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Abstract: The basic types of multi-stable energy harvesters are bistable energy harvesting systems
(BEH) and tristable energy harvesting systems (TEH). The present investigations focus on the analysis
of BEH and TEH systems, where the corresponding depth of the potential well and the width of
their characteristics are the same. The efficiency of energy harvesting for TEH and BEH systems
assuming similar potential parameters is provided. Providing such parameters allows for reliable
formulation of conclusions about the efficiency in both types of systems. These energy harvesting
systems are based on permanent magnets and a cantilever beam designed to obtain energy from
vibrations. Starting from the bond graphs, we derived the nonlinear equations of motion. Then, we
followed the bifurcations along the increasing frequency for both configurations. To identify the
character of particular solutions, we estimated their corresponding phase portraits, Poincare sections,
and Lyapunov exponents. The selected solutions are associated with their voltage output. The results
in this numerical study clearly show that the bistable potential is more efficient for energy harvesting
provided the corresponding excitation amplitude is large enough. However, the tristable potential
could work better in the limits of low-level and low-frequency excitations.

Keywords: Lyapunov exponent; bifurcations; multiple solutions diagram; optimization

1. Introduction

Energy harvesting is a method developed since the beginning of the 21st century to
obtain electricity from ambient sources, such as vibration [1,2], rotation [3,4] air flow [5,6],
and temperature changes [7]. Various aspects of energy harvesting with respect to the
vibration ambient sources are discussed and summarized in reviews [8–10]. The most
popular application is the conversion of mechanical energy into electrical energy, widely
developed in the scientific literature [8,11]. Such systems are usually based on a flexible
cantilever beam [12,13] with a piezoelectric transducer attached to it. Vibrations of the
forcing object cause variable deformations of the beam and the transducer itself, and this
allows generation of electricity. The obtained amounts of energy are small, but sufficient to
power the sensors and send the obtained information wirelessly [4]. Such systems can be
successfully used in hard-to-reach places due to the lack of the need to replace the battery
or the supply of main power.

The main challenge for scientists is to maximize the power output of the particular
harvester design [14]. Note that the first applications of energy harvesters are based
on linear systems tuned to the frequency of the excitation source. They allow effective
energy acquisition near the resonant frequency of the systems. Therefore, their design and
application are limited to a specific source of excitation.
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One of the intensively studied systems for converting mechanical energy into elec-
tricity is based on nonlinear solutions to harvest energy in a wider frequency range for
broadband energy harvesting [11,15]. Nonlinearities are introduced by using permanent
magnets on the beam tip and the housing of the energy harvester. Another design solution
is the introduction of spring elements [16] or a possible buckling design [17]. The character-
istic features of such solutions have a wide and effective range of application in relation
to linear systems, but also cause the possibility of coexisting solutions’ occurrence [18,19].
Recently, solutions including tunable dynamics energy harvesting systems [20], higher
frequency systems [21], multi-array systems [22], and self-adaptive systems [23] were
also explored.

The basic type of multi-stable energy harvesters is bistable energy harvesting systems
(BEH) with one unstable and two stable equilibrium positions (with two potential wells). In
this case, we distinguish single-beam systems based on nonlinear magnetic interaction, for
example, in [24], and others based on multiple beam structures [25]. One of the interesting
solutions was presented in [26], where the results of bending and torsion were considered
simultaneously in the working condition. Other design solutions were proposed in [27,28].
An extension of BEHs is tristable energy harvesting systems (TEH), with one more potential
well. Such solutions were widely scientifically researched, both in the field of symmetric
and asymmetric potential wells [29]. The main design assumption is similar and consists
in adding one permanent magnet in the construction. This results in an extension of the
potential characteristics and a wider range of applications of the systems. There are many
examples of TEH systems, related to their efficiency, dynamics, and coexisting solutions in
the scientific literature [12,13,16,30–33].

The motivation for the research is that the results that are presented in this study are
from a comparative analysis of various solutions for BEH and TEH which were presented
in previous scientific works. It seems interesting to compare the efficiency of energy
harvesting for such systems assuming similar potential parameters, which has not been
carried out so far. Our research focused on the analysis of BEH and TEH, in which the
depth of the potential well and the width of the characteristics are the same. Ensuring such
parameters allows for a reliable formulation of conclusions about the efficiency in both
types of systems. In this paper, we present a comparison of systems based on permanent
magnets and a cantilever beam designed to harvest energy from vibrations.

