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Abstract: The inverse Finite Element Method (iFEM) has recently gained much popularity within the
Structural Health Monitoring (SHM) field since, given sparse strain measurements, it reconstructs the
displacement field of any beam or shell structure independently of the external loading conditions
and of the material properties. However, in principle, the iFEM requires a triaxial strain measurement
for each inverse finite element, which is seldom feasible in practical applications due to both costs
and cabling-related limitations. To alleviate this problem several techniques to pre-extrapolate the
measured strains have been developed, so that interpolated or extrapolated strain values are inputted
to elements without physical sensors: the benefit is that the required number of sensors can be reduced.
Nevertheless, whenever the monitored components comprise regions of different thicknesses, each
region of constant thickness must be extrapolated separately, due to thickness-induced discontinuities
in the strain field. This is the case in many practical applications, especially those concerning fiber-
reinforced composite laminates. This paper proposes to extrapolate the measured strain field in a
thickness-normalized space, where the thickness-induced trends are removed; this novel method can
significantly decrease the number of required sensors, effectively reducing the costs of iFEM-based
SHM systems. The method is validated in a simple but informative numerical case study, highlighting
the potentialities and benefits of the proposed approach for more complex application scenarios.

Keywords: inverse Finite Element Method; iFEM; shape sensing; composite materials; CFRP;
GFRP; SHM

1. Introduction

In past decades, the research community and the mechanical, civil, and aerospace
industries have invested significantly in Structural Health Monitoring (SHM). SHM can be
regarded as a collection of methodologies [1], sensors [2–4], and algorithms [5–8] that aim
to automatically and continuously assess the structural integrity of high-value structures
and systems [9,10]. The objective is to lessen and ultimately avoid costly and frequent
maintenance inspections on safety-critical assets such as bridges, aircrafts, and vessels,
effectively reducing their life cycle cost, increasing their operational lifespan, and improving
their overall safety [11,12].

SHM techniques aim to infer the state of health of a structure given measured data
from sensors; such techniques may be clustered in data-based black-box models, white-
box or physics-based models, and mixed data and physics-based models, also known
as grey-box models [13,14]. Black-box methodologies generally make use of Machine
Learning techniques to extract damage-sensitive features from the signals’ pattern, with
no information on the underlying physics of the problem at hand. In contrast, white-
box models make use of physics to interpret signal patterns and infer the health state of
structures. Grey-box models combine purely data-based techniques with physics-based
ones [13,14].

The inverse Finite Element Method [15,16] makes use of inverse elements to discretize
a physical model of a structure; it has proven to be a feasible option to extract structural
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health indicators, thus recently garnering interest in the SHM field. The iFEM is an
inverse shape-sensing [17] method that, given measured strains at discrete locations on the
structure, reconstructs the displacement field of any structure that may be modeled as a
shell or beam [18], minimizing a weighted functional of the error between the measured
strains and their numerical formulation [15]. The inverse Finite Elements are based on shape
functions that are not derived from physical equations but from polynomial, approximating
kinematic, theories, and the functional minimization is not based on any physical principles;
however, the physical model of the structure is still embedded in the iFEM; thus, it may be
regarded as a white-box approach in the context of SHM. The most appealing feature of
the iFEM is that the external load applied to the structure and material properties are not
needed; the geometry and the boundary conditions applied to the structure are the only
required parameters [15].

The iFEM has been successfully applied to the monitoring of a container ship [19,20],
wind turbines [21,22], and to complex aeronautical structures [23]. Colombo et al. in [24]
developed an iFEM-based damage detection methodology, and current research is expand-
ing towards damage identification and quantification [25–28]; very recent developments
are in the direction of a non-deterministic displacement reconstruction [29].

The main drawback of the iFEM is that, for thin shells, in principle the iFEM requires a
triaxial strain measurement for each element of the structure, on both the top and bottom of
the shell, making it impractical and unsuited for many application scenarios. To relieve this
issue, two approaches were introduced that would reduce the number of required sensors
for the iFEM. The first one can be called weighting, it was introduced in the very first
iFEM formulation [15]. The second one is the use of strain interpolation or extrapolation
techniques, such as the Smoothing Element Analysis (SEA) [30–32], which have been
introduced only more recently [33,34].

