose a caching algorithm that stores content in vehicles and RSUs, by considering
overlapping RSUs.

3. System Model

In this section, the overall framework of the caching method in vehicular networks
is defined.

3.1. Network Model

We considered an urban environment. The network consists of one MBS and N RSUs,
V vehicles. Because the coverage of the MBS is usually wider than these of the RSUs, we
assumed that the MBS can cover the entire area of the environment, which means the MBS
could always be connected from a vehicle in any position in the area. The MBS provides
seamless service to vehicle users. We assumed that the MBS is located at the center of the
network, and the RSUs are installed randomly. The MBS was wired for all RSUs. The
RSUs were connected through a backhaul link. Vehicles communicated wirelessly with
MBS and RSUs. MEC can provide the cache and the computation function; the OBU in
the vehicle has the ability to communicate with RSUs and other vehicles and provides
limited cacheable ability [24]. By installing MEC on the RSUs, both the RSUs and the
vehicles have space to store content. Therefore, RSUs and vehicles were all used as caching
nodes. If content requests are distributed to the caching nodes, the backhaul burden can be
reduced. Even distribution of requests also helps the requested content delivered within
the transmission deadline. M is the total number of caching nodes, M = N + V. The MBS
acts as a content provider and has all the content. The MEC server of the RSU n, n ∈ N and
OBU of vehicle v, v ∈ V have limited storage capacity, which is expressed as Cn and Cv,
respectively. The sum of the content sizes stored in each caching node cannot exceed its
limited storage capacity.

Sensors 2023, 23, 1732 5 of 20

Figure 1 describes the framework of content requests and content delivery in an urban
environment. Some vehicles request content, and others serve as caching nodes to deliver
the content to other vehicles in each time slot. We assumed that a vehicle requesting
content cannot simultaneously provide the content to other vehicles. When a vehicle
requests content, it checks the amount of content available through its OBU, and identifies
the requirement of additional content. Additional content could be delivered through
a caching node that has the strongest signal within a connectable distance. The content
may be transmitted only from one of the caching nodes, vehicles, or RSUs. If the size
received through the caching node is smaller than the total size of the requested content,
then the remaining amount can be delivered through the MBS. If there are no caching nodes
accessible from the vehicle, MBS could deliver the requested content to the vehicle.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 20

𝑉. The MBS acts as a content provider and has all the content. The MEC server of the RSU 𝑛, 𝑛 ∈ 𝑁 and OBU of vehicle 𝑣, 𝑣 ∈ 𝑉 have limited storage capacity, which is expressed
as 𝐶 and 𝐶௩, respectively. The sum of the content sizes stored in each caching node can-
not exceed its limited storage capacity.

Figure 1 describes the framework of content requests and content delivery in an ur-
ban environment. Some vehicles request content, and others serve as caching nodes to
deliver the content to other vehicles in each time slot. We assumed that a vehicle request-
ing content cannot simultaneously provide the content to other vehicles. When a vehicle
requests content, it checks the amount of content available through its OBU, and identifies
the requirement of additional content. Additional content could be delivered through a
caching node that has the strongest signal within a connectable distance. The content may
be transmitted only from one of the caching nodes, vehicles, or RSUs. If the size received
through the caching node is smaller than the total size of the requested content, then the
remaining amount can be delivered through the MBS. If there are no caching nodes acces-
sible from the vehicle, MBS could deliver the requested content to the vehicle.

Figure 1. Caching framework in the vehicular network with different types of caching nodes.

3.2. Content Request Model 𝐾 contents are present in the MBS content library. Each content has a size of 𝑧 and
delay constraint 𝑒, 𝑘 ∈ 𝐾. Some vehicles request content during each time slot. Among 𝑉 vehicles, vehicles with a 𝜌 ratio request content and vehicles with a 1 − 𝜌 ratio serve
as caching nodes. The vehicles would either request or provide content; this was ran-
domly determined during every time 𝑡. A vehicle can request only one content item at a
time.

We assumed that content requests are generated through the zipf distribution. It is
known that file requests in many web caching studies follow the zipf distribution [25]. In
addition, the zipf distribution is also used in caching techniques for mobile users [26,27]
and vehicles [28,29]. 𝜙 is the popularity of content 𝑘, and is expressed as follows [25]: 𝜙 = ∑ ቀ ଵഀቁୀ ିଵ × ଵഀ (1)

where 𝛼 is more than zero and less than one. 𝑘 is the popularity order of the content.
The contents are sorted by popularity, so 𝑘 is the content index. 𝛼 affects the evenness
of the content popularity. When 𝛼 is smaller than 1, the popularity of the content is con-
centrated on less content items with an decrease in 𝛼. As 𝛼 increases, the popularity of
each piece of content becomes similar.

3.3. Caching Model
In this study, a coded caching technique is used. Coded caching uses network-coding

techniques in which files are transmitted in an integrated and coded form. After receiving
the coded packets, they are recovered to the original files [30]. Coded caching has the ad-
vantage of increasing network throughput and reducing delivery latency [30]. Maximum

Figure 1. Caching framework in the vehicular network with different types of caching nodes.

3.2. Content Request Model

K contents are present in the MBS content library. Each content has a size of zk and
delay constraint ek, k ∈ K. Some vehicles request content during each time slot. Among
V vehicles, vehicles with a ρ ratio request content and vehicles with a 1 − ρ ratio serve as
caching nodes. The vehicles would either request or provide content; this was randomly
determined during every time t. A vehicle can request only one content item at a time.

We assumed that content requests are generated through the zipf distribution. It is
known that file requests in many web caching studies follow the zipf distribution [25]. In
addition, the zipf distribution is also used in caching techniques for mobile users [26,27]
and vehicles [28,29]. φk is the popularity of content k, and is expressed as follows [25]:

φk = ∑K
i=k

(
1
iα

)−1
× 1

iα
(1)

where α is more than zero and less than one. k is the popularity order of the content. The
contents are sorted by popularity, so k is the content index. α affects the evenness of the
content popularity. When α is smaller than 1, the popularity of the content is concentrated
on less content items with an decrease in α. As α increases, the popularity of each piece of
content becomes similar.

3.3. Caching Model

In this study, a coded caching technique is used. Coded caching uses network-coding
techniques in which files are transmitted in an integrated and coded form. After receiving
the coded packets, they are recovered to the original files [30]. Coded caching has the
advantage of increasing network throughput and reducing delivery latency [30]. Maximum
distance separable (MDS) codes were adapted to consider the high mobility of vehicles.
Due to the high mobility of the vehicle, the connection time between the caching node
and the vehicle requesting content is very short. It is difficult to deliver the entire content
to the vehicle from the caching node before it leaves the service area of the caching node.
Therefore, caching content in segments is more efficient in vehicular networks and MDS

Sensors 2023, 23, 1732 6 of 20

codes help keep the content fragmented. For simplicity, it is assumed that the receiver can
recover the original content if more than the entire size of the content is delivered regardless
of the order [31,32]. The total size of one content item in the caching nodes is set to one,
and the content is cached in divided form into ten pieces. The ratio of content k cached in
caching node m at time t, xt

m,k, has one of the values {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
The sum of the contents cached on each node does not exceed its storage capacity.

∑K
k=1 zkxt

m,k ≤ Cm (2)

xt
m,k ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} (3)

3.4. Communication Model

Vehicles that require content can connect to only one caching node during every time
slot. Vehicles in the service area of the RSU can be connected to the RSU. Vehicles within a
communication distance can be connected to one another. If the content can be delivered
from multiple caching nodes, the node with the highest data rate is selected. The RSUs
check the information of the vehicle, such as the cached content and distance between
vehicles, in its service area, and periodically send a status message to the MBS. The MBS
recognizes that is happening in its service area. RSUs transmit content to multiple vehicles
at time t. The RSU transmits the cached content to one vehicle and then sequentially
delivers the requested content to other vehicles. MBS and all caching nodes transmit the
content to vehicles by applying orthogonal frequency division multiple access (OFDMA) It
is assumed that the link between the vehicle requiring the content and the caching node is
continuously connected for a time t.

