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Abstract: In the biometric field, vein identification is a vital process that is constrained by the
invisibility of veins as well as other unique features. Moreover, users generally do not wish to have
their personal information uploaded to the cloud, so edge computing has become popular for the sake
of protecting user privacy. In this paper, we propose a low-complexity and lightweight convolutional
neural network (CNN) and we design intellectual property (IP) for shortening the inference time in
finger vein recognition. This neural network system can operate independently in client mode. After
fetching the user’s finger vein image via a near-infrared (NIR) camera mounted on an embedded
system, vein features can be efficiently extracted by vein curving algorithms and user identification
can be completed quickly. Better image quality and higher recognition accuracy can be obtained
by combining several preprocessing techniques and the modified CNN. Experimental data were
collected by the finger vein image capture equipment developed in our laboratory based on the
specifications of similar products currently on the market. Extensive experiments demonstrated the
practicality and robustness of the proposed finger vein identification system.

Keywords: finger vein; CNNs; batch normalization; SDUMLA-HMT; contrast limited adaptive
histogram equalization (CLAHE)

1. Introduction

Security verification technologies have advanced rapidly in modern society. For
example, airport check-in systems have advanced from manual to automatic inspections.
With the increasing focus on personal privacy, much attention has been paid to biometric
verification, which utilizes human physiological characteristics, such as features of the
sclera [1], fingerprints [2], veins [1,3,4], and face [5], for identity verification. All these
technologies have three things in common. First, every person has their own biometrics
(i.e., “uniqueness”). Second, these features do not change dramatically over time (i.e.,
“stability”). Lastly, users need not bring all their personal keycards with them, and these
biometric features allow accurate identification and are hard to spoof or steal (i.e., “safety
and portability”). With these three advantages, biometrics has become the main trend for
personal identification in modern society.

Finger vein features used in human recognition methods, whether it is image pro-
cessing of photographic devices or finger vein feature recognition algorithms, have been
implemented in various applications that require security, such as ATMs and security
doors [6,7]. The finger vein identification system recognizes the structure of the visible
blood vessel pattern in the finger, which can only be irradiated with near-infrared (NIR)
light wavelengths. Because finger vein patterns are located under the skin, they are neither
changeable over time nor easily affected by skin surface changes, such as cuts, abrasions,
and surface stains, or by interference noise [8].
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In recent years, convolutional neural networks (CNN) have been widely used in many
feature extraction and classification tasks. The CNN uses convolution kernels of differ-
ent size to obtain the detailed features of images, including for finger vein recognition.
Traditional CNN for vein recognition had been known for having heavyweight architec-
tures [9], which required large amounts of computational resources and data for training
and inference. This led to the development of lightweight CNNs that are more efficient in
terms of computational resources and memory usage. Several recent works have proposed
lightweight CNN architectures to improve the performance of the recognition task while
reducing the computational cost. One such system used a lightweight CNN with triplet
loss function, composed of stem blocks for extracting coarse features of the images and
stage blocks for extracting detailed features [10]. Another system proposed a unified CNN
which achieved high performance on both finger recognition and anti-spoofing tasks while
making their neural network compatible [11]. It is interesting to note that there have been
several recent papers proposing lightweight CNN architectures for finger vein recognition
tasks and this topic has been gaining more attention in the field of biometrics. Here, we
propose a lightweight CNN with batch normalization (BN). The main design focus was
adding noise in the training process to prevent overfitting, as well as reducing internal
covariance shift.

One framework for mapping convolutional neural networks on FPGAs was fpga-
ConvNet [12]. This approach allowed fast exploration of the design space by means of
algebraic operations and it enabled the formulation of a CNN’s hardware mapping as an
optimization problem. Different from the hardware conditions in this article, the FPGA
core was an older process specification, and the core frequency and memory specifications
used were lower than the hardware specifications in this article. The convolutional layer
specification used was also relatively lower than the depth used in this article, and the
BN proposed in this article was not used. Moreover, the characteristic specification of
Sustained Performance would need to be further optimized and improved in the finger
vein recognition system when compared with the method proposed in this article.