Weighting means assigning a lower weight in the iFEM functional to the elements that
do not comprise any sensor in their spatial domain, or to the strain components that are
not measured, such as the transverse shear strain, whose contribution to the displacement
is generally negligible in thin shells. Although weighting has generally a positive effect
on displacement reconstruction, its effect is limited, and it does not arbitrarily affect the
solution [35].

Strain pre-extrapolation techniques interpolate or extrapolate the measurements on
the top and bottom of the shell in the elements missing experimental measurements before
the iFEM computes the displacement field; this solution has been proven to increase the
accuracy of the iFEM methods and to reduce the number of sensors required to achieve
a prescribed performance [33,34,36]. Any interpolation/extrapolation method may be
employed in principle; the state-of-the-art employs the SEA, modal expansion [37], and
physics-based pre-extrapolation techniques [38], although polynomial fittings may be
robust enough for simpler case studies. It should be noted that the pre-extrapolated values
do not have to be exactly equal to the true values that would be measured by sensors since
weights may alleviate this discrepancy [33,34], and the displacement field reconstructed by
the iFEM restores the compatibility in the displacement field. The interested reader may
refer to [33] for a comparison of the SEA and polynomial fittings as strain pre-extrapolation
techniques, while the SEA and modal expansion methods are explored in [37].

The main issue with extrapolating the strain measurements on both the top and bottom
of the shell is that it is inefficient for application scenarios where the component thickness
is not constant, which is typical of fiber-reinforced composite components and stiffened
components [36]. In fact, the strain field depends on the component thickness, and severe
discontinuities in the strain field are present due to the variations in the thickness itself. As
will be shown in the case study, even for simple cases, such as a simple cantilever plate
of piecewise constant thickness subjected to pure bending, the state of the art requires
each region of constant thickness to be extrapolated separately, thus requiring at least
some strain sensors (according to the specific interpolation technique adopted) for any
interpolation region.
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This paper proposes an alternative approach to extrapolate the strain field so that the
main discontinuities induced by the change in thickness are removed. The key idea is to
scale the membrane strain and the curvatures depending on the component thickness, since
in any isotropic material and in the great majority of composite layup sequences used in
engineering applications the laminate membrane stiffness scales with the thickness, and
the bending stiffness scales with the third power of the thickness. Thus, by multiplying
the membrane strains by the laminate thickness and the curvatures by the third power
of the thickness, the normalized membrane strains and the normalized curvatures can
be pre-extrapolated considering measurements placed on regions of different thickness,
since this normalization removes the discontinuities in the strain field induced by the
variations in thickness. Following the pre-extrapolation, the normalized membrane strains
and curvatures can be unnormalized and fed as input to the iFEM.

The main benefit of the proposed approach is that it makes a global pre-extrapolation
feasible for variable thickness components, instead of resorting to multiple local pre-
extrapolations as in the state of the art: this translates into a decrease in the number of
required sensors, thus in a significant reduction of the costs and complexity of iFEM-based
SHM systems.

The effectiveness of the proposed approach is demonstrated in a numerical experiment,
which considers a cantilever plate subjected to different loading conditions: albeit simple,
this case study is particularly informative, highlighting the potentialities and the benefits
of the proposed approach for more complex application scenarios.

The remainder of the paper is structured as follows. Section 2 provides a brief in-
troduction to the inverse Finite Element Method and describes the variable thickness
pre-extrapolation methodology. Section 3 presents the case study and comments on the
results. Section 4 concludes the work underlying future research directions.

2. The Inverse Finite Element Method

A brief introduction to the inverse FEM is presented in this section, while a more
comprehensive and detailed overview is available in [15,24,34] for the interested reader.

The iFEM minimizes a least square functional of the error between measured strains
and curvatures and their respective numerical formulations to compute the displacement
field of any shell or beam structure discretized into finite elements. The parameters required
for the method are the structural geometry and the boundary conditions.

The iFEM formulation employed in this paper makes use of the iQS4 elements [39]
for plates and shells, which is based on the Mindlin kinematic assumptions and whose
shape functions were originally developed for the MIN4 element [40,41]. For each inverse
Finite Element i the membrane strains ei, the curvatures ki and the transverse shear strains
gi are measured (·ε) (see Section 2.2 for a more detailed explanation of the sensors and
measurements), and their respective numerical formulation.