To receive the content requested by the vehicle from another vehicle, it must be within
the communication range Dv. dj,i is the distance between vehicle i which requests content,
and vehicle j which provides the content. When dj,i ≤ Dv, the two vehicles communicate.
The radius Dn of the RSU n is a service area. If the distance between vehicle i and RSU n is
smaller than Dn, vehicle i can receive the content from RSU n. It is assumed that a vehicle
at any location can always connect to the MBS. The signal to noise ratio (SNR) between
vehicles i and caching node m is calculated as follows:

SNRm,i =
powermgm,idm,i

−τ

σ2 . (4)

powerm is the transmission power of caching node m. gm,i is the channel gain between
vehicle i and caching node m. dm,i is the distance between caching node m and request
vehicle i. τ is the path-loss exponent. σ2 the Gaussian noise. A data rate drm,i for the
caching node m to deliver content to vehicle i is as follows:

drm,i = bm log2(1 + SNRm,i), (5)

bm is the bandwidth of caching node m. When vehicle i requests content k and the
ratio of content k cached by caching node m is xm,k, the delay in content delivery from
caching node m is as follows:

delayi,m,k =
zkxm,k

drm,i
, (6)

zk is the full size of content k and zkxt
n,k is the real size content k cached in the caching

node m at time t.
After receiving the content through the caching node, if an additional download is

required, the MBS sends the remaining size of the requested content. The delay at which
content k requested by vehicle i is received from the MBS is as follows:

delayi,MBS,k =
zk(1− wv,ixv,i − wn,ixn,i)

drMBS,i
(7)

Sensors 2023, 23, 1732 7 of 20

wv,i is an indicator of content transmission between vehicle v and the vehicle i. If
vehicle i receives the content from vehicle v, wv,i = 1 and otherwise, 0. Similarly, if vehicle
i receives the content requested from RSU n, wn,i = 1 and otherwise 0. Because the content
can be transmitted from only one caching node, wv,i + wn,i = 1. drMBS,i is the data rate of
the MBS used for delivery content to the vehicle, i. It is calculated as in (5). The time taken
to download the request by vehicle i is as follows:

delayt
i = wt

v,idelayt
i,v + wt

n,idelayt
i,n + delayt

i,MBS. (8)

3.5. Vehicular Mobility

Because the position of a vehicle changes over time, it is necessary to record the
position for every time slot. The location of the vehicle is expressed in three positions. The
first is the RSUs within the Dn distance from the vehicle. Because there are overlapping
RSUs, they can be expressed as several RSUs. The second is the future location of the
vehicle, predicted using the LSTM model. This is expressed based on the RSU to which
the vehicles belong. The third is the latitude and longitude coordinates of the current time
period. They are required to measure the distance between vehicles, between the vehicle
and RSU, and between the vehicle and MBS.

4. Deep Reinforcement Learning for Caching Strategy

A significant amount of information regarding the environment is required to deter-
mine the content to be stored in the caching nodes. For example, the bandwidth between
vehicles and RSUs, the routes of vehicles and the popularity of requested contents are
usually used as the information of the environment [9,11]. Using the LSTM model, the
subsequent positions of the vehicles can be predicted. The number of vehicles in each RSU’s
area was calculated using this prediction. In addition to the prediction, the popularity of
content and links between caching nodes and requesters were considered to determine the
content to be cached using DDPG.

4.1. Mobility Prediction of Vehicles with LSTM

The type of content requested varies depending on the number of requests. If there
are a large number of requests, the highly popular content is mainly requested. However,
if there are few requests, users want to receive the diverse contents that are relatively
unpopular [8]. As the number of vehicles increases, the number of requests also increases
proportionally. Therefore, if the number of vehicles staying in the service area for each RSU
can be known in advance, it helps to determine the content that has to be cached.

Our proposed caching algorithm is not sensitive to the prediction accuracy. This is
because the predicted vehicle location was used to know if there were possible connections
in the common coverage of the RSUs or vehicles. We applied LSTM [33] as an example of
a number of prediction models to predict vehicle locations, but models such as Markov
Chain and Gaussian Mixture Model can also be used depending on the situation.

LSTM predicted the location of vehicles, and the number of vehicles located in the
coverage of RSUs was calculated based on the prediction. In other words, LSTM is used
to anticipate how many requests each RSU would have. The LSTM has the following
characteristics. First, LSTM usually predicts the future data on sequential types solely from
vehicle position data. Additional information such as the personal data of users is not
required for prediction. Second, LSTM learns historical information better than Recurrent
Neural Networks (RNN). Figure 2 depicts the structure of the LSTM. The gates present
inside the LSTM cell decide whether to transfer the input information to the subsequent
cell or not, so that both long- and short-term memories can be obtained. As an input to the
LSTM, latitude and longitude coordinates of vehicle v {[latv, lonv]} are used. The output
of LSTM is the subsequent time location of the vehicle. Once the subsequent position is
predicted for all vehicles, the number of vehicles located in each RSU in the future can
be calculated.

Sensors 2023, 23, 1732 8 of 20

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20

inside the LSTM cell decide whether to transfer the input information to the subsequent
cell or not, so that both long- and short-term memories can be obtained. As an input to the
LSTM, latitude and longitude coordinates of vehicle 𝑣 {ሾ𝑙𝑎𝑡௩, 𝑙𝑜𝑛௩ሿ} are used. The output
of LSTM is the subsequent time location of the vehicle. Once the subsequent position is
predicted for all vehicles, the number of vehicles located in each RSU in the future can be
calculated.

Figure 2. Architecture of LSTM.

4.2. Deep Deterministic Policy Gradient
Reinforcement learning is a type of machine learning technique in which an agent

learns to achieve a desirable goal. Reinforcement learning can be divided into value-based
and policy-based methods. Policy-based reinforcement learning has the advantage that it
is easier to learn probabilistic policies than value-based methods, and learning is possible
in continuous environments. DDPG [34] is a policy-based method.

DDPG uses two types of networks: a critic network and an actor network. Figure 3
illustrates the architecture of DDPG. The critic network serves to evaluate the action based
on the value of the action selected by the agent. As the agent interacts with the environ-
ment, it stores the observed state 𝑠, selected action 𝑎, reward 𝑟 obtained through the ac-
tion, and new state 𝑠′ in the replay buffer 𝐷. The agent samples data in minibatches from
the replay buffer to train the critic network. To update the critical network, it trains to
reduce the difference from the output of the target neural network. 𝐿(𝜃) = 𝔼(௦,,,௦ᇱ)~௨() ሾ(𝑟 + 𝛾𝑄(𝑠ᇱ, 𝜇(𝑠ᇱ; 𝜑ି); 𝜃ି − 𝑄(𝑠, 𝑎; 𝜃))ଶ ሿ (9)𝐿(𝜃) is the expected value of the difference between Q-value of the target critic net-
work and Q-value of the train critic network [35]. (𝑠, 𝑎, 𝑟, 𝑠′)~𝑢(𝐷) is the sampling
through mini-batch data from the replay buffer 𝐷. 𝛾 is the discount factor. 𝜃 is the train
network parameter, and 𝜃ି is the target critic network parameter, and these give the
weights and bias. 𝑖 is the parameter index. 𝜇 is the policy of the actor network and 𝜑ି
is the parameter of the target actor network.

The actor network uses the state of the environment as the input and actions as the
output to calculate the policy. The method of evaluating the policy of the actor network is
to use the Q-value, which is the output of the critic network. 𝐽(𝜑) = 𝔼௦~௨()ሾ𝑄(𝑠, 𝜇(𝑠; 𝜑); 𝜃)ሿ (10)𝐽(𝜑) is the expected Q-value through an action selected according to the policy [34],
and the actor network trains to make 𝐽(𝜑) higher. 𝑠~𝑢(𝐷) denotes the states sampled
from the replay buffer 𝐷. Policy learned through actor networks is deterministic, but this
does not mean that the result is always correct. An appropriate exploration process is re-
quired to learn a suitable policy. In DDPG, exploration is performed using Gaussian noise.
During the training process, Gaussian noise is added to the actions resulting from the
actor network, further allowing the exploration of various actions.