2. Formulation of the Mathematical Model

The subject of the model tests is energy harvesting systems whose potential is set by
means of permanent magnets mounted in a rigid, non-deformable frame III (Figure 1). The
considered structural solutions consist of a flexible cantilever beam I, which is clamped in a
rigid frame III. This frame is fixed, using IV screws, to a mechanically vibrating object from
which energy is recovered. On the flat surfaces of the flexible beam, piezoelectric elements
II are attached to the suitable electrodes. During elastic deformations, the piezoelectric
elements induce an electric charge on the electrodes.

The differential equations of motion reflecting the dynamics of the tested system can
be derived by various methods. In our research, the equations of motion are derived by
the bond graph method proposed by Paynter [34] and developed in the work of Karnopp
et al. [35]. Each edge of the graph of bonds is represented by two variables: effort and
flow, as a result of which the edges of the graph graphically depict the flow of power in the
dynamic system under examination. In the method originally proposed by Paynter [34], the
elements storing kinetic and potential energy are assigned integral causality. This causality
is preferred because the bond graph method is intended to be a numerical tool that would al-
low computer simulations to be performed without explicit knowledge of the mathematical
model. Moreover, from the point of view of numerical methods, it is much easier (without
introducing additional errors to the experiment) to carry out the procedure of numerical
integration. There are many computer applications that enable carrying out numerical
calculations based on the bond graph method, the most popular being run in the Windows



Sensors 2023, 23, 2185 3 of 20

environment, with Mathematica and MATLAB: Windows 20sim [36], Mathematica Bond
Graph Talk [37], BondLab [38], and newer ones. An undoubted advantage of the bond
graph method is the possibility of modeling dynamic systems of various technical nature,
i.e., electromechanical, hydromechanical, and electro-hydromechanical. Figure 2 shows
the generalized structure of the bond graph, representing the dynamics of the formulated
phenomenological models of the analyzed energy harvesting systems.
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The formed graph of bonds consists of eleven edges and additional sources of effort
and flow variables. The source of the effort variable (edge no. 7) models the impact of the
magnetic field on the free end of the flexible cantilever beam I. The source of the flow vari-
able (edge no. 1) represents the kinematic excitation describing the mechanical vibrations
of the object from which the energy is recovered. During the automatic generation of the
equations of motion, the elements storing kinetic and potential energy are assigned integral
causality, as a result of which the graph can be directly adapted to computer simulations
carried out in one of the aforementioned computer programs (Figure 2). In the case of
the results of numerical calculations included in this work, a virtual mathematical model,
saved in the form of connections in a graph and cause-and-effect relationships occurring in
it, is of little help. For this reason, its explicit representation is still present.

Please note that in the case of one-line nodes, only one of the incident edges can
be “open”. If all edges are closed, then there is a causality conflict. However, for null
nodes, a causality conflict occurs when more than one of the edges’ incidents to a node is
closed. At this point, it is worth noting that the causality analysis of the edges of the bond
graph is one of the verification criteria of the formulated mathematical model. If there is a
conflict in the graph, it is necessary to make a decision regarding the modification of the
phenomenological model, which involves redefining the model assumptions.

Due to the fact that one of the secondary goals of this work is to approximate the
method of bond graphs in the context of conducting model tests of energy harvesting
systems, the differential equations of motion were derived using a modified method, in
which the elements storing kinetic energy (elements in the graph marked with the letter J)
were assigned differential causality (Figure 3). As a result of this approach, we obtained
the so-called Lagrange bond graph, which is the formal basis for the derivation of the
mathematical model in the form of a system of second-order differential equations. In the
structure of a Lagrange bond graph, there is always a causality conflict that is deliberately
initiated in order to enforce differential causality. The emergence of a causality conflict
forces one node to hook additional fictitious edges of the source of the flow-type variable.
Their introduction unambiguously defines the generalized coordinates of the graph. These
edges in the bond graph (Figure 3) are highlighted by dashed lines in blue. However, these
additional edges of the flow variable sources are not numbered. In the method of graphs of
constraints, the flow sources are always incidental to the zero nodes, while the sources of
the effort and effort variables are attached to the one node. Deriving the equations of motion
from the Lagrange bond graph forces the introduction of additional fictitious sources, and
they are connected to the nodes in the opposite way to the method originally proposed by
Paynter [34]. Colored dashed lines highlight edges representing fictitious sources.
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On the basis of the graph (Figure 3), the cause-and-effect relationships, corresponding
to the one node in which the edge effort variables add up, while the flow variables are
equal, were first recorded. In addition, the convention was adopted that if an edge “exits”
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from a unitary node, it is written with a “+” sign, otherwise the effort variable is marked
with a “-” sign. Since each (numbered) edge is assigned two variables: effort and flow,
therefore, the listed dependencies are grouped into two sets of equations:{

e6 + e7 + e8 − e5 = 0,
e3 + e4 − e2 = 0,

{
f6 = f7 = f8 = f5 =

.
y1,

f3 = f4 = f2,
(1)