(
ui) is computed as a function

of the nodal degrees of freedom ui; the error least-square functional Φi is built as:

Φi

(
ui
)
= wi

m‖e
(

ui
)
− eε

i‖
2 + wi

b‖k
(

ui
)
− kε

i‖
2 + wi

s‖g
(

ui
)
− gε

i‖
2 (1)

where the coefficients wi
m, wi

b, and wi
s are positive weights associated with the related strain

components for each element. The role of the weights is twofold: first, it controls the
coherence between the strain field components; secondly, it can weight the contribution of
different elements that are linked to the same nodal degrees of freedom.

Controlling the coherence is desirable in thin shell applications, where the transverse
shear strains g cannot be measured directly: given that their contribution to the displace-
ment is negligible in thin shells, they are set to zero, and the weight wi

s is set to a value of
10−3 for all the elements, so that more importance is given to the minimization of the error
of the membrane and bending components.

The weights are also used to compensate for the fact that experimental measurements
are typically not available for all the elements: In this case, the measurements (·ε) are set to
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zero, or they are pre-extrapolated from the sensor data [33,34], and the value of the weight
is reduced to a value ranging from 10−1 and 10−3, to take into account the fact that the
input value is not a direct experimental measurement. It should be noted that altering the
weights does not arbitrarily change the solution, but it can improve the solution up to a
limit [35]. Although not implemented since it is out of the scope of this work, the weights
might also be assigned a different value for each strain direction, as detailed in [42].

The next two subsections describe how the numerical formulation of the strains
(·ε) and their experimental counterpart (·ε) are obtained, while Section 2.3 describes the
Euclidean norms in Equation (1) and the functional minimization.

2.1. Numerical Strain Formulation

The numerical formulation of the strains (e
(
ui), g

(
ui)) and of the curvatures k

(
ui) is

derived from the bilinear shape functions originally developed for the MIN4 element [40,41].
They are defined in a local reference system (x, y, z) whose origin is set in the centroid of
the inverse finite element, as illustrated in Figure 1; the local coordinate spans the element
thickness, with z ∈ [−h;+h], where h is the element semi-thickness. The iQS4 element has
4 nodes, with three translational and three rotational degrees of freedom per node, for a
total of 24 degrees of freedom, which are stacked in the vector ui. The degrees of freedom
of the nodes ui in local coordinates are linked to the strain by means of the derivatives of
the shape functions, namely Bm, Bb, Bg (membrane, bending and shear) in the following
equation. Their formulation is not reported here for the sake of brevity, but the interested
reader can refer to [39] where they are explicitly detailed.

e
(
ui) = Bmui

k
(
ui) = Bbui

g
(
ui) = Bsui

(2)
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2.2. Input Strain Formulation

Each inverse Finite Element in principle requires at least a measurement of the mem-
brane strains eε

i and of the curvatures kε
i . Given that the sensors (typically strain gauge

rosettes) are applied on the top and bottom of the shell, as illustrated in Figure 2, the
membrane strain and the curvatures with respect to the element mid-plane are recovered
by making use of the Mindlin kinematic assumptions, as reported in the following equation,
where εxx, εyy denote respectively the measurement of the strain in the x and y direction,
while γxy denote the shear strain component.

eε
i,j =


ε0

xx
ε0

yy
γ0

xy


j

=
1
2


ε+xx + ε−xx
ε+yy + ε−yy
γ+

xy + γ−xy


j

kε
i,j =


κ0

xx
κ0

yy
κ0

xy


j

=
1

2h


ε+xx − ε−xx
ε+yy − ε−yy
γ+

xy − γ−xy


j

(3)
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Figure 2. Discrete sensor location on the shell structure.

The subscript j in the equation denotes the fact that there may be more sensors for
each Finite Element, although this is rarely the case in practice; the element thickness 2h
is computed for each sensor location, and the superscripts (·+) and (·−) denote that the
measurements are taken, respectively, at the top and bottom of the shell. As mentioned,
the transverse shear g cannot be recovered from measurements taken on the shell surface.
Nevertheless, its contribution is negligible in thin shells, and as it is common practice in
the iFEM, it will be disregarded from here on.

2.3. Euclidean Norms and Minimization

To minimize the global error functional, the Euclidean norms defined in Equation (1)
are expanded as in the following equation, where it is assumed that n strain sensors are
embedded into the i-th element.