Figure 2. Architecture of LSTM.

4.2. Deep Deterministic Policy Gradient

Reinforcement learning is a type of machine learning technique in which an agent
learns to achieve a desirable goal. Reinforcement learning can be divided into value-based
and policy-based methods. Policy-based reinforcement learning has the advantage that it
is easier to learn probabilistic policies than value-based methods, and learning is possible
in continuous environments. DDPG [34] is a policy-based method.

DDPG uses two types of networks: a critic network and an actor network. Figure 3
illustrates the architecture of DDPG. The critic network serves to evaluate the action based
on the value of the action selected by the agent. As the agent interacts with the environment,
it stores the observed state s, selected action a, reward r obtained through the action, and
new state s′ in the replay buffer D. The agent samples data in minibatches from the replay
buffer to train the critic network. To update the critical network, it trains to reduce the
difference from the output of the target neural network.

Li(θi) = E(s,a,r,s′)∼u(D) [(r + γQ
(
s′, µ

(
s′; ϕ−

)
; θ− −Q(s, a; θi)

)2
] (9)

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20

The target networks of the critic and actor periodically update their parameters. This
is because a new target value is required according to the training level while properly
fixing the value. The soft update method is used to update the target network [34].

Figure 3. Architecture of DDPG.

4.3. Caching Strategy with DDPG
There are various problems with transmitting content from remote servers. When the

requests are focused on the remote server, the transmission speed decreases, further mak-
ing it difficult to satisfy the delay constraint, and backhaul traffic increases. Caching con-
tent in RSUs and vehicles alleviates these problems. In this study, we propose a caching
strategy to maximize the throughput of caching nodes consisting of RSUs and vehicles. 𝑃1: 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (11)𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑧𝑥,௧ெୀଵ ≤ 𝐶 (12)𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢 is the average content size delivered through the RSUs and vehi-
cles, and not the MBS. There are 𝑀 caching nodes, and 𝑥,௧ is the size of content 𝑘
cached in caching node 𝑚 at time 𝑡 expressed between zero and one. 𝑧 is the real size
of content 𝑘. 𝐶 is the storage capacity of caching node 𝑚. The sum of the content stored
in each caching node cannot exceed its storage capacity.

Because it is based on an urban environment, many RSUs are installed, and there are
spaces where service areas overlap each other. The more varied the content in overlapping
RSUs, the more content RSUs can provide to users. The system becomes very complicated
because there are not only overlapping RSUs, but also moving vehicles. When a vehicle is
not moving, it always accesses the same caching node. However, because the caching
nodes that the moving vehicles can access and the bandwidth that the vehicles can use
change over time in urban environments, the caching problem becomes complex. Com-
pared to not overlapping RSUs, the caching problem becomes more difficult, addressing
not only the contents that are cached in each RSU, but also the duplicated contents that
are cached in multiple RSUs. DDPG was applied to such a time-varying dynamic envi-
ronment because DDPG can effectively deal with high-dimensional problems. The agent
of DDPG adapted the changing environments by expressing the observed changes as the
state of MDP. The agent determines the types and sizes of content to store in each caching
node to maximize the defined reward of MDP under the present state. It is assumed that
an agent of the DDPG is on the MBS. The state of MDP can be expressed as follows:

Figure 3. Architecture of DDPG.

Li(θi) is the expected value of the difference between Q-value of the target critic
network and Q-value of the train critic network [35]. (s, a, r, s′) ∼ u(D) is the sampling
through mini-batch data from the replay buffer D. γ is the discount factor. θi is the
train network parameter, and θ− is the target critic network parameter, and these give the
weights and bias. i is the parameter index. µ is the policy of the actor network and ϕ− is
the parameter of the target actor network.

Sensors 2023, 23, 1732 9 of 20

The actor network uses the state of the environment as the input and actions as the
output to calculate the policy. The method of evaluating the policy of the actor network is
to use the Q-value, which is the output of the critic network.

Ji(ϕi) = Es∼u(D)[Q(s, µ(s; ϕ); θ)] (10)

Ji(ϕi) is the expected Q-value through an action selected according to the policy [34],
and the actor network trains to make Ji(ϕi) higher. s ∼ u(D) denotes the states sampled
from the replay buffer D. Policy learned through actor networks is deterministic, but this
does not mean that the result is always correct. An appropriate exploration process is
required to learn a suitable policy. In DDPG, exploration is performed using Gaussian
noise. During the training process, Gaussian noise is added to the actions resulting from
the actor network, further allowing the exploration of various actions.

The target networks of the critic and actor periodically update their parameters. This
is because a new target value is required according to the training level while properly
fixing the value. The soft update method is used to update the target network [34].

4.3. Caching Strategy with DDPG

There are various problems with transmitting content from remote servers. When
the requests are focused on the remote server, the transmission speed decreases, further
making it difficult to satisfy the delay constraint, and backhaul traffic increases. Caching
content in RSUs and vehicles alleviates these problems. In this study, we propose a caching
strategy to maximize the throughput of caching nodes consisting of RSUs and vehicles.

P1 : maximize throughputcaching (11)

subject to ∑M
m=1 zkxt

m,k ≤ Cm (12)

throughpucaching is the average content size delivered through the RSUs and vehicles,
and not the MBS. There are M caching nodes, and xt

m,k is the size of content k cached in
caching node m at time t expressed between zero and one. zk is the real size of content k.
Cm is the storage capacity of caching node m. The sum of the content stored in each caching
node cannot exceed its storage capacity.

Because it is based on an urban environment, many RSUs are installed, and there are
spaces where service areas overlap each other. The more varied the content in overlapping
RSUs, the more content RSUs can provide to users. The system becomes very complicated
because there are not only overlapping RSUs, but also moving vehicles. When a vehicle is
not moving, it always accesses the same caching node. However, because the caching nodes
that the moving vehicles can access and the bandwidth that the vehicles can use change
over time in urban environments, the caching problem becomes complex. Compared to not
overlapping RSUs, the caching problem becomes more difficult, addressing not only the
contents that are cached in each RSU, but also the duplicated contents that are cached in
multiple RSUs. DDPG was applied to such a time-varying dynamic environment because
DDPG can effectively deal with high-dimensional problems. The agent of DDPG adapted
the changing environments by expressing the observed changes as the state of MDP. The
agent determines the types and sizes of content to store in each caching node to maximize
the defined reward of MDP under the present state. It is assumed that an agent of the
DDPG is on the MBS. The state of MDP can be expressed as follows:

st =
{

ot
y,k, pt

k, ht
n, lt

m

}
(13)

st is the state at time t. ot
y,k indicates the extent of overlapping RSUs cluster y cache

content k at time t. RSUs with overlapping ranges are clustered to manage duplicated
content in a space where the ranges of the RSUs overlap. There are Y clusters of duplicated

Sensors 2023, 23, 1732 10 of 20

RSUs. When the vehicle is in an area that can receive content from multiple RSUs, the hit
ratio becomes high if the transmitted content is diversified. ot

y,k is calculated as follows:

ot
y,k = ∑i∈y xt

k,i (14)

pt
k is the popularity of content k at time t and is calculated as follows:

pt
k = ∑K

k=1 qt
k (15)

qt
k is the number of contents k requested at time t. The content request was generated

through zipf distribution in (1), and the agent identified the content requests as pt
k. The

higher the popularity, the higher is the probability of requesting the content, and it is
advantageous to cache the content with high popularity. ht

n denotes the number of vehicles
in RSU n at time t. This is because content with different popularity is requested depending
on the number of requests from the vehicles. To calculate ht

n, the LSTM output was used.
Using vehicle data at time t− 1, LSTM predicts each vehicle location at time t and ht

n can
be computed. ht

n is computed as follows:

ht
n = ∑V

i=1 µt
i,n (16)

