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Abstract: Clear underwater images can help researchers detect cold seeps, gas hydrates, and biologi-
cal resources. However, the quality of these images suffers from nonuniform lighting, a limited range
of visibility, and unwanted signals. CycleGAN has been broadly studied in regard to underwater
image enhancement, but it is difficult to apply the model for the further detection of Haima cold
seeps in the South China Sea because the model can be difficult to train if the dataset used is not
appropriate. In this article, we devise a new method of building a dataset using MSRCR and choose
the best images based on the widely used UIQM scheme to build the dataset. The experimental
results show that a good CycleGAN could be trained with the dataset using the proposed method.
The model has good potential for applications in detecting the Haima cold seeps and can be applied
to other cold seeps, such as the cold seeps in the North Sea. We conclude that the method used for
building the dataset can be applied to train CycleGAN when enhancing images from cold seeps.
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1. Introduction

Exploring cold seeps in the deep water of the South China Sea has attracted extensive
scientific interest [1]. Current research reveals that the escape of submarine cold seeps often
reflects the existence of methane hydrates or deep natural gas [2]. Feng et al. conducted
a quantitative study on the contribution of cold seep fluids to the bottom-water carbon
reservoir of the cold seeps in the South China Sea. These cold seeps might help our
understanding of the dynamics and the environmental impacts of hydrocarbons [3]. Di
et al. determined size distribution, bubble release rate, and bubble diameters using a
semiautomatic bubble-counting algorithm and observed that the Haima cold seeps in the
South China Sea may be a source of methane for the ocean [4].

Clear underwater images can be a powerful tool for researchers in detecting cold seeps,
gas hydrates, and biological resources. However, complex illumination conditions in the
water, such as nonuniform lighting, diminished colors, and unwanted signals, limit the
range of optical detection [5]. To solve these problems, underwater image enhancement
technology has been widely studied [6]. The white balance method and the shades-of-gray
method have been successfully applied [7-9]. However, at the same time, these methods
may lead to image distortion because of the overcompensation of the red channel [10].
Those methods do not consider the fact that the color perceived by the retina is determined
by an object’s ability to reflect long-, medium-, and short-wavelength light. Thus, they
always suffer from an imbalance with respect to color channels. In consideration of the
issues mentioned above, a visual model named retinex was created to explain perceived
human color [11-13]. Joshi and Kamathe applied retinex to underwater image enhance-
ment [14]. With retinex processing, one can obtain a dynamic range or color and lightness
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rendition compression, but these cannot be obtained simultaneously. Therefore, Rahman
et al. presented a multi-scale retinex model to overcome this limitation [15]. Furthermore,
Jobson et al. proposed a multi-scale retinex model with color restoration (MSRCR) to solve
the distortion defect problem caused by strong local contrasts [16]. With the development
of retinex, MSRCR has also been applied to underwater image enhancements, and good
results have been achieved [17]. However, the underwater environment is complex, and
MSRCR is not flexible enough; thus, we need to debug the results many times in order to
obtain good enhancement results to improve its application range [6]. To solve this problem,
Hu et al. introduced the natural image quality evaluation index and a gravitational search
algorithm in a multi-scale retinex model to obtain a parameter index with an excellent
adaptive ability relative to environmental changes [18].

With the development of artificial intelligence (Al), underwater image enhancements
based on Al have achieved good results [19]. Perez et al. [20] proposed an underwater image
enhancement method using a convolutional neural network (CNN) that can be regarded
as the first application of the deep learning method to underwater image enhancement.
Anwar et al. later enhanced underwater images by constructing an underwater CNN [21].
Although both CNNs and underwater CNNs have been successfully applied in the field
of underwater image enhancement, the complexity and scarcity of underwater images
seriously restrict their applications [22]. Using deep learning frameworks can effectively
improve the enhancement’s quality, although they fail to preserve the details of far-off
objects in underwater images. To overcome these issues, Han et al. proposed a deep
supervised residual dense net. It first uses residual dense blocks to extract features, and
then the net adds residual path blocks between the encoder and decoder to reduce semantic
differences between low-level features and high-level features; thus, it achieves good
qualitative and quantitative enhancement effects [23]. Hu et al. introduced the natural
image quality evaluation index to provide generated images with higher contrasts. The
enhanced image of this algorithm is clearer than the truth image set provided by the existing
dataset [24]. Zhang et al. used a two-stage detection network and a self-built dataset to
construct an end-to-end model and improved the detection speed by 6% [25].