‖e
(
ui)− eε

i‖2 = 1
n
s

Ai

n
∑
j=i

(
e
(
ui)

j − eε
i,j

)2
dxdy

‖k
(
ui)− kε

i‖2 = (2h)2

n
s

Ai

n
∑
j=i

(
k
(
ui)

j − kε
i,j

)2
dxdy

‖g
(
ui)− gε

i‖2 = 1
n
s

Ai

n
∑
j=i

(
g
(
ui)

j − gε
i,j

)2
dxdy

(4)

where Ai is the element area. It should be noted that whenever no input data is available
for a particular strain component, i.e., it has not been pre-extrapolated, n is conventionally
set to 1 and the strain component is set to zero: a small weighting coefficient is then applied,
as previously described.

By making use of Equations (2) and (3), the least-square functional of the i-th inverse
element presented in Equation (1) can be reduced to the following equation:

Φi

(
ui
)
= uiT

Kiui − 2uiT
fi + ξ i (5)

where:
ki =

s
Ai

(
wmBmT

Bm + wb(2h)2BbT
Bb + wsBsT

Bs
)

dxdy

fi = 1
n
s

Ai

n
∑

j=1

(
wmBmT

eε
i,j + wb(2h)2BbT

kε
i,j + wsBsT

gε
i,j

)
dxdy

ξ i = 1
n
s

Ai

n
∑

j=1

(
wmeεT

i,j e
ε
i,j + wb(2h)2kεT

i,j k
ε
i,j + wsgεT

i,j g
ε
i,j

)
dxdy

(6)

The global functional can be built by resorting to a standard assembly operation, in
which the displacements in the local coordinates are transformed into global coordinates.
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The boundary conditions are applied so that rigid-body motion is avoided, and the mini-
mization (∂Φ/∂U = 0) is carried out analytically, yielding the following linear problem:

UF = K−1
FF · FF (7)

where UF is the vector of global displacements, KFF is a matrix resembling the stiffness
matrix in the direct FEM, and FF is a forcing term that corresponds to the contribution of
the input strains. It should be noted from the above equations that the matrix KFF does not
depend on the input strains: once it is inverted, the method can be applied in real-time by
updating the forcing vector FF, which is a computationally inexpensive operation since it
only involves matrix multiplications.

2.4. Variable Thickness Pre-Extrapolation with the iFEM

As mentioned above, in practical applications, it is usually not feasible to install one
sensor per each inverse Finite Element, and pre-extrapolation techniques are employed to
interpolate and extrapolate the measured strains to the locations of the inverse elements
which are not covered by any sensor.

To understand the idea that drives the proposed approach, it is helpful to briefly recap
the generalized constitutive law of plates according to the classical laminate theory; the
interested reader can refer to [43] for a more detailed illustration. For a laminate composed
of r layers, the stresses in the l-th layer can be expressed as a function of the membrane

strains and curvatures by transforming the lamina stiffness matrix Ql from the lamina axis

to the laminate axis
(

=
Q
)

, yielding:

σxx
σyy
σxy

l

=


=
Q11

=
Q12

=
Q16

=
Q21

=
Q22

=
Q26

=
Q16

=
Q26

=
Q66


lε0

xx
ε0

yy
ε0

xy

+ z

κ0
xx

κ0
yy

κ0
xy

 =
=
Q

l
(e + zk) (8)

The resultant forces N and moments M per unit length are by definition:

N =

Nxx
Nyy
Nxy

 =


∫ h
−h σxx dz∫ h
−h σyy dz∫ h
−h σxy dz

 =
r
∑

l=1

=
Q

l ∫ zl
−zl−1

(e + zk) dz

M =

Mxx
Myy
Mxy

 =


∫ h
−h σxx z dz∫ h
−h σyy z dz∫ h
−h σxy z dz

 =
r
∑

l=1

=
Q

l ∫ zl
−zl−1

(
ez + z2k

)
dz

(9)

where zl−1 and zl are, respectively, the lower and upper out-of-plane coordinates of each
lamina, and σ· denotes the Cauchy stress tensor components. Given a stacking sequence,
the well-known symmetric relationship can be derived:

[
N
M
] =



A11 A12 A16 B11 B12 B16
A12 A22 A26 B12 B22 B26
A16 A26 A66 B16 B26 B66
B11 B12 B16 D11 D12 D16
B12 B22 B26 D12 D22 D26
B16 B26 B66 D16 D26 D66





ε0
xx

ε0
yy

2ε0
xy

κ0
xx

κ0
yy

κ0
xy


= [

A B
B D

][
e
k
] (10)

where matrix A governs the membrane laminate stiffness, matrix B couples the membrane
and bending components of the laminate, and D is the bending stiffness matrix.