These equations, and in particular the first one, corresponding to the system of effort
variables, describe the dynamics of the mechanical subsystem. The second equation, on the
other hand, defines the forces induced in the flexible cantilever beam. In the zero nodes, the
situation is reversed, the effort variables are equal, and the flow variables are subject to the
law of superposition. As is the case for one node, two systems of equations are also written
for the zero nodes of the graph. At the same time, the first equations correspond to the
mechanical subsystem, and the second ones model the dynamics of the piezoelectric patch.{

f2 + f5 − f1 = 0→ f2 =
.
y0 −

.
y1,

f10 + f11 − f9 = 0,

{
e1 = e2 = e5,
e9 = e10 = e11 = u.

(2)

The relations between the variables describing the edges of the bond graph, the
elements that store kinetic, potential, and electric energy, and the data responsible for
its dissipation, are shown in Equation (3). At this point, it is worth mentioning that
the presented dependencies were determined by the causality of the edges connecting
these elements:

e6 = m1
d f6
dt = m1

d
.
y1
dt , e3 = bB f3 = bB

( .
y0 −

.
y1
)
,

e4 = cB
∫

f4dt = cB
∫ ( .

y0 −
.
y1
)
dt,

e7 = a1 f6 + a2 f 3
6 + a3 f 5

6 = a1y1 + a2y3
1 + a3y5

1
f10 = 1

RZ
e10 = 1

RZ
u, f11 = CP

de11
dt = CP

du
dt .

(3)

The last component of the bond graph, which has not been described so far, is the
energy transforming element “TF”, whose task is to convert mechanical energy into electri-
cal energy. Appropriate analytical relationships, taking into account the cause-and-effect
relationships of the incident edges with the transformer, take the following form:

e8 = kPe9 = kPu, f9 = kP f8 = kP
.
y1 (4)

The equation modeling the dynamics of the mechanical subsystem was obtained
directly as a result of substituting Equation (3) to Equation (l):

e6 + e7 + e8 − e5 = 0, e3 + e4 − e2 = 0,
↓ ↓

e6 − e5 + e7 + e8 = 0, e5 = e2 = e3 + e4,
↘ ↙

e6 − e3 − e4 + e7 + e8 = 0,
↓

m1
d

.
y1
dt − bB

( .
y0 −

.
y1
)
− cB

∫ ( .
y0 −

.
y1
)
dt + a1y1 + a2y3

1 + a3y5
1 + kPu = 0.

(5)

The equation responsible for the dynamics of the electrical subsystem was obtained
from the relationships corresponding to the zero nodes, as follows:

f11 + f10 − f9 = 0
↓

CP
du
dt +

1
RZ

u− kP
.
y1 = 0 (6)

Comparing the derived differential equations of the second order (5) and the first order
(6), a generalized electromechanical mathematical model of the tested design solutions of
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energy harvesting systems was obtained. Its dimensional representation is presented by
the system of equations in (7):{

m1
d2y1
dt2 + bB

dy1
dt + a3y5

1 + a2y3
1 + (cB + a1)y1 + kPu = by

dy0
dt + cyy0,

CP
du
dt +

1
RZ

u− kP
dy1
dt = 0.

(7)

Further, the derived system of differential equations was transformed into a dimen-
sionless form since such a representation of the mathematical model significantly affects
the effectiveness of computer simulations. In addition, it was assumed that the tested
design solutions of energy harvesting systems are affected by external force excitation
with two (spring and damping) components, by

dy0
dt + cyy0, where y0 = Asin(ωt), where

A and ω are the amplitude and frequency of excitation, respectively. The dimensionless
equation becomes:{ ..

x + δ
.
x +

(
βx4 + αx2 + (1 + µ)

)
x + θu = hωp cos(ωτ) + p sin(ωτ)

.
u + σu− ϑ

.
x = 0

(8)

where the corresponding parameters are defined as:

ω2
0 = cB

m1
=

cy
m1

, τ = ω0t, ω = ωW
ω0

, p = A
x0

, µ = a1
cB

, x = y1
x0

, h = bB
m1

=
by
m1

,

δ = h
ω0

, θ = kP
x0m1ω2

0
, σ = 1

CPRZω0
, ϑ = kPx0

CP
, β =

a3x4
0

cB
, α =

a2x2
0

cB
.