Generative adversarial nets (GANSs) provide another possibility for transferring an
image from one domain to another [26]. Domain conversion can be performed by using
CycleGAN in the absence of paired data [27], thereby providing a new idea for underwater
image enhancement. Fabbri et al. proposed UGAN, which uses CycleGAN to generate
degraded underwater image data and improve the image quality [28]. A weak model
inspired by CycleGAN was proposed by Goodfellow et al. [26]; it uses structural loss rather
than the consistency loss of CycleGAN to generate a repaired image from the distorted
image. This method addresses the influence of different types of water on the enhancement
results, but it often produces strange textures and is highly dependent on the training
dataset. Ahn et al. [29] used matched clear and unclear underwater images as a dataset for
training, and the model structure of CycleGAN was adjusted to improve the effect. The
multichannel CycleGAN technology proposed by Lu et al. [30] addresses the influence of
different types of water on the enhancement results, but it is also highly dependent on
the training dataset. An end-to-end underwater image enhancement method based on
CycleGAN for an unpaired dataset was proposed by Du et al. in 2022. They used URPC2019
and EUVP datasets to train the model, effectively restored the blue-green background,
and transformed a blurred underwater degraded image into a clear image [31]. Their
work proves that CycleGAN can effectively enhance underwater images, but because its
dataset requires clear underwater images and fuzzy underwater images at the same time,
training the dataset is often difficult in practical work; thus, the application of CycleGAN
is limited [5]. In the process of deep-sea cold seep exploration, obtaining large, clear
datasets for training is difficult due to the limitation of capital costs. Moreover, because
CycleGAN can render photographs into their respective styles [27], when a large number
of underwater images are required to train other Al models, the trained CycleGAN can also
be used to generate photographs with the style of underwater images. CycleGAN plays a
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basic role in unpaired dataset training, but cycle consistency limits the training efficiency.
To solve this issue, Jiang et al. proposed a new GAN named EnlightenGAN [32]. They
proposed an effective and efficient GAN suitable for unpaired training and applied it to
low-light image enhancement, and it easily enhanced real-world low-light images from
different domains.

Although the method based on MSRCR has been widely used, it suffers from difficul-
ties in parameter setting, limiting its practical application. Although the underwater image
enhancement method based on CNNs has a good effect, it is difficult to apply because
of the complex underwater environment it is expected to operate in and scarcity of data
resources. CycleGAN provides a novel scheme for solving these problems, but training the
network is difficult, especially an inappropriate land dataset is used, and the training effect
of GAN may be elusive. Unfortunately, in the process of deep-sea cold seep exploration, it
is often difficult to obtain a large number of clear images for training. Moreover, because
CycleGAN can render photographs into their respective styles [27], when a large number of
underwater images are required to train other Al models, the trained CycleGAN can also be
used to generate photographs with the style of underwater images. As shown in Figure 1,
when the dataset is not appropriate, it is difficult for CycleGAN to obtain good results via
training. More effort needs to be directed toward finding a suitable method that can make
CycleGAN practical for applications in cold seep underwater image enhancement.

-8

Figure 1. CycleGAN enhancement of an underwater image with an inappropriate dataset.