One design used an accelerator that trained the CNN using efficient frequency-domain
computation [13]. It performed convolution using simple pointwise multiplications without
the Fourier transforms by mapping all the parameters and operations into the frequency
domain. The differences from the designs proposed in this paper were mainly due to the
specification conditions of the hardware design being ASIC and FPGA platforms, the core
frequency and integration of the precision control of the complex number computation,
and the neural network architecture being relatively limited due to the design conditions.
For the GPU calculation of the follow-up system, the design proposed in this paper was to
run directly on the neural network IP of the FPGA to more completely calculate the results
of finger vein recognition.

With the popularity of internet of things (IoT) systems, network security is the most
important issue for people, and people generally do not want to upload too much personal
information in security messages to the cloud server system. Therefore, “edge computing”
has become an important research topic. Using this, we can build a security system that is
not only safer but also faster because the transmission of information from the sensors is
minimized.

Previous work on finger vein sensor devices can be categorized into two types: com-
mercial and academic devices. Commercial devices are those developed by vendors, such
as Hitachi, IDEMIA, and Mofiria. These sensors have been widely used in the market for
several years. However, the manufacturers of these devices only provide the performance
metrics of their products, including false acceptance rate (FAR) and false reject rate (FRR),
without documenting their hardware implementation details. Additionally, the output
image format of these devices is encrypted, so researchers are not able to obtain raw finger
image data. To address this issue, we developed a finger vein capture device for academic
use that can export captured vein images in a non-proprietary format. Furthermore, cost-
effective components and simplicity were considered while developing our own device. A
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small, single-board computer (SBC) with NIR camera ware was used in our design, which
makes it compact and feasible for various applications.

In this paper, we propose a low-complexity and lightweight CNN-based finger vein
recognition system using edge computing, which can achieve a faster inference time and
maintain a high-precision system recognition rate. Based on the specifications of the
existing finger vein image acquisition products on the market, we designed and developed
our own finger vein image capture device to collect the finger vein images for this study.
Several preprocessing techniques and the modified CNN were combined to achieve better
image quality and higher recognition accuracy. The low-complexity and lightweight CNN
for the inference stage was designed based on an FPGA device that had limited resources,
with only 13,300 logic slices, each with four six-input LUTs, eight flip-flops, and four clock
management tiles, each with a phase and 220 DSP slices. Experiments were performed
using a variety of application scenarios (including finger vein images obtained from fingers
at different temperatures, heart rates (HRs), levels of cleanliness, etc.), illustrating the
robustness and practicality of the proposed system.

The remainder of this paper is organized as follows. Section 2 describes the proposed
system. Section 3 presents the experimental data. The system test results and comparisons
are given in Section 4. Section 5 concludes this work.

2. Proposed System

This study proposes a low-complexity and lightweight CNN-based finger vein recog-
nition system using edge computing, which allows faster reasoning time to obtain the
personal information identification results. Figure 1 shows the proposed recognition sys-
tem, which includes the training stage and the inference stage. A detailed description is
presented in the following sub-sections.
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2.1. Training Stage

The original finger vein images were obtained from our capture device developed with
the NIR 850 nm camera module shown in Figure 2. The image sensor was a Sony IMX219
in a fixed-focus module with an integral IR filter, and resolution was 8 M pixels with no
infrared. This device was developed based on the specifications of existing commercial
products. A simple system for illumination from the top side of the finger was designed.
Therefore, to train the CNN on the finger vein features, we needed to perform several
steps of preprocessing on the raw image. We conducted three main processes on the input
data: vein curving, region of interest (ROI) capture, and scaling. The binary features and
ROI of the finger vein images were calculated and used as the training data to obtain the
parameters for the modified CNN, which were then used in the inference stage.
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Figure 2. (a) Diagram of finger-vein collection system; (b) example of the operation of our device.

In order to collect the training and testing datasets, the following steps were used, as
shown in Figure 3. First, the finger vein images of 10 people were acquired through the
camera equipment. Six real-time finger vein images were taken for each person, yielding a
total of 60 original finger vein image files of the 10 people. After data augmentation, the
total number was 1800. The images were then divided into two categories: 1620 images
for training and 180 images for validation. In addition, the real-time finger vein images
for these 10 people were re-acquired, and then another 60 original finger vein image files
were obtained. After data augmentation, a total of 1800 images were obtained. From these,
1620 images were randomly selected for the system testing.
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(1) Image Preprocessing.