The numerical values of the physical and geometrical parameters of the considered
construction solutions, which formed the formal basis for conducting the numerical calcu-
lations, are listed in Table 1. For a comparison of the BEH and TEH system responses, we
used dimensional representation of u (V).

Table 1. Systems’ parameters.

Name Symbol
Value

Two Wells Three Wells

Mass loading of the beam m 0.0065 kg
Energy losses in a mechanical system bB 0.05 Nsm−1

Stiffness of the beam cB 15 Nm−1

Damper coupling of the excitation force by 0.05 Nsm−1

Spring coupling of the excitation force cy 15 Nm−1

Resistance of the electrical circuit RZ 1.1·106 Ω
Capacity of the electric circuit CP 72 nF
Electromechanical constant of

piezoelectric kP 3.985·10−5 Nm/V

Displacement scaling parameter x0 0.0355 m

Load coefficients caused by the
influence of the magnetic field

a1
a2
a3

−135 Nm−1

198.8·103 Nm−3

53.7 Nm−1

−554.38·103 Nm−3

5.4·108 Nm−5

At this point, it should be noted that the value of the scaling parameter x0 was adopted
as the intersection point of the external potential barriers of the characteristics mapped
with two and three wells (Figure 4b).

During the numerical calculations, the same mechanical properties of the flexible
cantilever beam I, piezoelectric transducer II, and inertial elements loading the free ends of
the beam were assumed same. In addition, in computer simulations, the depths of external
wells were assumed the same, which were adjusted to the fourth decimal place. In addition,
the potentials of the systems were selected in such a way that the distances measured
between the extreme barriers at the level of V ≈ 0.003 J had comparable values. Adopting
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such model assumptions will enable a direct comparison of energy harvesting efficiency
determined by model tests.
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3. Results of Model Studies of Dynamic Properties

Based on the adopted model assumptions and numerical values to characterize the
tested design solutions of energy harvesting systems, numerical calculations were carried
out, the results of which are presented in the form of multi-color maps of the distribution
of the largest Lyapunov exponent. This index is one of the key numerical tools applicable
in the study of nonlinear dynamical systems. Its primary application is the identification of
areas where unpredictable behavior of the dynamic system takes place. In particular, on
its basis, the rate of separation of initially infinitely close trajectories on the phase plane
was estimated. From the theoretical point of view, the largest Lyapunov exponent can be
calculated using strict analytical and numerical methods [39–41]. In general terms, the
method of identifying the largest Lyapunov exponent boils down to averaging over many
iterations in an adequate phase space. In the formulated general model of the energy
harvesting system, the phase space is defined by the displacement and velocity of the free
end of the flexible cantilever beam
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. During model tests, the numerical procedure

proposed by Wolf et al. [42] is most often used, as follows:

λ = lim
e(0)→0,n→∞

1
n τ

n

∑
i=1

ln
(

εi(τ)

ε(0)

)
(9)

In Equation (9), εi (τ) represents the distance connecting, at the same instant of time,
τ, the trajectory of the tested system with the reference trajectory. At the initial moment
τ = 0, both trajectories are in close proximity. In our research, the distance between
the beginnings of both phase streams was assumed to be ε(τ = 0) = 10−5. The results
of numerical calculations, presented below, have been illustrated in the form of two-
dimensional multicolored maps of distribution of the largest Lyapunov exponent (Figure 5).