When we used the standard model for training, we observed that it could not correctly
enhance cold spring images from all environments. When we used the self-built dataset,
if the dataset was inappropriate, we were not able to complete the model training. In
order to solve these issues, we propose a new method of building datasets with the help
of MSRCR and underwater image quality measurement (UIQM) to achieve good results.
We used an actual image collected by a remotely operated vehicle (ROV) in a cold seep in
Haima. Then, we chose images of the representative working conditions of the Haima ROV
to test the enhancement effect of MSRCR with different parameters. After an automatic
comparison with UIQM, the MSRCR parameters with the best effect were used to build the
dataset to train CycleGAN. After hundreds of epochs, the model was trained for practical
applications. The enhancement experiment using the trained CycleGAN demonstrated
that the images were enhanced very well, and CycleGAN had a good generalization ability.
Considering the above works, the main contributions of this paper are as follows:

o  The effect of cold seep image enhancements using MSRCR on different imaging
devices in different detectors was tested, and it was shown that a single enhancement
coefficient or a fixed table could not meet the requirements of different scenes.

e  CycleGAN was trained using the standard dataset and applied to the image enhance-
ment of cold seep images. It was observed that the model worked well in some
conditions and failed in other conditions.

e  We found an effective way to build datasets to train CycleGAN with the help of
MSRCR for cases in which a clear image dataset is difficult to obtain.

e  Finally, an active underwater image enhancement CycleGAN that can be applied to
practical applications rather than standard data models was trained. Compared with
previous studies, the training ideas proposed in this paper may be applied to any
underwater scene, with good universal applicability.
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The rest of this paper is organized as follows. The basic methods of MSRCR and
CycleGAN are presented in Section 2 briefly. Section 3 provides the details of the tests and
results of the experiments in this paper. A discussion and conclusions are presented in
Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Principle of MSRCR

The word retinex is a combination of retina and cortex [11]. Retinex theory includes
two aspects: an object is determined by the reflection ability of the object rather than the
absolute value and the reflected light intensity, and the color of the object is not affected
by the uniformity of illumination [16]. Ma et al. [33] systematically introduced the idea of
underwater image enhancement using MSRCR. Although MSRCR can yield good results
when applied to underwater image enhancement, it is often necessary to test and update
relevant parameters according to underwater illumination and turbidity conditions to
obtain good image enhancement and color restoration, which limits its application [33].

2.2. Principle of CycleGAN
2.2.1. Net Structure

As shown in Figure 2, CycleGAN has four basic networks: two generators and two
discriminators [27]. The generator network is used to generate two distributions, m and n.
Generators G and F generate m domain data to n and n domain data to m, respectively. Their
purpose is to generate images to deceive the two discriminator networks. Discriminators
D, and D, judge the converted images and verify whether the image generated by G is M
or N. A six-layer ResNet [34] is used to preserve the properties of the original input in the
CycleGAN. Then as in [35], the discriminator network takes an image as input and tries to
predict it as the original image or the output image of the generator.

Dwm Dy
L e L

AV )
AL

Figure 2. Basic structure of CycleGAN.

2.2.2. Cycle Consistency Loss

We followed the design of reference [26] to calculate the loss of CycleGAN. As shown
in Figure 3, G(m) can be obtained by substituting data m into generator G; by substituting
G(m) into the inverse generator F, we can obtain F(G(m)) ~ m, and the forward consistency
loss can be obtained by calculating the loss, L. Similarly, we can obtain the backward
consistency loss by calculating G(F(n)) ~ n.
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Figure 3. (a) Forward and (b) backward consistency losses.
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The related formula to calculate the cycle consistency loss L, can be expressed as

cyc
Lcyc(G/F) =Em ~ pdata(m)[”F(G(m)) - m“l] +Ey ~ pdata(n)[”G(F(n)) - 1’1”1], (1)

where E indicates the calculation of the excepted value, and p is the probability. F, G, m,
and n have the same meaning, as shown in Figure 3. Moreover, || || is the L1 norm. The full
objective loss is

L(G,F,Dm,Dn) = Loan(G,Dn, X,Y) + Loan(F,Dm, X, Y) + AL (G, F), )

yC
where A is a permanent control of the relative importance of the two objectives. For the
two sets to generate countermeasures, the network is reversed to solve

G*,F* = argmin max (G, F, Dm, Dn). (3)
G,F Dm,Dn

3. Tests and Results
3.1. Dataset Preparation Using the MSRCR Method

Because the original MSRCR has so many parameters that make its application difficult,
in this study, we selected the simplified MSRCR method in the GNU image manipulation
program, which reduces the number of needed key parameters to one [36]. The method
first calculates the mean value Mean and mean square deviation Var of each RGB channel
of image R(x,y). Then, the minimum and maximum values, Min and Max, of each channel
are calculated using the following formulas:

{ Min = Mean — Dyn - Var, )
Max = Mean + Dyn - Var,
where Dyn is the parameter used to adjust color saturation contamination around the
new average color. This is the parameter for tweaking optimal results, because its effect is
extremely image-dependent. Finally, the method performs linear mapping to output the
enhanced image R(x, y) using the following formula:

R(x,y) = (( Value — Min )/ (Max — Min)) - 255, (5)

where Value indicates the RGB value of each pixel in the image.

The parameter Dyn plays an important role in this method, and according to the
representative working conditions in the actual detection of cold seeps with the ROV, we
adjusted the relevant parameters for the corresponding images and then modified the
relevant parameters of MSRCR. Figure 4 and Table 1 present the quantitative values of
the enhancement effect of each parameter. In Figure 4, the first row shows the original
images collected by the ROV, and the other rows depict the enhanced images. To ensure
that the parameters have a large variation range and a small enough variation interval,
we set the value of Dyn from 0.4 to 6.0 and the interval to 0.2 to enhance the cold seep
images under different operating modes. The quality of enhancement was judged by the
UIQM introduced in [37]. The training dataset was then chosen automatically based on the
principle of maximizing the value of UIQM. For different cameras of the Haima ROV under
different working conditions, the Dyn parameter of MSRCR was distributed in the selected
parameter range listed in Table 1. When Dyn was 6.0, the value was too high, leading to
deterioration with respect to image enhancement. Therefore, we set its maximum value
to 6.0 in the experiment. Similarly, Dyn = 0.4 was too low, resulting in deterioration with
respect to image enhancement; thus, we set its minimum value to 0.4. To make the density
of Dyn sulfficiently high, we set the step size to 0.2 in the experiment. For the sake of brevity,
Table 1 only lists the statistical rule of MSRCR enhancement when the step size is 0.8.
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Figure 4. Enhancement of MSRCR under different parameters.

Table 1. MSRCR and CycleGAN image enhancement statistical data of UIQM values for Qiongdong-
nan and North Sea cold seeps.

Qiongdongnan Cold Seeps  North Sea Cold Seeps

Msrcr Dyn values Mean Variance Mean Variance
Original images 2.180 0.204 2.454 0.382
Msrcr-0.4 1.034 0.047 1.488 0.110
Msrer-1.2 2.054 0.1632 2.143 0.233
MSRCR Msrcr-2.0 2.045 0.219 1.813 0.247
Msrcr-2.8 1.923 0.234 1.567 0.244
Msrcr-3.6 1.752 0.236 1.520 0.200
Msrcr-4.4 1.586 0.228 1.337 0.164
Msrcr-5.2 1.440 0.213 1.186 0.135
Msrcr-6.0 1.318 0.197 1.063 0.110
Msrcr best value chosen 2.444 0.189 2.572 0.197
CycleGAN Iraining Mean Variance Mean Variance
times
20 2.344 0.202 2.572 0.126
40 2.398 0.181 2.606 0.140
60 2.478 0.157 2.590 0.171
CycleGAN 80 2.421 0.158 2.572 0.208
100 2.343 0.171 2.544 0.218
120 2.489 0.174 2.637 0.215
140 2.422 0.166 2.628 0.187
160 2.499 0.154 2.839 0.112
180 2.465 0.173 2.635 0.234
200 2.426 0.177 2.647 0.260

To fairly assess these different parameters, we selected the standard metric UIQM and
set the same parameters as observed in [37]. We then assessed the enhancement results of
each image in the original dataset under different parameters and identified the one that
maximized the UIQM’s value. Finally, the images were inserted into the training dataset as
the conversion dataset of the original underwater dataset to train CycleGAN.
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After a comparison based on the principle of being able to see every detail in the
image and that the color should be as natural as possible, we chose the dynamic parameters
that led to the maximum value of UIQM and then inserted them into the training dataset.
Although MSRCR can enhance underwater images, different parameters need to be used
for different scenarios, which seriously affects its practical application. Therefore, we
unified the images with the best MSRCR enhancement effect under different parameters
into a dataset for different use scenarios and used the dataset to train the CycleGAN model.
A total of 80% of the images were randomly selected for training, and the other 20% were
used for verification.