The present work restricts the application of the proposed methodology to the appli-
cation scenarios where there is no membrane-bending coupling, and matrix B is null. This
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is typically not an issue given that symmetric lamination sequences, for which matrix B
is null and there is no membrane-bending coupling, are employed in the vast majority of
fiber-reinforced polymer applications due to manufacturing issues with non-symmetric
laminates. Whenever B is not null, the laminate twists or bends after the curing process,
since it naturally shrinks when it is cooled from the curing temperature to the ambient
temperature: this change of curvature is generally deleterious; therefore, it is avoided by
design in most cases, since it makes it particularly difficult to predict the shape of the
cured component.

The proposed methodology further restricts its scope to the materials where the
membrane matrix A scales with the thickness of the laminate, and the bending matrix D
scales with the third power of the thickness of the laminate 2h. Albeit this restriction may
appear a severe limitation, it is almost irrelevant in practice given that most of the fiber
reinforced polymers practical applications employ homogeneous stacking sequences, as
thoroughly detailed in [44]: these sequences satisfy this constraint.

For the sake of clarity, the analytical expression of the constitutive law is reported for
an isotropic material in the next equation.

Nxx
Nyy
Nxy
Mxx
Myy
Mxy



=



E(2h)
1−v2 v E(2h)

1−v2 0 0 0 0

.. E(2h)
1−v2 0 0 0 0

.. .. E(2h)
1+v 0 0 0

.. .. .. E(2h)3

12(1−v2)
v E(2h)3

1−v2 0

.. .. .. .. E(2h)3

12(1−v2)
0

.. .. .. .. .. E(2h)3

12(1+v)





ε0
xx

ε0
yy

γ0
xy

κ0
xx

κ0
yy

κ0
xy



(11)

where E is the Young Modulus of the material and ν the Poisson ratio.
Given that the membrane stiffness matrix A and the bending stiffness matrix D are,

respectively, proportional to h and h3, we propose a novel pre-extrapolation approach that
normalizes the membrane strain and the curvatures by multiplying membrane strains for h
and the curvatures for h3, as per the following equation:

η =


ηxx
ηyy
ηxy

 = e · h

ξ =


ξxx
ξyy
ξxy

 = k · h3

(12)

where η will be called normalized membrane strains and ξ normalized curvatures. For the
sake of clarity, the pre-extrapolation procedure is described in Algorithm 1.
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Algorithm 1: Variable Thickness Pre-Extrapolation

1:
Given surface measurements, compute curvatures k and membrane strains e
(Equation (3)).

2:
Normalize the k and e, computing the normalized curvatures ξ and membrane
strains η (Equation (9)).

3:
Pre-extrapolate/interpolate the normalized membrane strain components using any
interpolation/extrapolation method.

4: Unnormalize ξ and η (Equation (12)) to recompute k and e.
5: k and e to the iFEM input.

The reason why pre-extrapolating in the normalized space is beneficial is that it
removes most of the discontinuities in the strain field induced by thickness changes,
as is shown in the next section. The normalization, albeit not equivalent, under the
aforementioned assumptions yields the same effect as if the internal forces and moments
were pre-extrapolated, rather than the strain field itself. It should be noted that, although
the fact that the laminate material properties must be thickness-homogeneous and there
must not be any membrane-bending coupling in the laminate constitutive law, the actual
values of the material properties are not needed, and no material calibration must be
performed to apply the proposed method.

The proposed approach should preferably be applied to thin laminates, which are
employed in most practical aeronautical thin-walled structures. Thick laminates should
be handled with care, as the proposed approach is applicable provided that the Mindlin
kinematic assumptions are acceptable: This depends on the transverse shear stiffness of
the particular laminate that is considered. The proposed approach might be applicable
for stiffened plates with slight modifications, as long as the homogeneity of the layup
is preserved in the stiffener base, and the framework hereby proposed is modified by
considering possible variations in the mean plane of the shell: the validation for stiffened
plates is left for future research. Sandwich structures are generally of uniform thickness, as
their main weakness and least efficient constituent is the core; therefore, the applications
with variable thickness are rather scarce. However, as for thick laminates, sandwich
structures must be modelled with Timoshenko’s kinematic theory, which implies that both
bending and transverse shear stiffness contribute to structural displacement. Therefore,
the proposed approach is not applicable in the current form to such structures, and this
extension might be developed in future research.