Positive values of λ, represented by orange and yellow colors, indicate the chaotic
behavior of the tested design solutions of energy harvesting systems. On the other hand,
negative values of λ indicate that the phase trajectories are attracted by stable point attrac-
tors or periodic orbits. If λ takes values close to zero, then we are dealing with the so-called
bifurcation points. At this point, it is noted that the results of computer simulations were
obtained under the assumption of zero initial conditions. On the basis of the multicolored
maps of the largest Lyapunov exponent, it can be concluded that in the case of a system
whose potential is set via two wells (Figure 5a), in the range of low values of dimensionless
amplitude, p < 0.4, mechanical vibrations affecting the energy harvesting system are located
in the range of high frequencies, ω > 3. In the range of low values, ω < 3, responses
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assuming the nature of unpredictable solutions dominate in the range of high values of
p > 0.3. If the barrier initiated by permanent magnets is set with a three-well potential
(Figure 5b), then chaotic solutions occur in the range of large values of p > 0.5. At the same
time, in the range of high excitation frequencies, the areas of chaotic solutions mix with the
areas of periodic solutions. On the other hand, periodic responses are located in the range
of low levels of dynamic interactions, p < 0.5.
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With regard to the selected values of the dimensionless amplitude of mechanical
vibrations affecting the tested system, Feigenbaum steady-state bifurcation diagrams were
generated (Figure 6). On their basis, it is possible to determine, among others, the nature
of the solution and, as is the case with the largest Lyapunov exponent, the location of the
zones of chaotic solutions. From a theoretical point of view, bifurcation diagrams can be
generated in several ways. One of the most popular methods is based on local maxima and
minima of time sequences of generalized coordinates of a mathematical model. Exactly
the same results are obtained if the points of the steady-state diagram are identified by the
intersections of the phase flow with the axis of the abscissa of the phase plane. The obtained
graphic images of bifurcation diagrams are the same because they map the same values
identified from different solution representations. At this point, it is worth mentioning that
both approaches are characterized by the simplicity of numerical calculations, however, it is
not always possible to precisely determine the periodicity of the solution through them. An
example of a solution illustrating an incorrectly identified periodicity is shown in the orbits
on the graphs (Figure 8a, ω = 6.5 and Figure 8b, ω = 8.75). For this reason, in our study, an
alternative approach was used to identify steady states based on the intersection points
of the phase flow with the control plane of the Poincare section. By using this approach,
we are able to precisely determine the periodicity of the solution in relation to the given
values of the control parameter. In our numerical calculations, the control parameter is the
dimensionless frequency of mechanical vibrations affecting the tested design solutions of
energy harvesting systems.
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In the case of the energy harvesting system, the potential of which is given by two
wells (Figure 6a), in the range of low values of the dimensionless amplitude of the external
load p = 0.05, we are dealing with the dominance of periodic solutions. In the band ω < 3,
the response of the system is a periodic solution with a periodicity of 1T. Solutions with
such periodicity also occur in the range of very high frequencies, ω = 10. Responses with
higher periodicity occur in the band ω ∈ [3.5, 9.25], with the vast majority of these solutions
being 2T-periodic. The largest area of results, whose periodicity T > 2T, is located in the
band ω ∈ [5.5, 8]. Chaotic responses are in the zone ω ∈ [3, 3.7]. In fact, these are two
bands of unpredictable solutions located in very close proximity. Increasing the level of
the external load to the value of p = 0.25 shifts the zones of chaotic solutions towards low
values of ω. At the same time, in relation to the discussed case, a significant spreading
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of bands of unpredictable solutions was observed. It is worth noting that responses of
this nature were induced in the high-frequency range, ω ∈ [7,8]. In the middle part of
the bifurcation diagram ω ∈ [3.5, 7], periodic solutions with periodicity T > 1T were
extinguished and replaced by 1T-periodic solutions, which were characterized by a large
orbit of vibrations. A further increase of the dimensionless amplitude to the level of
p = 0.5 caused bifurcations of the areas of chaotic solutions, which are located in the zone
ω ∈ [0.5, 3.5]. In the range of high forced frequencies, ω > 5, the bifurcation diagram was
dominated by high-energy periodic solutions with a periodicity of 1T. For p = 0.85, in
the band ω ∈ [0.25, 2.5], there were basically homogeneous zones of chaotic responses.
Periodic orbits with higher periodicities are located in the middle part of the generated
bifurcation diagram, and for very high excitation frequencies, ω > 5, we are dealing with
large vibrations of the flexible cantilever beam with a periodicity of 1T.

If the potential of the energy harvesting system was given in the form of three wells
(Figure 6), then for low amplitudes of mechanical vibrations p = 0.05, the identified bifur-
cation diagram was dominated by periodic solutions with a periodicity of 1T. Responses
with a higher periodicity were rare and most often occurred in the band ω ∈ [1.7, 3.5]. By
increasing the level of external mechanical vibrations to the value of p = 0.25, it excited
areas of chaotic and periodic solutions with a periodicity of 3T and higher. At the same
time, for the external load determined in this way, the bands of occurrence of unpredictable
responses were relatively narrow and fell within the variability range ω ∈ [1, 1.5]. A further
increase in the amplitude of the external load to the level of p = 0.5 and p = 0.85 caused
the bifurcation of chaotic solutions in the range of low frequencies, ω < 3 (p = 0.5) and
ω < 5 (p = 0.85). In addition, periodic responses of systems with periodicities of 3T and
higher were shifted towards high values of ω.