3.2. CycleGAN Training and Underwater Image Enhancement

We used the MindSpore framework. Compared with other Al frameworks, such as
Tensorflow and PyTorch, MindSpore can remain consistent with the python language style,
and its intermediate representation technology ensures efficiency [38]. The parameters ref-
erenced in Ref. [6] were used for model training. On this basis, to make full use of hardware
resources and improve image resolution, we set the image’s resolution to 512 x 512.

All tests were run on a Lenovo P920 workstation. The operating system was CentOS
Linux8.6, and the deep learning framework was MindSpore 1.9.0. Using the method
proposed in this paper, the total number of images in the dataset was set as 2438 images,
corresponding to the five representative underwater working conditions in Figure 4. The
CPU used was Intel Xeon 5218R, and the GPU was NVIDIA 3090. All the data were stored
on a Lexar NM800 hard disk.

The curves reflecting the training cycle’s consistency loss (G_loss and D_loss) are
shown in Figure 5. In the first 100 iterations, the loss curves descended rapidly, and Table 1
confirms this viewpoint. In the first 100 epochs of training, the UIQM values of images
enhanced by the trained CycleGAN model were not stable enough because the variance
value was too large; however, after 100 epochs, the mean and variance of the images in
the cold seep dataset tended to be stable. The average time cost of training was 17'56”
per epoch, so all training processes cost ~105 h for the 350 epochs. Because the loss was
reduced very slowly after 200 epochs, the parameters of CycleGAN could be obtained by
comprehensively considering the time cost factor of training.

o4 |l |
D_L LA
_Loss 0.3 TN N R Y
02 LTI
0.1
0 50 100 150 200 250 300 350

Training times
Figure 5. Training loss for CycleGAN.

Figure 6 shows the effect of using the trained CycleGAN to enhance several working
conditions that were opposite to those indicated in the first line of Figure 4. It can be
observed from the figure that the images under all working conditions were brighter, with
richer colors and better color consistency after enhancement. As a comparison, the image
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in the second line is the enhancement effect of the network trained with the standard EUVP
dataset (http:/ /irvlab.cs.umn.edu/resources/euvp-dataset accessed on 22 September 2022).
It can be observed from the figures that although the images enhanced by CycleGAN, which
was trained with the EUVP dataset, seem more colorful, CycleGAN failed in a specific
scene (the figure on the left).

Enhanced images using
CycleGAN trained by
the method of this article. &

Enhanced images using
CycleGAN trained by
the EUVP dataset.

Figure 6. Enhancement results for the trained CycleGAN.

Figure 7 shows the chosen images of the cold seeps in the North Sea [39]. The statistical
regularities of the UIQM value for MSRCR and the training steps of CycleGAN are provided
in Table 1. From the images and the UIQM values, we can see that, before enhancement,
the images’ color was dim, and the target object was not clear. After enhancement, the
image color was rich, and the contrast was obvious. Moreover, as with the dataset tests, the
UIQM value was still better than that of MSRCR. As seen in the third line of Figure 7, the
CycleGAN trained with the EUVP dataset failed to enhance the images collected from cold
seeps in the North Sea [39].

Original images
of the cold seeps in
the North Sea [39].

Enhanced images using
CycleGAN trained by
the'method of this article.

Enhanced images using
CycleGAN trained by
the EUVP dataset.

Figure 7. Results for the trained CycleGAN’s enhancement of images in the North Sea [39].

3.3. Versatility Test of the CycleGAN

Training the classification model or the target recognition model requires a large
number of labeled data. However, in practical applications, obtaining a substantial number
of underwater data directly is difficult. Using CycleGAN to degrade images may provide
another possibility for training the underwater depth model. As shown in Figure 8, bright
images could deteriorate underwater images.