3. Case Study: Composite Variable Thickness Plate

The proposed methodology is validated in a simple but informative numerical case
study: a composite plate made of fiberglass and epoxy resin clamped at one tip and
subjected to different loading conditions. The procedure is as follows: a direct FEM analysis
is run, and the displacement and strain fields are computed as output. The strain field
at the sensor locations is extracted from the direct FEM analysis, as if it were measured
by sensors; it is pre-extrapolated and given as input to the iFEM: The iFEM displacement
field is compared to the direct FEM analysis, which is assumed to be the ground truth. No
sensor noise has been simulated, given that the purpose of this case study is to highlight
the potentiality of the method without any confounding influence.

The plate dimensions and layup sequence are depicted in Figure 3. Each lamina is
composed of a fiberglass weave and epoxy resin, which is widely used in wind turbine
applications. The lamina properties are reported in Table 1. The direct FEM and the iFEM
meshes are shown in Figure 4, along with the sensor network: Sensors are placed on both
the top and bottom sides of the plate, as is required by the iFEM. The membrane wi

m and
bending wi

b weights assigned to the elements where the solution is pre-extrapolated, i.e.,
all the elements which do not contain any sensor in Figure 4a, are set to 10−1, while the
weights for the transverse shear strain wi

s are set to 10−3 as is common practice in the iFEM
literature, given that they are not measured and their contribution to the displacement
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is negligible in thin shells. No sensitivity analysis on the values of the weights has been
performed since, as empirically shown in [35]; whenever the pre-extrapolated strains are
close to the true strain, as in this case study, the sensitivity to the weights is negligible.
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Table 1. Fiberglass-epoxy lamina material properties [45] for the direct FEM.

E11 [MPa] E22 [MPa] ν12 G12 [MPa] G13 [MPa] G23 [MPa] Thickness [mm]
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bottom and top sides at each blue-filled circle.

In this case study polynomials are used to pre-extrapolate the strain field, although
in principle any pre-extrapolation technique may be applicable. This is because every
reader should be familiar with polynomial pre-extrapolation, while more complex strain
extrapolation techniques, such as the SEA, would have not been more effective and would
have shifted attention away from the objective of the analysis, which is to evaluate the
effectiveness of the normalization.

The loading conditions applied to the plate are traction, out-of-plane tip load, uniform
pressure, and shear loading: They have been chosen since each of them induces a specific
deformation mode either in the membrane strain or in the curvature components, so that it
is possible to promptly perceive the effects of the proposed pre-extrapolation methodology.
The following subsections present the results of the iFEM analysis for each load case.
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3.1. Traction

The boundary conditions and the loading conditions applied to the plate are shown in
Figure 5: the plate is clamped at one end and the uniformly distributed line load applied
on the other end is set to 15 N

mm . It should be noted that the transverse displacement Uy
is constrained just in one point at the clamped edge to avoid any boundary effect due
to the clamp, which is induced by the Poisson ratio; this is to focus attention just on the
effectiveness of the proposed approach to deal with variable thickness, rather than focusing
on the local effects of the boundary conditions. The polynomial pre-extrapolation orders for
the normalized membrane strains and the normalized curvatures are reported in Table 2:
It should be noted that the only pre-extrapolation of interest is ηXX, as the traction force
induces a pure membrane loading. The polynomial pre-extrapolation degree for ηXX is set
to 1 for the X direction, while it is set to 2 for the Y direction because it achieves a slightly
better fit with respect to a bilinear fit. For the sake of completeness, the authors have run
an iFEM simulation with a bilinear pre-extrapolation, and the results are almost identical
to the ones hereby reported.
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Table 2. Traction: selected polynomial pre-extrapolation orders.

ηXX ηYY ηXY ξXX ξYY ξXY

Direction X Y X Y X Y X Y X Y X Y

Polynomial degree 1 2 1 1 1 1 1 1 1 1 1 1

Figure 6 presents the normalized membrane strains ηXX computed from the measure-
ments on both the top and bottom surfaces of the shell, along with the pre-extrapolation.
At a glance, the first order polynomial should be a good fit for the normalized strain. To
better appreciate the goodness of fit of this pre-extrapolation in a two-dimensional plot,
Figure 7 displays a slice at Y = 250 (half the plate width) of both the normal strain eXX and
the normalized normal strains ηXX: The true strain distribution given by the direct FEM
analysis is overlayed for comparison.
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Y = 250 mm.