µt
i,n indicates whether vehicle i is in the service area of RSU n at time t. When Dn is the

service radius of RSU n, if the distance dt
i,n between the vehicle i and the RSU n is smaller

than Dn, then µt
i,n = 1 and otherwise, 0. lt

m counts the number of connectable caching
nodes m for each vehicle. When many demands are concentrated on one caching node, the
amount of processing at one caching node increases, which makes it difficult to satisfy the
delay constraint. lt

m is used to prevent the content requests from being concentrated in one
caching node. lt

m is calculated as follows:

lt
m = ∑V

i=1 ηt
i,m (17)

ηt
i,m indicates that the vehicle i is within the communication range Dm of the caching

node m. If the distance dt
i,m between the vehicle i and the caching node m is smaller than

Dm, ηt
i,m = 1 and otherwise, 0. Both ht

n and lt
m use vehicle location information, with the

difference that ht
n adopts future vehicle location and lt

m adopts current vehicle location. All
states were used with normalization.

at =
{

xt
m,k

}
(18)

at refers to the action selected by the agent at time t. xt
m,k denotes the size of content k

cached at caching node m at time t. It is expressed between zero and one because one piece
of content can be cached by dividing it into ten pieces with MDS codes.

rt = β×
throughputcaching

throughputMBS
+ (1− β)× hit ratio (19)

rt means the reward received by the action at time t. The reward is composed of two
factors. One is the caching node throughput to the MBS throughput ratio and the other
is the hit ratio. If the requested content is in the caching node, the hit is one; otherwise, it
is zero. The hit ratio was calculated by dividing the sum of all hits by the total number of
requests. Both factors were used to increase the throughput of the caching nodes while
simultaneously guaranteeing the hit ratio. β means a weighting factor between zero and
one. The reward was used for normalization.

Sensors 2023, 23, 1732 11 of 20

5. Performance Evaluation

For the experimental analysis of the proposed algorithm, real vehicle data, Dataset
of mobility traces in San Francisco, USA [36], was used. The location of the vehicle was
recorded in latitude and longitude coordinates along with a timestamp in the dataset. The
timestamps were arranged at regular intervals, and the distance traveled was adjusted
according to the time intervals. The experimental space was assumed to be 2.5 km in
width and 2.5 km in length and 36 RSUs were installed in the space. The experiments were
conducted for 9 min by considering that the average vehicle speed was approximately
16 km/h. We configured that approximately 60% of the moving vehicles requested content,
and remaining 40% of them acted as caching nodes. This is because in [22], the system cost
was lowest when the requiring vehicle and the caching vehicle were in a ratio of 30 to 20.
Whether to request content or serve as a caching node is randomly determined for each
vehicle in each time slot. The bandwidth of the caching nodes and MBS was allocated to
the connected requestor vehicles according to the situation. 500 episodes were used to train
the DDPG agent as in [20]. The learning rate and the discount factor were configured as
0.0003 and 0.99, respectively. The parameters used in the experiments are listed in Table 1.

Table 1. Experiment parameters.

Parameter Value

Number of RSUs [18, 36]
Number of vehicles [80, 160]
Number of contents 10
Bandwidth of MBS 20 MHz
Bandwidth of RSU 10 MHz

Bandwidth of vehicle 5 MHz
Zipf parameter (α) 0.56

Weighting factor (β) 0.8

The algorithms of Random, cooperative content caching (CCC) [22] and edge caching
with content delivery (ECCD) [23] were adopted for the performance comparison. The
Random method randomly selects the type and size of content to be cached for each caching
node. Both the CCC and ECCD algorithms adopted DDPG to solve the problem of content
caching and bandwidth allocation of edge nodes. The goal of CCC is to minimize the storage
cost consisting of the update cost and bandwidth usage of caching nodes. The update
cost used in CCC refers to the difference of the number of contents that cached in caching
node m between time t and time t + 1. CCC also considers the failure to deliver within
the delay constraint to minimize storage costs. In the original CCC, vehicles requesting
content and vehicles providing content are completely separated; however, to compare
performance in the same environment for our experiments, a certain percentage of vehicles
are configured to request content during every time slot. The CCC considers bandwidth
allocation of all caching nodes, but to make the system model similar to the one proposed in
this method, the vehicle allowed only a one-to-one connection for the content requestor and
content provider. The ECCD aims to minimize the overall content delivery time and uses
the requested content popularity multiplied by the content delivery time as a penalty. Both
CCC and ECCD stored the content as a whole, but MDS codes were applied for comparing
it with the proposed algorithm. Regarding the bandwidth allocation of RSUs, the same
method in the proposed algorithm was adopted in CCC and ECCD.

To compare the proposed caching strategy with Random, CCC and ECCD, three scenar-
ios were designed. The first scenario is for the experiments to evaluate the performance on
the number of vehicles. Because the size of the experimental space is fixed, as the number
of vehicles in the space increases, the density of vehicles becomes high. When the number
of vehicles increases, the number of caching nodes that vehicles can access is also increased.
However, if a large number of vehicles generate requests simultaneously, it brings about
a negative effect on the delay constraint satisfaction. Hence, this scenario is intended to

Sensors 2023, 23, 1732 12 of 20

show how many vehicles the caching methods could stand. The second scenario is for the
experiments on the number of RSUs. As the number of RSUs decreases, the number of
caching nodes that vehicles can connect with is decreased. The experiments in the second
scenario are to find out the relationship between the density of RSUs and the performance.
The third scenario is for the experiments on the capacity of RSUs. The performance of
caching usually is affected by the storage capacity, and the experiments with third scenario
seek to evaluate the capacity tolerance of caching methods.

The performance criteria are the throughput of caching nodes, delivery constraint
satisfaction, and update cost. The throughput of the caching nodes indicates the average
size of the content delivered from the caching nodes to each requesting vehicle in a time
unit. The high throughput can be achieved as the requests are distributed to caching nodes,
the burden of backhaul decreases and the transmission time is reduced. The throughput of
caching nodes is calculated as follows:

Throughputcaching =
1
F ∑F

f=1 wt
m, f xt

m,k (20)

wt
m, f indicates whether or not the requesting vehicle f is receiving from the caching

node m at time t. If the vehicle f is receiving from the caching node m, wt
m, f = 1 and

otherwise, 0. xt
m,k is the content k size that is cached in caching node m at time t and F is

the number of requesting vehicles. By identifying the amount of content delivered by all
caching nodes for each time slot, the throughput of caching nodes was measured. Because
the goal of the proposed algorithm is to maximize the amount of content delivered from
the caching nodes, we can verify if the goal has been achieved. Delay constraint satisfaction
means the ratio at which the entire content size is delivered within the time limit for which
content k had to be delivered. The degree of delay constraint satisfaction is calculated
as follows:

Delay constraint satis f action =
1
F ∑F

f=1 vt
f , (21)

vt
f =

{
1, i f delayt

f ≤ deadline
0 , otherwise

(22)

vt
f indicates whether the vehicle f is received the requested content within the delay

constraint. The delayt
f is the time taken for the vehicle f to receive the requested content at

time t and can be calculated as (8). The delay constraint, deadline indicates the maximum
delay time that the end-to-end delay cannot exceed when content was received. If content
requests are properly distributed to caching nodes rather than being concentrated on the
MBS, the delivery latency is reduced, and the delay constraint satisfaction increases. A
high delay constraint satisfaction has a positive effect on Quality of Service (QoS) of the
requesters. The update cost refers to the average of the cached content sizes that are
additionally stored or deleted when it becomes time t + 1 from time t. Updating the cached
content significantly to match the time-varying environment helps to increase the hit ratio,
but it places a burden on the backhaul links as the RSUs have to fetch additional content
from the MBS. We tried to minimize the update cost while increasing the throughput of
caching nodes. The update cost is calculated as follows:

Update cost =
1

Cm
∑M

m=1 ∑K
k=1

∣∣∣xt+1
m,k − xt

m,k

∣∣∣ (23)

The vehicles and RSUs figured out their own updated contents and they were used to
average the update cost for all caching nodes. The update cost in the proposed algorithm is
different from that of CCC which only computes the number of changed contents.