In the actual application of the finger vein recognition device, it was necessary to
consider various factors that can cause misjudgments when capturing the current finger
vein image. For example, if the size of the finger is different, or the image is too large,
the feature list is required, and if the image is too small, invalid edges where the edges
of the fingers are overexposed cannot be removed. The depth of the fingerprint on the
finger surface is also an important item that needs to be removed from noise interference.
Thus, one must determine how to prevent the noise image of fingerprints or skin surface
wear-and-tear from overlapping with the vein image. The surface temperature of the finger,
affected by situational factors in various climates, may cause slight changes in the size of
the pattern, and the training conditions must be added when the training dataset is initially
established.

With reference to the structure of the standard finger vein devices, such as the Hitachi
H1, the external light overlaps with the NIR light. The sensitivity and denoising ability
of the CMOS lens react to the CMOS lens. The most common problems are irregular
finger image edges and light overlap exposure. Therefore, we needed to perform image
preprocessing for each angle and noise simulation or image after adding conditions when
creating the initial finger vein image for each person being tested.

The main purpose of this stage was to generate the corresponding input pattern for
the training network. First, we converted the captured RGB image into grayscale. Then, we
scaled the image pixels ranging from 0 to 1. This normalization operation was to prevent a
large gradient during training.

Xnorm =
X− Xmin

Xmax − Xmin
, f or i = 1 . . . N (1)

After normalization, we enhanced the normalized image in order to emphasize the
vein features. We implemented the contrast-limited adaptive histogram equalization
(CLAHE) method, as shown in Figure 4. Compared with global histogram equalization,
CLAHE amplifies local features by dividing images into small blocks called “tiles.” Then,
each tile equalizes the histogram as in global equalization.
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Figure 4. Finger vein image processed by CLAHE.

Since only a portion of the image has the features of finger veins, we needed to fetch
the ROI of the image, as shown in Figure 5. First, we used an edge detection filter with
20 × 4 pixels, which was divided into upper and lower parts. The upper part was filled
with 1, and the lower part was filled with −1. By filtering the finger image, the upper
part of the image produced a maximum value, while the lower part produced a minimum
value.

For the sake of hardware structure and resource utilization, we scaled both our training
and testing datasets to 32 × 32 pixels after we fetched the ROI of the finger vein, as shown
in Figure 6.
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Figure 6. (a) Finger vein ROI result; (b) resized image for training.

(2) Data Augmentation

A neural network usually needs a large amount of data to learn the differences between
each category. Here, we performed the augmentation process considering the following:

(1) Since we used a high-resolution camera and scaled to a smaller size to perform the
inference, the quality of the source image we captured was stable. There was no need
for a training network with Gaussian noise, coarse dropout, or random brightness.

(2) We did not restrict the user’s finger position, so the finger could shift or rotate slightly.
To address this issue, our augmentation process mainly focused on shifting and
rotating.

In the data augmentation phase, we compared the “registration” data, shown as green
lines in Figure 7, and the “verification” data, shown as red lines. Since the tolerance of
rotation error mostly varied by plus–minus five degrees and the error of shifting varied
by plus–minus three pixels, we only augmented the dataset with random shifting and
random rotation. The two different datasets and the augmentation strategy are shown in
Figures 7 and 8. After the dataset was completed, there were 1620 images for training, 180
for validation, and another 1620 for testing.

(3) Neural Network Training

For neural network training, we used convolutional architecture for fast feature em-
bedding (Caffe) to establish the architecture and obtain trained parameters for the purpose
of FPGA inference. Caffe is a deep learning framework designed for expression, speed,
and modularity [14]. In practice, a complete Caffe training consists of several classes:
Blob, Layer, Net, and Solver. Blob is an N-dimensional array-storing data type defined
in Caffe; its main objective is to hold data, derivatives, and parameters in training and
inference dataflow. Layer is Caffe’s fundamental unit of computation; basic layers such as
Convolution and Pooling are defined in this class.
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First, users can customize their own neural network using several layer declarations
and then establish the network structure file, namely, the prototxt file. Second, in order to
train with our own dataset, image data had to be transformed into LMDB format and thus
referenced by the prototxt structure. Compared with TensorFlow [15], Caffe has a faster
training speed and lower memory requirements.