The results of computer simulations provided general information on dynamic proper-
ties. Based on them, it was not possible to conclude on the effectiveness of the tested design
solutions of energy harvesting systems, because the points appearing in the bifurcation
diagrams characterized the location of the intersection of the phase flow with the control
plane of the Poincare section. Evaluation of the efficiency of energy harvesting, possible
at the time of conducting supplementary numerical calculations, will be the subject of
research in Section 4.

3.1. Dynamic Properties of a Two-Well System

This section presents the results of computer simulations, illustrating the dynamic
properties of the energy harvesting system in which the potential characteristics were
mapped with two wells. The scope of the model tests was limited to cases corresponding to
zero initial conditions, because they correspond to the rest position of the flexible cantilever
beam. The graphs (Figure 7) show the influence of dynamic load characteristics on the
evolution of chaotic attractors.

At this point, it is noted that all graphical images included in the graphs (Figure 7) are
plotted for the middle value of dimensionless frequencies, in bands of chaotic solutions.
Chaotic attractors are depicted against the background of a phase flow, with the phase
trajectory in the examined time interval represented by approximately 160 × 103 points,
which were additionally set to transparency. As a result of this approach, it was possible to
observe the areas of the phase plane that are most often “visited” by the trajectory. This
behavior of the phase stream was not observable when plotted with a solid line, because
the use of a solid line tends to blur the trajectory image being plotted. The representation
of the phase flow, in the form of a scatter plot, provided qualitatively new information
about the phase flow by relating it to the DC correlation dimension of the Poincare section.
We note that for chaotic attractors, whose correlation dimensions take DC > 1.5, the points
representing the phase trajectory formed a fuzzy cloud. Such images of the chaotic phase
flow occurred in the range of low values of the dimensionless excitation amplitude, p = 0.05.
The highest value of the correlation dimension DC = 1.8 was recorded for the case p = 0.25
and the excitation frequency ω = 7.5. In this case, we are dealing with a “fat” Poincare
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section of the chaotic attractor, where the points of the digitized phase flow are arranged
irregularly, or even randomly, on the phase plane. As the value of the correlation dimension
decreased, the points representing the discretized trajectory were grouped into “rings”,
potential barriers surrounding the wells. We recorded such geometrical structures of the
phase stream of the correlation dimension assuming relatively small values of DC ≈ 1.2.
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It is also worth noting that in the case of small excitations, the Poincare sections of the
chaotic attractors were located in the vicinity of both wells of the potential barrier. Along
with the increase in the value of the dimensionless amplitude of mechanical vibrations, p,
affecting the two-well energy harvesting system, the chaotic attractors were attracted to
one of the wells. In all the cases we examined, the Poincare sections of the chaotic attractors
were attracted to the right potential well.

The results of model tests indicate that the highest efficiency of energy harvesting was
achieved by nonlinear dynamic systems when we dealt with large trajectories with periodic
solutions [13,14]. For this reason, the orbits of stable periodic responses are presented in
the rest of the paper. If the two-day energy harvesting system was subjected to an external
dynamic load with an amplitude of p = 0.05 (Figure 8a), then stable periodic solutions with
large orbits occurred in the vicinity of frequencies ω = 1.5 and ω = 6.5. In the first case,
we are dealing with a response with a periodicity of 1T, while in the second situation, the
response of the system is given a 3T-periodic orbit. In other cases, the solution orbits are
located inside the potential well. For the external excitation, interacting with the amplitude
p = 0.25 (Figure 8b), the trajectories of periodic orbits run around both potential wells. It is
worth noting that only in the low-frequency range were we dealing with an asymmetric
orbit, and the other examples correspond to symmetrical trajectories. As in the example
(Figure 8a), the highest efficiency of energy harvesting was characterized by a solution
represented by a large orbit, ω = 6. The results of model tests confirming this state of affairs
will be presented later in this paper.