Figures 4–6 depict the results of the measurement while changing the number of
vehicles used in the experimental environment. As the number of vehicles increases, the
requests for content increase, placing a load on the system. On the other hand, when the

Sensors 2023, 23, 1732 13 of 20

number of vehicles increases, the number of caching nodes increases, further increasing
the space for caching content. Figure 4 depicts the result of measuring the caching node
throughput while increasing the number of vehicles in the experimental environment.
Compared to other algorithms, the proposed algorithm demonstrated the highest result
because the agent of the proposed algorithm trains by considering the size of the content
downloaded through caching nodes as a reward. In the proposed algorithm, when the num-
ber of vehicles is 160, the edge throughput decreased because more content was requested
compared to what the system could handle. In ECCD, the throughput increases when there
are 120 vehicles, and when there are more than 120 vehicles, it has a constant value. This
means that when there are fewer than 120 vehicles, more content is delivered from the
RSUs; however, when there are more than 120 vehicles, the amount of content delivered
from the vehicle is larger than that of the RSU, resulting in an increase in throughput. At the
same time, the number of vehicles requesting content also increased and there is no further
increase in the total throughput. The Random and CCC methods were not significantly
affected by the number of vehicles used. The reason is that Random does not consider the
current situation. In the case of CCC, there are already enough vehicles in the environment;
therefore, the number of vehicles does not affect the results. On average, the proposed
algorithm performs approximately 1.4 times higher than Random, and approximately 2.7
and 4.3 times higher than ECCD and CCC, respectively.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 20

requests for content increase, placing a load on the system. On the other hand, when the
number of vehicles increases, the number of caching nodes increases, further increasing
the space for caching content. Figure 4 depicts the result of measuring the caching node
throughput while increasing the number of vehicles in the experimental environment.
Compared to other algorithms, the proposed algorithm demonstrated the highest result
because the agent of the proposed algorithm trains by considering the size of the content
downloaded through caching nodes as a reward. In the proposed algorithm, when the
number of vehicles is 160, the edge throughput decreased because more content was re-
quested compared to what the system could handle. In ECCD, the throughput increases
when there are 120 vehicles, and when there are more than 120 vehicles, it has a constant
value. This means that when there are fewer than 120 vehicles, more content is delivered
from the RSUs; however, when there are more than 120 vehicles, the amount of content
delivered from the vehicle is larger than that of the RSU, resulting in an increase in
throughput. At the same time, the number of vehicles requesting content also increased
and there is no further increase in the total throughput. The Random and CCC methods
were not significantly affected by the number of vehicles used. The reason is that Random
does not consider the current situation. In the case of CCC, there are already enough ve-
hicles in the environment; therefore, the number of vehicles does not affect the results. On
average, the proposed algorithm performs approximately 1.4 times higher than Random,
and approximately 2.7 and 4.3 times higher than ECCD and CCC, respectively.

Figure 4. Throughput according to the increase in the number of vehicles.

Figure 5. Delay constraint satisfaction with respect to the increase in the number of vehicles.

Figure 4. Throughput according to the increase in the number of vehicles.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 20

requests for content increase, placing a load on the system. On the other hand, when the
number of vehicles increases, the number of caching nodes increases, further increasing
the space for caching content. Figure 4 depicts the result of measuring the caching node
throughput while increasing the number of vehicles in the experimental environment.
Compared to other algorithms, the proposed algorithm demonstrated the highest result
because the agent of the proposed algorithm trains by considering the size of the content
downloaded through caching nodes as a reward. In the proposed algorithm, when the
number of vehicles is 160, the edge throughput decreased because more content was re-
quested compared to what the system could handle. In ECCD, the throughput increases
when there are 120 vehicles, and when there are more than 120 vehicles, it has a constant
value. This means that when there are fewer than 120 vehicles, more content is delivered
from the RSUs; however, when there are more than 120 vehicles, the amount of content
delivered from the vehicle is larger than that of the RSU, resulting in an increase in
throughput. At the same time, the number of vehicles requesting content also increased
and there is no further increase in the total throughput. The Random and CCC methods
were not significantly affected by the number of vehicles used. The reason is that Random
does not consider the current situation. In the case of CCC, there are already enough ve-
hicles in the environment; therefore, the number of vehicles does not affect the results. On
average, the proposed algorithm performs approximately 1.4 times higher than Random,
and approximately 2.7 and 4.3 times higher than ECCD and CCC, respectively.

Figure 4. Throughput according to the increase in the number of vehicles.

Figure 5. Delay constraint satisfaction with respect to the increase in the number of vehicles. Figure 5. Delay constraint satisfaction with respect to the increase in the number of vehicles.

Sensors 2023, 23, 1732 14 of 20Sensors 2023, 23, x FOR PEER REVIEW 14 of 20

Figure 6. Update cost according to the increase in the number of vehicles.

Figure 5 depicts the results of measuring delay constraint satisfaction. The delay con-
straint satisfaction tended to decrease as the number of vehicles increased. This is because
although the number of vehicles used as caching nodes increased, the latency increased
because of the content requests that were concentrated in specific RSUs, because the total
number of requests increased more sharply. Comparison algorithms often cache a few
contents in an excessively larger size or a lot of content in a significantly smaller size,
which results in a long latency. In contrast, the proposed algorithm caches content to an
appropriate size and distributes content requests. The proposed algorithm performs on
an average 1.7 times higher than Random, and 1.5 and 1.6 times higher than ECCD and
CCC, respectively.

Figure 6 depicts the results of measuring the update cost according to the number of
vehicles. In the case of the proposed algorithm and Random method, consistent results
were obtained regardless of the number of vehicles. This implies that the update cost of
each caching node is not affected by the number of vehicles, and the update cost of caching
the RSUs and vehicles is constant. The proposed algorithm had the lowest cost, and the
reason is that the proposed algorithm has RSUs and vehicles that rarely varied the cached
content. However, ECCD tends to decrease when there are 160 vehicles and CCC tends to
decrease when there are 120 vehicles or more, which means that the update cost in vehi-
cles decreases when the number of vehicles increases. In ECCD and CCC, as the number
of vehicles increases various contents could be accessed without updating the stored con-
tents in vehicles because a large number of vehicles were used as caching nodes around
the requestor. The proposed algorithm demonstrated an average reduction of approxi-
mately 79% with Random, about 24% and 8% with ECCD and CCC, in terms of update cost.

Figures 7–9 show the experimental results while increasing the number of RSUs from
18 to 36. Because the size of the experimental space was fixed, RSUs become sparser in the
experimental space when the number of RSUs is decreased. If the number of RSUs in the
space is increased, it means that RSUs are installed densely. In the space with 36 RSUs,
vehicles can connect with at least one RSU wherever the vehicles are located. When the
number of RSUs is 18, 24, or 30, there may not be an RSU that could be connected with the
vehicles that requested content. Figure 7 shows the throughput of caching nodes accord-
ing to the number of RSUs. The proposed algorithm and Random method had the explo-
sive results when the number of RSUs was 36. When there were 36 RSUs in the experi-
ment, the throughput was only affected by whether the requested content was cached or
not. However, when the number of RSUs was less than 36, there were some cases where
there was no RSU accessible from the requesting vehicles, resulting in low throughput.
ECCD was not significantly affected by the number of RSUs because the amount of con-
tent transmitted from RSUs was smaller than the amount of content transmitted from

Figure 6. Update cost according to the increase in the number of vehicles.