3.4. EnlightenGAN Test

To verify the generality of the method proposed in this article, we tested it using
EnlightenGAN [32]. The hardware used in the training process was the same as that used
for CycleGAN. The Al framework was Pytorch 1.12.1. We made very little changes to the
source code shared on Github to adapt the new version of Pytorch. The test took 4 h and
17’56 to finish 200 training epochs. The training efficiency was significantly improved
compared with that of CycleGAN. Table 2 shows the statistical UIQM values of each
training time for EnlightenGAN. The table indicates that EnlightenGAN can achieve a
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good result after very little training. The UIQM statistical value reached the maximum at
120 titerations, and further training did not improve the enhancement effect.

Original clear images
in the EUVP dataset.

Simulated underwater
images degraded by the
CycleGAN trained in
this article.

Figure 8. Degradation of enhancement results.

Table 2. The statistical UIQM values of each training time for EnlightenGAN.

EnlightenGAN Training Times Mean Variance
20 2.355 0.190
40 2.384 0.165
60 2.352 0.174
80 2.199 0.177
100 2.231 0.178
120 2.500 0.174
140 2213 0.187
160 2.189 0.192
180 2.186 0.193

200 2.264 0.176

Figure 9 shows the images corresponding to Figures 4 and 6. EnlightenGAN parame-
ters of 120 training epochs were selected to enhance the images. It can be seen from the
figure that the underwater images were effectively enhanced. The experiment proves this
method is also applicable for EnlightenGAN.

Enhanced images using
EnlightenGAN trained by

the method of this article.

Figure 9. Enhanced images using EnlightenGAN.

4. Discussion

By adjusting the parameters of MSRCR, enhanced images with different levels of
contrast and sharpness can be obtained. However, a more general scheme is often needed
in practical work to reduce the time cost of on-site debugging. In this sense, the CycleGAN
trained in this study has obvious advantages because the quality of enhanced images was
stable for a variety of scenes in the cold seep area of Haima. We also tested the ability of
CycleGAN to degrade the image. The results reveal that the model performed well with the
blue background of the sea, whereas brighter images were obviously degraded. Generally,
CycleGAN provides a stable degradation output, offering a dataset for the training of
underwater image classification models or a target recognition model.

Although a robust CycleGAN model that can be applied to detect cold seep areas can
be trained using the method in this study, the contrast of the image enhanced by the trained
model still needs to be improved. In addition, more efficient network implementation
needs to be considered for high-definition, real-time video stream processing.
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The parameters of MSRCR need to be adjusted by conducting experiments to obtain
good enhancement effects. Thus, in this study, we creatively employed MSRCR to build a
dataset to train CycleGAN. An image enhancement CycleGAN model suitable for a variety
of different scenes in the cold seep area of Haima was then obtained. Using the relevant
interfaces provided by the MindSpore architecture, the model can easily be deployed in an
ROV or in a shipboard computer to improve underwater video quality.

5. Conclusions and Future Steps

In this article, we found a new method for building a dataset with the help of MSRCR
and UIQM. Using the dataset, CycleGAN was trained to enhance the images collected from
the Haima cold seeps, with good effects. Compared with the CycleGAN trained with the
public dataset, the model that we trained can be widely used to enhance images of cold
seeps. It will be helpful for the detection of cold seeps in deep seas.

We were effectively able to implement an easy-to-expand dataset-building method to
provide effective solutions for underwater image enhancements in different environments.

There are still some shortcomings in this article. The training effect is dependent
on the dataset itself, and CycleGAN could not be trained to obtain a larger statistical
UIQM value than the dataset we built. In this paper, only the classical CycleGAN was
used for experiments. Although this model has been widely used, compared with the
newly proposed network, its training efficiency and accuracy are relatively limited. Thus,
it still requires some improvements, which could be achieved in future studies, such as
the following:

e  Abetter conventional underwater image enhancement method can be found compared
to MSRCR, and a new dataset for training can be built.

e Improved datasets can be obtained by implementing better enhancement evaluation
methods.

e  Our method is generic, and in future work, we will apply more updated models to
explore the path of underwater image enhancement and explore more dataset-building
schemes.
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