2.2. Inference Stage

A modified CNN for finger vein recognition is proposed in this paper. The original
CNN was obtained from the MNIST training model provided by Caffe, and the modified
CNN with batch normalization (BN) can obtain higher accuracy. The original and modified
CNNs are shown in Figure 9.

Vivado HLS was used to accelerate our neural network. The modified CNN con-
sisted of three convolutional layers, with BN after each layer. This intellectual property
(IP) featured im2 col convolution, which can be supported by the matrix multiplication
DSP provided by Xilinx. The acceleration ratio was 120× compared with the network,
running in a Linux environment with a 650 Mhz ARM cortex-A9 dual core CPU. Since
the preprocessing in the inference phase was similar to the preprocessing in the training
phase, the following sections focus on our neural network IP design. First, we designed and
modified the complexity and light weight of the CNN. In order to meet the requirement
of FPGA hardware system computing efficiency, we had to ensure that the convolution
algorithm occupied the largest proportion of the entire computing resources and that data
were reused in the convolution stage. We implemented general matrix multiplications
(GEMMs) to optimize the convolution operation in the IP design. GEMMs basically expand
the feature map and the kernel into two main matrices and then complete the convolution
by multiplying the two matrices. After the two matrices are completed, the multiplication is
performed, based on a 5 × 5 feature map with two channels and a 3 × 3 kernel. Maximum
pooling is carried out by selecting the maximum value within the pooling size. The fully
connected layer can be regarded as a 1× 1 convolution. After the convolutional layer chain,
the feature map is flattened into a one-dimensional (1D) stream and convolved with the
input fully connected parameters. Finally, we used Jupyter Notebook [16] for connecting
the uploaded image and the IP. Jupyter Notebook is an interactive computing environment
that enables users to manipulate their input data and calling IP directly. The detailed design
is described as follows.
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(1) IP Structure

GEMMs [14,17], Winograd Transform [18], and Fast Fourier Transform [13] are well-
known solutions to the issue of ensuring that the convolution algorithm occupies the largest
proportion of the entire computing resources and that data are reused in the convolution
stage. We implemented GEMMs to optimize the convolution operation in the IP design.
The overall convolution IP flow is illustrated in Figure 10.
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(SCSW), Stream Matrix Multiplication (SMM), Fully Connected (FC) layer.

(2) GEMMs

Before stepping into the dataflow in the IP, we need to introduce GEMMs. In a CPU or
GPU, a common way to process convolutional and fully connected layers is to map them
as matrix multiplication. GEMMs basically expand the feature maps and the kernels into
two main matrices, and then the convolution is performed by multiplying the two matrices
by each other. The details are illustrated in Figure 11.
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(3) SMM

After the two matrices are finished, the multiplication is carried out in this stage. Take
a 5 × 5 feature map and 3 × 3 kernel with two channels as an example. Figure 12 shows
the calculated details for this simple example.
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Max pooling is performed by choosing the maximum value within the pooling size.
To achieve this goal, we compared each input value with the previous value. That is, three
comparisons were carried out for a 2 × 2 max pooling.

Technically, a fully connected layer can be viewed as a 1 × 1 convolution. After the
convolutional layer chains, the feature maps are flattened into a 1D stream and convolved
with the input fully connected parameters.

(4) Batch Normalization (BN)
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Batch normalization (BN) [19] is known for reducing the internal covariate shift by
normalizing the inputs to have a mean of 0 and a standard deviation of 1. Two parameters,
β and γ, are obtained from mini-batches in the training phase and used for the inputs in
the inference stage. γ is the scale of the standard deviation parameter, and β is the shift of
the mean parameter. A detailed formula for the BN during the training stage is shown in
Equation (2), where B is the mini-batch size, C is the depth of input feature maps (IFMs),
N is the depth of output feature maps (OFMs), OFW is output feature map width, OFH is
output feature map height, σ is mini-batch variance, and ε is a negligible constant.