Figure 5 depicts the results of measuring delay constraint satisfaction. The delay
constraint satisfaction tended to decrease as the number of vehicles increased. This is
because although the number of vehicles used as caching nodes increased, the latency
increased because of the content requests that were concentrated in specific RSUs, because
the total number of requests increased more sharply. Comparison algorithms often cache a
few contents in an excessively larger size or a lot of content in a significantly smaller size,
which results in a long latency. In contrast, the proposed algorithm caches content to an
appropriate size and distributes content requests. The proposed algorithm performs on
an average 1.7 times higher than Random, and 1.5 and 1.6 times higher than ECCD and
CCC, respectively.

Figure 6 depicts the results of measuring the update cost according to the number
of vehicles. In the case of the proposed algorithm and Random method, consistent results
were obtained regardless of the number of vehicles. This implies that the update cost of
each caching node is not affected by the number of vehicles, and the update cost of caching
the RSUs and vehicles is constant. The proposed algorithm had the lowest cost, and the
reason is that the proposed algorithm has RSUs and vehicles that rarely varied the cached
content. However, ECCD tends to decrease when there are 160 vehicles and CCC tends to
decrease when there are 120 vehicles or more, which means that the update cost in vehicles
decreases when the number of vehicles increases. In ECCD and CCC, as the number of
vehicles increases various contents could be accessed without updating the stored contents
in vehicles because a large number of vehicles were used as caching nodes around the
requestor. The proposed algorithm demonstrated an average reduction of approximately
79% with Random, about 24% and 8% with ECCD and CCC, in terms of update cost.

Figures 7–9 show the experimental results while increasing the number of RSUs from
18 to 36. Because the size of the experimental space was fixed, RSUs become sparser in
the experimental space when the number of RSUs is decreased. If the number of RSUs in
the space is increased, it means that RSUs are installed densely. In the space with 36 RSUs,
vehicles can connect with at least one RSU wherever the vehicles are located. When the
number of RSUs is 18, 24, or 30, there may not be an RSU that could be connected with the
vehicles that requested content. Figure 7 shows the throughput of caching nodes according
to the number of RSUs. The proposed algorithm and Random method had the explosive
results when the number of RSUs was 36. When there were 36 RSUs in the experiment,
the throughput was only affected by whether the requested content was cached or not.
However, when the number of RSUs was less than 36, there were some cases where there
was no RSU accessible from the requesting vehicles, resulting in low throughput. ECCD was
not significantly affected by the number of RSUs because the amount of content transmitted
from RSUs was smaller than the amount of content transmitted from other vehicles. In

Sensors 2023, 23, 1732 15 of 20

terms of the throughput, the proposed algorithm showed about 27%, 200%, and 314% better
results than Random, ECCD, and CCC.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 20

other vehicles. In terms of the throughput, the proposed algorithm showed about 27%,
200%, and 314% better results than Random, ECCD, and CCC.

Figure 7. Throughput with respect to the increase in the number of RSUs.

Figure 8. Delay constraint satisfaction with respect to the increase in the number of RSUs.

Figure 9. Update cost with respect to the increase in the number of RSUs.

Figure 7. Throughput with respect to the increase in the number of RSUs.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 20

other vehicles. In terms of the throughput, the proposed algorithm showed about 27%,
200%, and 314% better results than Random, ECCD, and CCC.

Figure 7. Throughput with respect to the increase in the number of RSUs.

Figure 8. Delay constraint satisfaction with respect to the increase in the number of RSUs.

Figure 9. Update cost with respect to the increase in the number of RSUs.

Figure 8. Delay constraint satisfaction with respect to the increase in the number of RSUs.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 20

other vehicles. In terms of the throughput, the proposed algorithm showed about 27%,
200%, and 314% better results than Random, ECCD, and CCC.

Figure 7. Throughput with respect to the increase in the number of RSUs.

Figure 8. Delay constraint satisfaction with respect to the increase in the number of RSUs.

Figure 9. Update cost with respect to the increase in the number of RSUs. Figure 9. Update cost with respect to the increase in the number of RSUs.

Sensors 2023, 23, 1732 16 of 20

Figure 8 shows the results of measuring the delay constraint satisfaction according
to the number of RSUs. The proposed algorithm showed similar results when 24 and
30 RSUs were installed because the size of area covered by all RSUs in the experimental
space was similar. When there were 18 RSUs to be installed, the size of area that could
be connected with RSUs is decreased, so content requests were concentrated on a small
number of caching nodes, reducing the delay constraint satisfaction. When there were
36 RSUs, RSUs could be accessed from all experimental space, and content requests were
distributed to several caching nodes, showing high delay constraint satisfaction. The ECCD
and Random methods had the increasing delay constraint satisfaction as the number of
RSUs was raised. In the case of CCC, the delay constraint satisfaction increased a little
according to the number of RSUs. CCC was less affected by the number of RSUs because
the amount of content delivered from vehicles is larger than from RSUs. In terms of delay
constraint satisfaction, the proposed algorithm performed on average 33%, 95%, and 40%
higher than Random, ECCD, and CCC, respectively.

Figure 9 depicts the results of measuring the update cost according to the number
of RSUs. For all caching methods, the update cost is constant regardless of the number
of RSUs, meaning that the number of RSUs does not affect the degree of the variation of
cached content in each caching node. The Random method had a relatively high update
cost compared to other caching algorithms. This is because other caching techniques except
for Random all used reinforcement learning to cache content appropriately according to
the environment, while Random method determined the type and size of content to be
cached randomly regardless of the current situation of the environment. The proposed
algorithm showed a lower update cost than ECCD and CCC and the reason is that the
proposed algorithm had little change in the cached content over time. In the proposed
algorithm, LSTM predicted future locations of vehicles and it was known in advance how
many vehicles would be located in the coverages of RSUs. This information helped the
proposed algorithm to consider the future situation when deciding which content to cache,
so that the cached content did not have to change much when faced with the future. The
proposed algorithm decreased the update cost on average by 80% compared to Random,
24% compared to ECCD, and 24% compared to CCC.

Figures 10–12 depict the performance measured while increasing the storage capacity
of the RSU. If the capacity of the RSU is large, there is a large amount of content that can be
cached, but there is a limit to the size that can be transmitted within the constraint time.
The capacity of the RSU is expressed as the ratio of the size that can be stored in the RSU
out of the total size of the content in the content library. Figure 10 depicts the results of
measuring the caching node throughput according to the increase in the storage capacity of
the RSU. In the proposed and comparison methods, as the capacity of the RSU increases,
the content stored in the RSU increases, and thus, the caching node throughput increases.
Caching a small amount of content to larger size results in lower performance, such as
ECCD and CCC. Relatively, the proposed algorithm and Random cache a large amount of
content with a small size, which helps the requestors to obtain content from caching nodes.
On average, the proposed algorithm increased performance approximately 1.2 times more
than Random, approximately 3.6 and 3.7 times more than ECCD and CCC, respectively.

Figure 11 depicts the results of the delay constraint satisfaction according to the RSU
storage capacity. The proposed algorithm and Random method increased satisfaction signif-
icantly as the storage capacity of RSUs increased, whereas ECCD and CCC increased less.
The agents of ECCD and CCC selected the caching nodes that transmit the requested content
based on their own rewards. However, the proposed method always selected a caching
node that provided content according to the size of the data rate between the caching
node and the content requestor. A high data rate has a positive effect on delay constraint
satisfaction. The proposed method demonstrated that the delay constraint satisfaction is
increased on average by approximately 24% compared to Random, approximately 100%
compared to ECCD, and approximately 56% compared to CCC.

Sensors 2023, 23, 1732 17 of 20Sensors 2023, 23, x FOR PEER REVIEW 17 of 20

Figure 10. Edge throughput with respect to the increase in the capacity of RSUs.

Figure 11. Delay constraint satisfaction according to the increase in the capacity of RSUs.

Figure 12. Update cost according to the increase in the capacity of RSUs.

Figure 10. Edge throughput with respect to the increase in the capacity of RSUs.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 20

Figure 10. Edge throughput with respect to the increase in the capacity of RSUs.

Figure 11. Delay constraint satisfaction according to the increase in the capacity of RSUs.