Looking at the direct FEM distribution in the membrane strain, Figure 7a, two general
trends may be noticed: a major trend with harsh discontinuities, induced by the variable
thickness in the specimen, and some minor trends on the portions of the plate of constant
thickness. It is apparent that by looking at the eXX at the measurements (blue cross marks
in Figure 7a), the only feasible approach to correctly pre-extrapolate the membrane strain
would be to use a constant function for each portion of the plate with constant thickness.
However, this approach is not feasible when the strain field is not piecewise constant, as it
will be shown in the next sections, and whenever there is a region of constant thickness
which do not contain any sensor.

On the other hand, looking at the normalized plot presented in Figure 7b, it is ap-
parent that the major discontinuities induced by the variable thickness are removed, and
the direct FEM presents only residual trends. These residual trends, given the sparsity
of the sensor network, are not captured, but the linear fit (red circles in Figure 7b) is rea-
sonable given the measured points (blue cross marks in Figure 7b). This is confirmed
by the unnormalized pre-extrapolated membrane strain displayed in Figure 7a: the pre-
extrapolated values are indeed close to the direct FEM, demonstrating the goodness of the
pre-extrapolation methodology.



Sensors 2023, 23, 1733 12 of 20

The other strain and curvature components pre-extrapolation plots are not reported
for the sake of brevity, given that their contribution to the displacement component of
interest is negligible for this load case. The relative error between the displacement UX
computed by the direct FEM and the one computed by the iFEM is shown in Figure 8: the
maximum relative error is 0.53%, and the error peaks are located at the two corners of
the specimen.
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3.2. Out-of-Plane Tip Loading

The boundary and loading condition of the plate for this load case are presented in
Figure 9: the out of plane line load has been set to 0.01 N

mm , achieving an out-of-plane
displacement of 12 mm at the plate loaded end in the direct FEM analysis, which is
consistent with the assumption of linearity in the displacements both in the direct and
inverse FEM. The polynomial pre-extrapolation degrees for this load case are reported in
Table 3; the most relevant component to pre-extrapolate to achieve a good displacement
reconstruction is ξXX, i.e., the normalized curvature in the longitudinal direction: the
polynomial degree has been set to one, given that for a scenario with constant thickness, the
curvature should be linear, as the bending moment. Although all the other pre-extrapolation
components have been set to 1, they are actually irrelevant for this load case, but they are
reported for the sake of completeness.

Table 3. Out-of-plane tip loading: selected polynomial pre-extrapolation orders.

ηXX ηYY ηXY ξXX ξYY ξXY

Direction X Y X Y X X Y X Y X Y

Polynomial degree 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 10 shows the pre-extrapolated curvature and the one computed from the
measurements: the bilinear pre-extrapolation achieves a perfect fit of the data. In Figure 11
the pre-extrapolation methodology can be appreciated: from Figure 11a it is apparent that
the direct-FEM curvature exhibits a piecewise linear trend, which would be impossible to
extrapolate given the sensor network sparsity. The only solution to capture this trend would
be to place at least two sensors for each portion of the plate of constant thickness, as the state
of the art would suggest. By normalizing the curvature as in Figure 11b, the discontinuities
and the slope changes induced by the variable thickness are suppressed: the linear fit
is both in agreement with the observed data and the direct FEM solution. The minor
discontinuities in the direct FEM normalized curvature presented in Figure 11b are almost
negligible given the fact that they are in the normalized space: once the unnormalized
pre-extrapolated values are remarkably close to the direct FEM solution.
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Figure 11. (a) out-of-plane tip loading: curvature κXX and (b) normalized curvature ξXX , slice at
Y = 250 mm.

The relative error between the iFEM-reconstructed displacement UZ and the direct
FEM is shown in Figure 12: the maximum percentage error is 5.41%, located at the two
corners of the free end, while it tends to zero in the central region of the loading edge,
highlighting the goodness of the pre-extrapolation adopted.
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Figure 12. Out-of-plane tip loading: percentage error of the UZ displacement.