YBN[B, N, OFW, OFH] =

(
XBN[B , C , OFW, OFH]

)
√

σ2 + ε
γ+ β (2)

At the inference stage, β and γ are used for scaling and shifting after the inputs are
normalized by the maximum and minimum values in the input feature map. The scaling
and shifting parts only involve multiplication, while normalization requires division,
which could consume a large amount of computational resources on our FPGA board. The
normalization formula can be described as follows:

Xnorm =
X− Xmin

Xmax − Xmin
, f or i = 1 . . . N. (3)

Now, we have two ways of implementing this equation:
(1) Directly compute the division in the IP. (2) Preprocess the parameters by Python

before sending them to the data stream. Initially, we tried the first approach, but this failed
because our convolution parameters ranged from 0 to 1 while the batch norm parameters
pretrained by Caffe exceeded this range. Fixed-point arithmetic will overflow in this case.
Therefore, we moved to the second approach, because the output was obtained by the
input divided by a variable pretrained by the neural network. To simplify the hardware
architecture and save resources, we divided the batch norm layer parameters using Numpy
before sending them into the data stream.

3. Experimental Data

The finger vein datasets used for training and testing were as follows.

3.1. Laboratory’s Own Dataset

Using our self-developed equipment, we randomly selected 10 people and obtained
their index finger images six times to create a dataset containing a total of 60 images with
a resolution of 320 × 240. After performing data enhancement on these 60 images, a
total of 1800 images were generated, including 1620 images as the training dataset and
180 images as the validation dataset. In addition, 6 images of the finger veins of the same
10 people were captured again to yield a total of 60 images. After that, these 60 images
were augmented to produce a total of 1800 images, from which 1620 images were randomly
selected as the system test dataset. Figure 13a shows some examples of the finger vein
images from our own dataset. In practical applications, the same tester will produce
different samples of finger vein images at different times.

3.2. SDUMLA-HMT Finger Vein Dataset [20]

The SDUMLA-HMT finger vein dataset consisted of 106 people, and for each person,
the index fingers, middle fingers, and ring fingers of both hands had been captured. The
collection of each of the six fingers had been repeated six times, and the resolution of each
image was 320 × 240 pixels. From among all 3816 images, we selected 10 people and
60 finger images for experimentation. Figure 13b shows some examples from the SDUMLA-
HMT database. We built our own dataset based on the paradigm of the SDUMLA-HMT
dataset. Each tester will have a variety of similar but different vein images.
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Figure 13. (a) Laboratory dataset and (b) SDUMLA-HMT database.

3.3. Temperature Factor Test Image

This experiment was specifically aimed at assessing finger vein image sampling results
under different temperature conditions. Three cold and hot temperature values were used
(2 ◦C, 25 ◦C, and 45 ◦C,), which may be caused by the external temperature of the human
body. Figure 14 shows the real test scenario in which a finger was immersed for about 30 s
in a low temperature of 2 ◦C (left figure) and a high temperature of 45 ◦C (right figure).
Figure 15 shows finger vein images after the three temperature measurements at a low
temperature of 2 ◦C (left figure), a room temperature of 25 ◦C (middle figure), and a high
temperature of 45 ◦C (right figure).
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3.4. Sampling of Dirty Finger Surfaces

This experiment was specifically aimed at assessing the capture and testing of images
that might be affected by having something on the surface of the finger (dirt, birthmarks, cut
marks, etc.). The purpose of this experiment is to increase the complexity of the test phase
and show the robustness of our approach. As shown in Figure 16, we considered several
interference features that are most likely to cause skin surface damage, and collected the
finger vein images with a slightly dirty skin surface, cut marks, and simulated birthmarks.
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3.5. HR and Blood Pressure

This experiment was specifically aimed at assessing the effect of differences in HR or
blood pressure, e.g., in people suffering from disease or after exercise, confirming that this
is an experimental design for the weak elasticity test of the basic common sense in venous
blood vessels. As shown in the sampling diagram in Figure 17, we used a heart rhythm test
to capture heart rhythm data after 30 min of exercise, and then checked the accuracy of the
finger vein recognition by our approach. The test subjects are young and healthy without
disease. Cases of other conditions, such as any pathological or physiological condition, are
not included in the testing considerations.
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4. Experimental Results
4.1. Laboratory’s Own Dataset
4.1.1. Impact of Input Image Size and Enhancement