Figure 12. Update cost according to the increase in the capacity of RSUs.

Figure 11. Delay constraint satisfaction according to the increase in the capacity of RSUs.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 20

Figure 10. Edge throughput with respect to the increase in the capacity of RSUs.

Figure 11. Delay constraint satisfaction according to the increase in the capacity of RSUs.

Figure 12. Update cost according to the increase in the capacity of RSUs. Figure 12. Update cost according to the increase in the capacity of RSUs.

Sensors 2023, 23, 1732 18 of 20

In Figure 12, the result of calculating the update cost according to the RSU storage
capacity is depicted. Compared to the methods using DDPG, Random has a higher value
because the agent of DDPG observes the environment to determine caching, whereas
Random decides the content to be cached regardless of the environment. The proposed
method has the lowest cost because it does not frequently modify the cached content in
RSUs. CCC has the second-smallest value because it regards the update cost as one part of
the DDPG reward. The proposed algorithm decreases update cost by about 81% compared
to Random, approximately 31% compared to ECCD, and approximately 26% compared to
CCC in terms of update cost.

Through several experiments in different scenarios, the proposed algorithm showed
higher performance in terms of the throughput, the delay constraint satisfaction, and the
update cost. In terms of the throughput, the proposed method had better performance
because it predicted the number of vehicles staying in the service area for the RSUs and
computed the size of cached content with consideration of the overlapped service areas of
RSUs unlike other algorithms. High throughput led to high delay constraint satisfaction. In
the case of the update cost, the proposed caching strategy had a smaller size that changed
over time as compared to the other algorithms. This was because the agent of the proposed
algorithm could recognize the future situation through LSTM in the current situation.

6. Conclusions

Recently, as the amount of service content that needs to be delivered from the remote
server to the vehicles has increased, the processing burden of the remote server and the
transmission latency from the remote server to each vehicle have increased accordingly.
Therefore, in this study, we proposed an algorithm that maximizes the throughput of
caching nodes by using RSUs and vehicles as caching nodes because the distribution of con-
tent requests to caching nodes can reduce the content delivery time and backhaul burdens.
This method allocated the content requests to caching nodes rather than concentrating
on MBS, so the burden on backhaul became low and the transmission latency became
short. We used the LSTM to predict the future location of the vehicle, which helped to
determine the number of vehicles in each RSU. The output of LSTM is the future location
of vehicles and with this information the number of vehicles was predicted. DDPG was
applied to handle this complicated environment to decide where and how much content to
cache. Experiments in various scenarios demonstrate that the proposed algorithm performs
better in terms of the caching node throughput, delay constraint satisfaction, and update
cost. The experimental results with varying the number of vehicles demonstrated that
the proposed algorithm had about 2.8 times higher throughput, about 1.6 times higher
delay constraint satisfaction, and about 0.37 times lower update cost than the compared
algorithms on average. In the experiments on the RSU density, the proposed strategy had
about 2.8 times higher throughput, about 1.5 times higher delay constraint satisfaction,
and about 0.42 times lower update cost than these of the other algorithms on average. In
the experiments on the caching storage tolerance, the results showed that the proposed
algorithm increased the throughput approximately 2.8 times and the delay constraint satis-
faction about 1.6 times, and had about 0.46 times lower update cost compared to the other
algorithms on average.

In future work, it will be possible to expand the study to optimize caching with energy
efficiency. Because vehicles have limited energy supply, it is important to enhance the
energy efficiency. Moreover, if the energy consumption of RSUs decreases, the maintenance
costs can be reduced.

Author Contributions: Formal analysis, Y.C.; Investigation, Y.C.; Writing—original draft, Y.C.;
Writing—review & editing, Y.L.; Supervision, Y.L. All authors have read and agreed to the pub-
lished version of the manuscript.

Sensors 2023, 23, 1732 19 of 20

Funding: This research was supported by the Step 4 BK21 plus program and the research project
(No. 2021R1F1A1047113) through the National Research Foundation (NRF) funded by the Ministry
of Education of Korea and the Korea government (MSIT).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Michal Piorkowski, Natasa Sarafijanovic-Djukic, Matthias Grossglauser,
February 2009, CRAWDAD dataset epfl/mobility (v. 2009-02-24), downloaded from https://crawdad.
org/epfl/mobility/20090224, https://doi.org/10.15783/C7J010, accessed on 23 September 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cisco. Cisco Annual Internet Report (2018–2023) White Paper. March 2020. Available online: https://www.cisco.com/c/en/us/

solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf (accessed on 10 September 2022).
2. Siegel, J.E.; Erb, D.C.; Sarma, S.E. A Survey of the Connected Vehicle Landscape—Architectures, Enabling Technologies,

Applications, and Development Areas. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2391–2406. [CrossRef]
3. Grewe, D.; Wagner, M.; Schildt, S.; Arumaithurai, M.; Frey, H. Caching-as-a-Service in Virtualized Caches for Information-Centric

Connected Vehicle Environments. In Proceedings of the 2018 IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan,
5–7 December 2018; pp. 1–8. [CrossRef]

4. Xing, Y.; Sun, Y.; Qiao, L.; Wang, Z.; Si, P.; Zhang, Y. Deep Reinforcement Learning for Cooperative Edge Caching in Vehicular
Networks. In Proceedings of the 2021 13th International Conference on Communication Software and Networks (ICCSN),
Chongqing, China, 4–7 June 2021; pp. 144–149. [CrossRef]

5. Zhu, Z.; Zhang, Z.; Yan, W.; Huang, Y.; Yang, L. Proactive Caching in Auto Driving Scene via Deep Reinforcement Learning. In
Proceedings of the 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China,
23–25 October 2019; pp. 1–6. [CrossRef]

6. Yan, Y.; Zhang, B.; Li, C.; Su, C. Cooperative Caching and Fetching in D2D Communications—A Fully Decentralized Multi-Agent
Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2020, 69, 16095–16109. [CrossRef]

7. Lin, P.; Song, Q.; Jamalipour, A. Multidimensional Cooperative Caching in CoMP-Integrated Ultra-Dense Cellular Networks.
IEEE Trans. Wirel. Commun. 2020, 19, 1977–1989. [CrossRef]

8. Ma, G.; Wang, Z.; Zhang, M.; Ye, J.; Chen, M.; Zhu, W. Understanding Performance of Edge Content Caching for Mobile Video
Streaming. IEEE J. Sel. Areas Commun. 2017, 35, 1076–1089. [CrossRef]

9. Mahmood, A.; Casetti, C.E.; Chiasserini, C.F.; Giaccone, P.; Haerri, J. The RICH Prefetching in Edge Caches for In-Order Delivery
to Connected Cars. IEEE Trans. Veh. Technol. 2019, 68, 4–18. [CrossRef]

10. Park, S.; Oh, S.; Nam, Y.; Bang, J.; Lee, E. Mobility-aware Distributed Proactive Caching in Content-Centric Vehicular Networks.
In Proceedings of the 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC), Paris, France, 11–13 September 2019.
[CrossRef]

11. Yu, Z.; Hu, J.; Min, G.; Zhao, Z.; Miao, W.; Hossain, M.S. Mobility-Aware Proactive Edge Caching for Connected Vehicles Using
Federated Learning. IEEE Trans. Intell. Transp. Syst. 2021, 22, 5341–5351. [CrossRef]

12. Liu, W.; Zhang, H.; Ding, H.; Li, D.; Yuan, D. Mobility-Aware Coded Edge Caching in Vehicular Networks with Dynamic Content
Popularity. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China,
29 March–1 April 2021; pp. 1–6. [CrossRef]

13. Yao, L.; Wang, Y.; Wang, X.; Wu, G. Cooperative Caching in Vehicular Content Centric Network Based on Social Attributes and
Mobility. IEEE Trans. Mob. Comput. 2021, 20, 391–402. [CrossRef]