3.3. Uniform Pressure

In this load case, the plate is subjected to a uniform pressure distribution; for the sake
of clarity, the boundary and loading conditions are illustrated in Figure 13. The pressure
magnitude is set to 7.5 · 10−5 N

mm2 , and the maximum displacement given by the direct FEM
is 21.8 mm, so that the hypothesis of linearity is considered acceptable. Table 4 reports the
degrees of the polynomial used to pre-extrapolate and interpolate the data: a quadratic
polynomial is used to fit the only component of interest, i.e., κXX , in the X direction, given
that the data follow a parabolic trend in the normalized space. The polynomial fit for κXX is
shown in Figure 14.
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Polynomial
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The curvature κXX is shown in Figure 15a: the solution is piecewise parabolic, and the
state of the art would require at least two sensing points per each portion of the plate of con-
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stant thickness to achieve a piecewise linear fit, three sensing points if a piecewise quadratic
function is desired. By normalizing the curvature κXX as in Figure 15b, the piecewise
quadratic κXX is transformed into an almost quadratic function, which can be interpolated
by fewer sensors. As in the previous load cases, some minor trends in the normalized
strain ξXX are persistent and are not removed by the normalization. Notwithstanding, the
pre-extrapolated strain κXX in Figure 15a is deemed a fair approximation of the direct FEM
curvature. For this and the previous load cases, it should be noted that, in principle, there
is no need for all the regions of constant thickness to be covered by sensors and potentially
one or more regions might not include any sensor without compromising the displacement
reconstruction if the normalized strain field can be assumed sufficiently smooth, i.e., some
a priori knowledge of the loading conditions is available, as in any practical application.
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Figure 15. Uniform pressure: (a) curvature κXX and (b) normalized curvature ξXX , slice at
Y = 250 mm.

The percentage error of the iFEM displacement UZ reconstruction with respect to the
direct FEM displacement is shown in Figure 16: The maximum error is 7%, which validates
the quality of the pre-extrapolation.
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3.4. Shear Loading

The boundary conditions and the loading conditions for this load case are reported
in Figure 17: the applied shear load is set to 7.5 N

mm . It should be noted that the clamping
condition differs from the one presented in the previous section, and in this case, all the
degrees of freedom are constrained at X = 0 mm. The polynomial pre-extrapolation setup
is reported in Table 5; the strain component of interest for this load case is ηXY: A linear
fitting in the X direction is performed, while a quadratic fit is chosen for the Y direction.
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Table 5. Shear loading: selected polynomial pre-extrapolation orders.

ηXX ηYY ηXY ξXX ξYY ξXY

Direction X Y X Y X Y X Y X Y X Y

Polynomial degree 1 1 1 1 1 2 1 1 1 1 1 1

The considerations outlined for the previous load cases are still valid for this loading
scenario: The discontinuities induced by the variable thickness are removed by the nor-
malization, as shown in Figure 18. However, the shear load and the boundary conditions
induce a more complex strain pattern with respect to the previous cases, especially from
X = 0 mm to X = 250 mm and from X = 750 mm to X = 1000 mm: the membrane strain
eXY and its normalized counterpart ηXY decrease significantly in these sections due to local
effects. The sensor network is not able to capture these variations in the strain field, and
the extrapolated values differ significantly from the direct FEM. Hence, it comes as no
surprise that the maximum percentage error is about 17% as shown in Figure 19. Although
the relative error is large, it is not of particular interest since the main objective of this
dissertation is to show that the discontinuities in the strain field in the normalized space
are successfully removed.
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4. Conclusions

This work proposes a novel approach to pre-extrapolate and interpolate the strain field
for the iFEM so that the global variations in the strain field induced by thickness changes
are removed. The proposed methodology is promising since it can significantly reduce the
number of required strain sensors needed for the shape-sensing of complex structures of
variable thickness, such as airplane wings or wind turbine blades.

The minor drawback of the proposed approach is that the material properties must be
partially known: the laminate stiffness properties must be thickness-homogeneous so that
the membrane and bending stiffnesses scale with the thickness and the third power of the
thickness, respectively, and there must be no membrane-bending coupling in the laminate
constitutive law.

The proposed approach has been applied to a simple case study of a clamped plate
subjected to several different loading conditions, making use of polynomial pre-extrapolation.
Its simplicity not only demonstrates the potential of the method in more complex application
scenarios, but also stresses the need for such an approach even in elementary applications.
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Future research may be devoted to applying the proposed approach to more complex
case studies, such as aircraft structural frames, possibly including an experimental valida-
tion. More conceptually, the proposed approach may be expanded by pre-extrapolating the
laminate moments and forces, so that any arbitrary constitutive law may be accounted for.
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