With regard to large amplitudes of the external dynamic load p ≥ 0.5, the vibration
amplitude of the flexible cantilever beam increased with the increase in the dimensionless
frequency value. Basically, in the entire range of variability, ω, we were dealing with orbits
circling both potential wells. Only in the range of low values, ω < 0.3, and for very large
values, ω ≥ 10, were there solutions whose trajectories are located inside the potential well
(Figure 8c). The results of numerical calculations are shown in the diagrams (Figure 8d) and
confirmed the thesis about the shift of the zones of periodic and chaotic solutions towards
higher values of the dimensionless excitation frequency.

Regardless of the level of external load affecting the tested design solution of the
energy harvesting system, in the low-frequency range, ω < 0.5, we dealt with solutions
whose orbits are located inside the well of the potential barrier. These solutions showed a
low energy harvesting efficiency, as a consequence of which the ability to harvest energy
was limited. In the case of asymmetric orbits and those located inside wells, there was a
high probability of multiple solutions.

3.2. Dynamic Properties of a Three-Well System

In the case of the design solution of the energy harvesting system, in which the
potential is set via three wells, chaotic solutions occurred much less frequently (Figure 6b)
in relation to the system with a two-well potential (Figure 6a). In addition, the bands of
chaotic solutions were characterized by a much narrower band of their occurrence, and
their permanent responses were induced in the range of higher loads affecting the tested
p ≥ 0.25. It is worth noting that in relation to the system with a two-well potential, a smaller
variety of identified Poincare cross-sections was also observed.

Analogous model tests were carried out for the energy harvesting system with three
potential wells (Figure 9). For chaotic solutions, a similar behavior was observed as in
the case of the two-well system. With the increase of the dimensionless amplitude of the
external dynamic load acting on the energy harvesting system, the geometric structure of
the chaotic attractor was attracted to one of the external potential wells. For low external
load amplitudes of p = 0.05, no areas of chaotic solutions were recorded. The first signs of
inducing responses of this nature appeared at p = 0.25. In this case, for ω = 1.08, we were
dealing with three simultaneously coexisting chaotic attractors whose geometric structures
are arranged on the phase plane along the path marked in blue. This solution is very similar
to the quasi-periodic response, if only the area of phase space most often “visited” by the
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phase stream is taken into account. Such a statement is justified because the correlation
dimension of the identified Poincare cross-section has values close to unity, DC = 1.169.
For the structural solution in which the permanent magnets establish a three-hundred-day
potential, as in the analyzed case, as the value of the correlation dimension of the Poincare
cross-section increased, DC > 1.5, the points representing the phase flow became blurred,
dynamic p ≥ 0.85. It is worth noting that the DC level was significantly higher in relation to
the system based on two potential wells.
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The evolution of stable periodic solutions, which are excited in individual cross-
sections of the multicolored distribution map of the largest Lyapunov exponent (Figure 5b),
is shown in the graphs in Figure 10.
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In the range of low values of the dimensionless amplitude of the external load affecting
the energy harvesting system with the three-well potential, a stable periodic solution
characterized by a large orbit occurred in the range of low values, ω < 2 (Figure 10a). In the
remaining variability bands, ω, we were basically dealing with solutions characterized by
low efficiency of energy harvesting. This is because their orbits are limited by local potential
barriers. With the increase in the amplitude of the external load (Figure 10b), solutions
whose orbits circulate around the external potential wells were excited, as a result of which
the efficiency of energy harvesting from mechanically vibrating objects was significantly
improved. The initiated periodic responses were characterized by low periodicity, the
highest value of which, 5T, was observed for ω = 5.5 (Figure 10b). A further increase in
the value of the amplitude of mechanical vibrations of p ≥ 0.5, affecting the tested design
solution, had a positive effect on the efficiency of energy harvesting, because solutions
represented by large orbits were released.

It is worth noting that, regardless of the frequency and amplitude of the external load
acting on the system with the three-well potential, basically all excited periodic solutions
were characterized by odd periodicity. Only in the case of orbits ω = 7 (Figure 10c) and
ω = 10 (Figure 10d) were we dealing with a 2T-periodic solution, characterized by a large
vibration amplitude of the flexible cantilever beam.