14. Yao, L.; Chen, A.; Deng, J.; Wang, J.; Wu, G. A Cooperative Caching Scheme Based on Mobility Prediction in Vehicular Content
Centric Networks. IEEE Trans. Veh. Technol. 2018, 67, 5435–5444. [CrossRef]

15. Huang, W.; Song, T.; Yang, Y.; Zhang, Y. Cluster-Based Cooperative Caching with Mobility Prediction in Vehicular Named Data
Networking. IEEE Access 2019, 7, 23442–23458. [CrossRef]

16. Wang, C.; Chen, C.; Pei, Q.; Lv, N.; Song, H. Popularity Incentive Caching for Vehicular Named Data Networking. IEEE Trans.
Intell. Transp. Syst. 2022, 23, 3640–3653. [CrossRef]

17. Wang, R.; Kan, Z.; Cui, Y.; Wu, D.; Zhen, Y. Cooperative Caching Strategy with Content Request Prediction in Internet of Vehicles.
IEEE Internet Things J. 2021, 8, 8964–8975. [CrossRef]

18. Tan, L.T.; Hu, R.Q. Mobility-Aware Edge Caching and Computing in Vehicle Networks: A Deep Reinforcement Learning. IEEE
Trans. Veh. Technol. 2018, 67, 10190–10203. [CrossRef]

19. Tan, L.T.; Hu, R.Q.; Hanzo, L. Twin-Timescale Artificial Intelligence Aided Mobility-Aware Edge Caching and Computing in
Vehicular Networks. IEEE Trans. Veh. Technol. 2019, 68, 3086–3099. [CrossRef]

20. Tian, H.; Xu, X.; Qi, L.; Zhang, X.; Dou, W.; Yu, S.; Ni, Q. CoPace: Edge Computation Offloading and Caching for Self-Driving
with Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2021, 70, 13281–13293. [CrossRef]

https://crawdad.org/epfl/mobility/20090224
https://crawdad.org/epfl/mobility/20090224
https://doi.org/10.15783/C7J010
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
http://doi.org/10.1109/TITS.2017.2749459
http://doi.org/10.1109/vnc.2018.8628354
http://doi.org/10.1109/iccsn52437.2021.9463666
http://doi.org/10.1109/wcsp.2019.8928131
http://doi.org/10.1109/TVT.2020.3042089
http://doi.org/10.1109/TWC.2019.2960329
http://doi.org/10.1109/JSAC.2017.2680958
http://doi.org/10.1109/TVT.2018.2879850
http://doi.org/10.23919/wmnc.2019.8881585
http://doi.org/10.1109/TITS.2020.3017474
http://doi.org/10.1109/wcnc49053.2021.9417383
http://doi.org/10.1109/TMC.2019.2944829
http://doi.org/10.1109/TVT.2017.2784562
http://doi.org/10.1109/ACCESS.2019.2897747
http://doi.org/10.1109/TITS.2020.3038924
http://doi.org/10.1109/JIOT.2021.3056084
http://doi.org/10.1109/TVT.2018.2867191
http://doi.org/10.1109/TVT.2019.2893898
http://doi.org/10.1109/TVT.2021.3121096

Sensors 2023, 23, 1732 20 of 20

21. He, Y.; Zhao, N.; Yin, H. Integrated Networking, Caching, and Computing for Connected Vehicles: A Deep Reinforcement
Learning Approach. IEEE Trans. Veh. Technol. 2018, 67, 44–55. [CrossRef]

22. Qiao, G.; Leng, S.; Maharjan, S.; Zhang, Y.; Ansari, N. Deep Reinforcement Learning for Cooperative Content Caching in Vehicular
Edge Computing and Networks. IEEE Internet Things J. 2020, 7, 247–257. [CrossRef]

23. Dai, Y.; Xu, D.; Lu, Y.; Maharjan, S.; Zhang, Y. Deep Reinforcement Learning for Edge Caching and Content Delivery in Internet
of Vehicles. In Proceedings of the 2019 IEEE/CIC International Conference on Communications in China (ICCC), Changchun,
China, 11–13 August 2019; pp. 134–139. [CrossRef]

24. Su, Z.; Hui, Y.; Xu, Q.; Yang, T.; Liu, J.; Jia, Y. An Edge Caching Scheme to Distribute Content in Vehicular Networks. IEEE Trans.
Veh. Technol. 2018, 67, 5346–5356. [CrossRef]

25. Breslau, L.; Cao, P.; Fan, L.; Phillips, G.; Shenker, S. Web caching and Zipf-like distributions: Evidence and implications. In
Proceedings of the IEEE INFOCOM ‘99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320), New York, NY, USA,
21–25 March 1999; Volume 1, pp. 126–134. [CrossRef]

26. Wang, R.; Peng, X.; Zhang, J.; Letaief, K.B. Mobility-aware caching for content-centric wireless networks: Modeling and
methodology. IEEE Commun. Mag. 2016, 54, 77–83. [CrossRef]

27. Tran, T.X.; Pompili, D. Adaptive Bitrate Video Caching and Processing in Mobile-Edge Computing Networks. IEEE Trans. Mob.
Comput. 2018, 18, 1965–1978. [CrossRef]

28. Yang, R.; Guo, S. A Mobile Edge Caching Strategy for Video Grouping in Vehicular Networks. In Proceedings of the 2021
13th International Conference on Advanced Computational Intelligence (ICACI), Wanzhou, China, 14–16 May 2021; pp. 40–45.
[CrossRef]

29. Chen, J.; Wu, H.; Yang, P.; Lyu, F.; Shen, X. Cooperative Edge Caching with Location-Based and Popular Contents for Vehicular
Networks. IEEE Trans. Veh. Technol. 2020, 69, 10291–10305. [CrossRef]

30. Yao, J.; Han, T.; Ansari, N. On Mobile Edge Caching. IEEE Commun. Surv. Tutorials 2019, 21, 2525–2553. [CrossRef]
31. Gao, S.; Dong, P.; Pan, Z.; Li, G.Y. Reinforcement Learning Based Cooperative Coded Caching Under Dynamic Popularities in

Ultra-Dense Networks. IEEE Trans. Veh. Technol. 2020, 69, 5442–5456. [CrossRef]
32. Shanmugam, K.; Golrezaei, N.; Dimakis, A.G.; Molisch, A.F.; Caire, G. FemtoCaching: Wireless Content Delivery through

Distributed Caching Helpers. IEEE Trans. Inf. Theory 2013, 59, 8402–8413. [CrossRef]
33. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
34. Lillicra, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep rein-

forcement learning. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico,
2–4 May 2016.

35. Morales, M. Grokking Deep Reinforcement Learning; Manning Publications: Shelter Island, NY, USA, 2020.
36. Piorkowski, M.; Sarafijanovic-Djukic, N.; Grossglauser, M. CRAWDAD Dataset epfl/Mobility (v. 2009-02-24). Available online:

https://crawdad.org/epfl/mobility/20090224 (accessed on 23 September 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TVT.2017.2760281
http://doi.org/10.1109/JIOT.2019.2945640
http://doi.org/10.1109/iccchina.2019.8855951
http://doi.org/10.1109/TVT.2018.2824345
http://doi.org/10.1109/infcom.1999.749260
http://doi.org/10.1109/MCOM.2016.7537180
http://doi.org/10.1109/TMC.2018.2871147
http://doi.org/10.1109/icaci52617.2021.9435871
http://doi.org/10.1109/TVT.2020.3004720
http://doi.org/10.1109/COMST.2019.2908280
http://doi.org/10.1109/TVT.2020.2979918
http://doi.org/10.1109/TIT.2013.2281606
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://crawdad.org/epfl/mobility/20090224

	Introduction
	Related Works
	System Model
	Network Model
	Content Request Model
	Caching Model
	Communication Model
	Vehicular Mobility

	Deep Reinforcement Learning for Caching Strategy
	Mobility Prediction of Vehicles with LSTM
	Deep Deterministic Policy Gradient
	Caching Strategy with DDPG

	Performance Evaluation
	Conclusions
	References