Examples of the datasets used in this experiment are shown in Figure 18. We imple-
mented six different strategies to make the training and testing datasets: (1) whole image
using original resolution, (2) fetching smaller 120 × 40 ROI with no expression, (3) fetching
40× 40 of the central finger area with no expression, (4) whole image downsized to 32 × 32,
(5) fetching smaller 120 × 40 ROI with expression to 32 × 32, and (6) fetching smaller
120 × 40 ROI with expression to 32 × 32 and binary.
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Figure 18. Six different training and testing datasets.

Table 1 indicates that Dataset (6) had the best accuracy among our datasets. The reason
was that Dataset (6) not only preserved the whole finger vein features but also emphasized
downsized features with binarization.

Table 1. Training accuracy summary of six different datasets.

Dataset Training Accuracy (by Choosing Highest in
Last 100 Iters)

[1] 91.33%
[2] 94.16%
[3] 93.33%
[4] 85.00%
[5] 92.77%
[6] 95.83%

In addition, we compared the accuracy of the datasets with and without CLAHE
enhancement. As Figure 19 shows, we found that with CLAHE it can quickly converge in
iteration and this increases the accuracy rate; on the other hand, if the CLAHE method is not
used, the iteration of training must spend more time stabilizing the convergence and this
affects the accuracy rate. The training accuracy increased by about 5% after implementing
CLAHE.
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4.1.2. Impact of BN

BN is a good way to increase both the training speed and the model accuracy when
adding noise to the data batch. We utilized our modified CNN to verify the effect of BN.

As Figure 20 shows, we found that with BN it can quickly converge in iteration and
this increases the accuracy rate; on the other hand, if the BN method is not used, the
iteration of training must spend more time stabilizing the convergence and this affects the
accuracy rate. With BN, the finger vein training accuracy was increased by about 8–10%
and the accuracy converged faster. Given these two results, we concluded that BN benefited
our training model.
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4.1.3. Impact of Optimizers

Different optimization strategies may lead to different training results. Here, we tested
five methods to train our dataset. The parameters were set to default and they were run for
1000 iterations.

Among these optimizers, Adam performed the best for our finger vein dataset, as
shown in Table 2. Since Adam combines the RMSProp with momentum, the first order
and second order of the gradient were considered in the process of weight updating. Not
only does the gradient converge to the curve faster, but the amplitude of the curve is also
smaller when implementing Adam.

Table 2. Comparison of different optimizers (unen is unenhanced dataset and en is enhanced dataset
through CLAHE).

Optimizers

Method Without BN
(unen/en)

With BN
(unen/en)

SGD 8%/10% 75%/74%

RMSProp 38%/54% 50%/65%

Nesterov 56%/68% 70%/72%

Adam 50%/74% 70%/75%

AdaDelta 12%/7% 17%/32%

AdaGrad 55%/70% 81%/72%

RMSProp 38%/54% 50%/65%

4.1.4. Impact of FPGA Acceleration

We used the CPU embedded on the board as the reference for the software approach.
On the software side, Theano was used to build the modified CNN framework. Using
PYNQ (Python productivity for Zynq), the FPGA ran in the Python environment. Theano
compiles the network framework directly in Python, while Caffe compiles it with C++,
so significant resources are wasted by using Caffe. Figure 21 shows the inference time
difference between the two approaches. We define the way to use the modified CNN
framework to assess inference cost time against hardware time and used the Caffe compiles
framework to assess inference cost time against software. The inference time of convolution
can be accelerated from 7.93 s to 54.7 ms for recognizing a single image.
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4.1.5. Temperature Factor Testing Results