4. Impact of the Potential Barrier on Harvesting Efficiency

The effectiveness of the energy harvesting system mainly depends on the efficiency of
energy acquisition. There are many qualitative indicators to assess this. The most popular
one of them, and at the same time the simplest to use, is based on the RMS values of
electric power and voltage induced on the piezoelectric electrodes. In our research, the
measure of effectiveness was the effective value of the voltage induced in the system with
the two-well and three-well potential. According to the authors, the use of such an indicator
provides directly qualitative and quantitative information about the tested design solutions
of the energy harvesting system. The results of numerical calculations, showing the ability
to recover energy in a wide range of variability of control parameters, are presented in
the form of multi-colored maps of the distribution of effective values of systems with a
two-well and three-well potential (Figure 11).
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Irrespective of the tested construction solution, the identified multicolored maps were
characterized by a similar geometric structure of the distribution. The highest efficiency
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of energy harvesting, in both cases, occurred for longer amplitudes and frequencies of
mechanical vibrations affecting energy harvesting systems. Nevertheless, in the case of
a system with a two-well potential, we were dealing with almost twice as high RMS
maximum values. The results of numerical simulations, which directly compared the
energy harvesting capacity, in relation to selected values of the dimensionless amplitude of
the external load (Figure 12), are presented below.
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A direct comparison of both construction solutions was possible, because the geometri-
cal and material dimensions characterizing the flexible cantilever beams were the same. In
addition, during the planning of numerical calculations, permanent magnets were placed,
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defining potential barriers in such a way as to ensure comparable potential widths and
depths of external wells (Figure 4b).

Based on the results of numerical simulations, it can be concluded that in the entire
analyzed range of external load frequency variability, it is possible to distinguish three
characteristic bands. This is the case in the range of low amplitudes, p < 0.1 (Figure 12a).
In the high band, ω > 5, systems with the two-well and three-well potential can be used
interchangeably, because the identified differences in the RMS values of the voltages
induced on the piezoelectric electrodes, in principle, did not show statistically significant
differences. The situation is different in the transition band 3 < ω < 5, in which the system
with a two-well potential showed a better efficiency of energy harvesting in relation to the
system with a three-well potential. On the other hand, in the low-frequency zone, ω < 3,
the design solution based on the three-well potential showed a better energy harvesting
efficiency. The maximum differences in effective voltages in the considered range, p ≤ 0.1,
did not exceed the value of 3 V.

With the increase in the level of mechanical vibrations affecting the tested construction
solutions, the ability to harvest energy in the system with the two-well potential improved
in relation to the system based on the potential barrier with three wells (Figure 12b). At
the same time, in this considered range of external load amplitude variability, 0.1 < p < 0.5,
one can refer to a statistically significant increase in the efficiency of energy harvesting,
because the values of the effective voltage differences reached the level of approximately
10 V. However, in the range of high frequencies, ω > 8, two-well and three-well systems can
still be used interchangeably, due to negligibly small differences in the voltages induced on
the piezoelectric electrodes. A system with a three-well potential can effectively recover
energy only in the range of low values, ω < 2. Nevertheless, such a situation occurs in
relatively narrow bands of ω variability.

With regard to high vibration levels, p > 0.6, regardless of the frequency of the ex-
ternal load, it is recommended to use a design solution based on the two-well potential
(Figure 12c). In fact, in the range of low ω < 2, there are areas where the system with the
three-well potential showed better energy harvesting properties. Nevertheless, these are
relatively narrow bands that can cause certain difficulties. At the same time, these diffi-
culties are mainly caused by the need to tune the converter to the current load conditions
affecting the energy harvesting system.

5. Conclusions

A variety of BEHs and TEHs were presented in previous scientific papers [11–13,16,27,
30–33,43,44], which prompted a comparative analysis of these systems. We compared the
efficiency of obtaining energy from such systems, by assuming similar potential parameters
with the increasing amplitude of harmonic excitation. The ability of the energy harvesting
system with two-well potential improved in relation to the potential system with three
wells. In the range of high frequencies, two-well and three-well systems can be used
interchangeably, due to negligibly small differences in the voltage outputs. A system with
a three-well potential can effectively harvest energy only in the range of low-frequency
values. Note that the complete comparison of the BEH and TEH systems should involve
the systematic change of the barrier height, which has been left for the future analysis.

The impedance optimization of the system was not analyzed in this paper. In the
studied nonlinear system, it would depend on the specific solution together with its
response frequency, however the input and circuit impedances can be adjusted by means
of active converters [45].

Note that the numerical calculations were performed for the zero initial conditions.
To find all the solutions, it is important to explore a larger set of them by applying the
random selection of initial conditions or systematically analyzing the corresponding basins
of attraction. Laboratory experiments are also planned in the next step. The results of such
extended investigations will be reported in a future paper.
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