In this experiment, Participant No. 4 was used as the test sample. He put his finger in
ice water (2 ◦C), stood still at room temperature (25 ◦C), and then immersed the finger in
hot water (45 ◦C). The temperature status of each finger was captured in sequence. After
the vein image was taken, it was input into the system of this paper for body identification.
Figure 22 shows the result of the ice water test at 2 ◦C. First, the finger vein image of
Participant No. 4 was read. Then, the software computing system took about 7.74 s
to determine that it was Participant No. 4. Finally, the FPGA hardware acceleration
system took about 48.3 ms to determine that it was Participant No. 4. The hardware was
more than 150 times faster at calculating the results than the software. The simultaneous
synchronization was aimed at comparing the results at 25 ◦C, 45 ◦C, and 2 ◦C, and it proved
that the finger surface temperature did not affect the finger vein recognition results. This
greatly improves the accuracy of the system for use in a variety of countries and regions
with different ambient temperatures. It also demonstrates the high recognition rate and
accuracy.
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4.1.6. Dirty Finger Surface Testing Results

According to the experimental design presented in Part 4 of Section 3, we aimed at
assessing the potential interference of conditions that may occur on the surface of the
finger, including dirt, cut marks, and birthmarks. The test results correctly identified the
participant, and as the results were the same as those in the previous paragraph, they are
not repeated here. These experiments proved that this research proposes a low-complexity
and lightweight CNN-based finger vein recognition system with edge computing that uses
faster hardware to reduce the inference time to obtain high-accuracy security information
recognition results.

4.1.7. HR and Blood Pressure Testing Results

According to the experimental design presented in Part 5 of Section 3, we aimed at
assessing the impact of different physiological conditions in people, specifically blood
pressure changes caused by disease factors or heart rhythm variability caused by exercise.
We found that the tester’s finger veins after the simulation state were affected, but after
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inputting this into the system for identification, the test results correctly identified the
participant.

4.2. SDUMLA-HMT Database

In our own dataset, there were 6 original images for each person, making 1620 images
for training after data augmentation, and then another 6 images were captured for testing.
In the SDUMLA-HMT database, only six original images were captured for each finger.
There were no other source images for testing. Thus, we only tested the training accuracy
using the validation dataset to verify the feasibility of our proposed finger recognition
CNN model. Figure 23 illustrates that both types of training accuracy converge after
100–200 iterations. However, training with BN converges faster than training without it.
BN not only reduces the internal covariance shift but also adds noise to make the training
process faster.
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4.3. Throughput Estimation

The throughput provided by the hardware can be estimated by the following formula:

Throughput = ∑(Multiply Accumulate (MAC) in one clock× clock f requency). (4)

Figure 21 indicates that we could inference 18.21 images in 1 s, and the workload of
our model was 0.0248 GOPS. Hence, the actual performance is calculated as 0.451 GOPS.

4.4. Comparison Results

Table 3 shows the results of a comparison with other works [6,7,10,11], which again
verifies that the embedded system proposed in this paper can achieve quite high accuracy.
For example, for a well-designed Gabor filter bank proposed by Ref. [6], which can enhance
the original gray image and extract more accurate finger vein texture features, the verifica-
tion was still based on the use of MATLAB software in a PC hardware device environment.
The verification results showed that the design of the finger meridian image acquisition
device based on near-infrared spectroscopy was very important to obtain high-precision
finger vein recognition results. In comparison, based on low-cost, low-complexity, and
lightweight FPGA hardware capabilities, our paper fully considered the preprocessing of
the acquisition and the influence of finger veins as the direction of product design. Both
systems use their own designed device to build the database, but with a difference of
platform, either PC or FPGA.
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Table 3. Comparison of results with other works.

Item

Method
Ref. [6] Ref. [7] Ref. [10] Ref. [11] Proposed

Algorithm Illuminance
control

Kernel fuzzy
C-means.

Self-define a
lightweight

convolutional
model

FVRAS-Net Simplify CNN
model

Algorithm complexity
High,

verification
with MATLAB

Medium,
verification

with MATLAB

High,
verification
with GPU

Medium,
verification

with
Embedded-

Board

Low,
verification
with FPGA

Finger vein identification device Their own
design device

Their own
design device

No, only public
database

Commercial
finger-vein
biometric

system

Our own
design device

Platform PC-Based

PC-Based
i5-6500 CPU

(3.2 GHz) and
8-GB RAM

PC-Based
I7-8700 CPU

(3.2 GHz) and
Nvidia 3090 Ti
(24-GB video

memory) GPU

Embedded-
Board

NVIDIA
development
board Jetson
TK1, Nvidia
1080 Ti GPU

FPGA
Xilinx XC7Z020

650 MHz on
ZYNQ and

512 MB RAM

Database Their self-built
database

Their self-built
database

SDUMLA-
HMT and
PKU-FVD

Their self-built
database,

IDIAP, USM,
SDUMLA-

HMT, MMCBN
and SCUT-SFV

Our self-built
database and

SDUMLA-
HMT

Recognition
accuracy rate (%) 95.15% 98.27% 99.3% 97.82% 95.82%

EER (%) 4.85% 2.35% – 2.18% 4.17%

Inference
time (s) 2.96 s – 14.2 ms 13.11 ms 0.356 s

In Ref. [7], the software method was based on a PC hardware interface and the use of
MATLAB software, and was especially focused on the edge fitting item of the segmentation
model, where the active contour occurs when the finger vein image is captured, and
accurately completes the finger vein image segmentation. In comparison, for the hardware
accelerated computing method proposed in our paper, the fixed LED light source was
based on an NIR camera and was applied to simplify the CNN. On the FPGA, it can also
obtain high-accuracy real-time identification of finger vein images. Both systems use their
own designed device to build the database, with a difference being again the platform, PC
or FPGA.

In Ref. [10], the paper proposed a lightweight deep-network finger vein recognition
algorithm which can effectively extract and match the features of finger vein images and
has high recognition accuracy and matching speed. The software method was based on a
PC hardware interface and worked on a graphics processing unit (GPU) device for training
and inference. The database used SDUMLA-HMT and PKU-FVD [10]. Compared with
the hardware accelerated computing method proposed in this paper, that lightweight
deep-network finger vein recognition algorithm needed a high-performance GPU, while
our paper has proposed a general, simplified CNN model that could work on an FPGA
platform, not needing a GPU, and we also used our own design device to build the database
and verified it with SDUMLA-HMT.
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In Ref. [11], the authors proposed a CNN-based embedded identification system which
used a multi-intensity illumination strategy to improve image quality, and they proposed
using their FVRAS-Net to extract features for both the recognition and anti-spoofing tasks
and thus to guarantee real-time performance of the embedded system. The software
method was based on a PC hardware interface and used a graphics processing unit (GPU)
device for training and a platform of the NVIDIA development board Jetson TK1 for
inference. The database used IDIAP, USM, SDUMLA-HMT, MMCBN, and SCUT-SFV [11],
and they also built their own database using a commercial finger vein biometric system. In
comparison, our paper has proposed a general, simplified CNN model that could work
on an FPGA platform, not needing a GPU and high performance in the embedded system.
For the algorithm, not only was our CNN model simpler than their FVRAS-Net, but the
hardware was easier and lower in cost for edge computing. Our system used our own
designed device to build the database and then verified with SDUMLA-HMT.

5. Conclusions

In this paper, we proposed a low-complexity and lightweight CNN-based finger vein
recognition system with edge computing that can achieve a faster inference time and
maintain a high-precision system recognition rate. Based on the equipment specifications
of the existing finger vein image acquisition products on the market, we designed and
developed our own finger vein image capture device to collect the finger vein images for
this study. Specifically, a set of darkroom photography equipment that conforms to the NIR
wavelength of 850 nm was used.

The modified CNN-based finger vein recognition system consists of three convolu-
tional layers, and BN is performed after each layer. Several preprocessing techniques and
the improved CNN were combined to obtain better image quality and higher recognition
accuracy. The implementation details were described in this article. At the same time,
experiments were performed using a variety of application scenarios (including finger vein
images obtained from fingers at different temperatures, HRs, levels of cleanliness, etc.,
as well as standardized personal finger vein images). These experiments illustrated the
robustness and practicality of the proposed system.

The proposed system has potential for both design flexibility and commercialization.
The market application goal was to conform to the structure and market of miniaturized
community security system applications. For a community-based smart security system
connected to a smart city, although it would be necessary to add a very small amount
of personal recognition data to the database, we would only need to retrain the personal
feature items to complete the security system update and maintain high-efficiency and
high-accuracy functions.
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