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Abstract: Maternal health includes health during pregnancy and childbirth. Each stage during
pregnancy should be a positive experience, ensuring that women and their babies reach their full
potential in health and well-being. However, this cannot always be achieved. According to UNFPA
(United Nations Population Fund), approximately 800 women die every day from avoidable causes
related to pregnancy and childbirth, so it is important to monitor mother and fetal health throughout
the pregnancy. Many wearable sensors and devices have been developed to monitor both fetal and the
mother’s health and physical activities and reduce risk during pregnancy. Some wearables monitor
fetal ECG or heart rate and movement, while others focus on the mother’s health and physical
activities. This study presents a systematic review of these analyses. Twelve scientific articles were
reviewed to address three research questions oriented to (1) sensors and method of data acquisition;
(2) processing methods of the acquired data; and (3) detection of the activities or movements of the
fetus or the mother. Based on these findings, we discuss how sensors can help effectively monitor
maternal and fetal health during pregnancy. We have observed that most of the wearable sensors
were used in a controlled environment. These sensors need more testing in free-living conditions and
to be employed for continuous monitoring before being recommended for mass implementation.
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1. Introduction

Worldwide, more than 200 million people experience pregnancy annually [1]. Around
140 million births occur annually. The proportion of births attended by skilled health
personnel was less than 81% in 2019 [2]. Pregnancy is a life stage that involves rapid physi-
ologic and behavioral changes [3]. During pregnancy, a woman’s lifestyle, behavior, and
physical activities can affect her health and that of the fetus [4]. Hence, constant monitoring
is often required if there is risk or complication arises. Pregnancy complications are a severe
maternal and infant health risk, leading to adverse outcomes such as miscarriage, preterm
birth, stillbirth, and low birth weight [5]. Around 295,000 women die worldwide due to
childbirth complications each year [2]. There are 23.8 maternal deaths per 100,000 births
in the United States and 462 deaths per 100,000 births in low-income countries [6]. The
most common causes of maternal morbidity and mortality are hemorrhage, hypertensive
disorders, infection, and sepsis [7]. Improving maternal health is key to saving the lives
of more than half a million women who die each year as a result of complications from
pregnancy and childbirth [8].

There is a clear relationship between lifestyle behaviors, risk factors, and pregnancy
complications. Factors affecting maternal health can be external, environmental, risk-based,
physical, and behavioral factors [9]. Careful monitoring of vital signs and physical activities
is essential for ensuring the mother’s and fetus’s health and safety during pregnancy. This
monitoring is often the first step in the early detection of pregnancy abnormalities and
risks, providing an opportunity for prompt and effective intervention to prevent maternal
and neonatal morbidity and mortality [7].
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In the traditional medical system, patients make appointments with doctors if symp-
toms appear and follow their advice until the problem resolves; this is often expensive and
time-consuming due to frequent and scheduled visits to the experts [4,10]. The current
pattern of prenatal care includes 15 face-to-face visits with providers [11]. The content of
these visits includes essential health services, risk assessments, patient education, and the
building of trust between patient and provider. In this traditional system, women miss out
on important opportunities to monitor and understand their health and the health of their
newborns [11].

With the recent advances in communications and technology, many devices and
sensors have been developed to remotely monitor health conditions and track health
parameters in daily environments. Wearable sensors, m-health technologies, mobile apps,
and other wireless devices such as smartwatches open new possibilities for monitoring
behavioral and physiological phenomena [12–14]. These devices allow blood glucose level,
blood pressure, heart rate, and other biometric data to be consistently measured. The real-
time information is then transferred to the healthcare providers. These devices facilitate
two-way communication between the doctor and the patient [15]. In general, identifying
physical activity based on wearable sensors is not an easy job and there are many challenges
involved. For example, sensor placement on the body affects the physical recognition rate,
where a certain physical activity may become more recognizable with sensors worn on
specific body parts than others [4]. Therefore, a clear understanding of sensor principles
and proper selection of wearables is essential for effective monitoring.

Several recent research studies have focused on the use of application-specific wear-
ables to monitor maternal health during pregnancy. This review is intended to provide a
systematic evaluation of wearable sensors for monitoring maternal health in daily life. The
focus is to summarize the effectiveness and limitations of the state-of-the-art methods and
to find the scope for future research in this area.

The rest of the paper is organized as follows. First, the review methodology is pre-
sented in Section 2, along with the research questions (RQ) specification. Sections 3 and 4
present a detailed exploration of the review outcome. Section 5 provides a discussion, and
Section 6 concludes with potential future works.

2. Review Methodology

The goal of this review was to analyze the adequacy of current wearable approaches
for monitoring maternal health and fetal conditions and to identify the research gaps in
current sensing methodologies. Sensors can be defined as a machine, modules, subsystems,
or devices whose purpose is to detect changes and events in the environment [16]. The
current review considers sensors that can collect data, send notifications/alerts (Mobile
apps, Smartwatch), ambient sensors (Motion sensors, video camera, microphone), and are
those capable of being worn or attached to the body (Belts, suits, wireless and flexible ECG
and EEG sensors) as wearable sensors.

The search procedure was conducted according to the Preferred Reporting Items for
Systematic Review and Meta-Analyses (PRISMA) guidelines [17]. There are several studies
that follow PRISMA guidelines for systematic review, such as Imtiaz et al. [14], Bougea
et al. [18], and Chowdhury et al. [19]. For this review, we adopted their processes. This
methodology used the following four processes: (1) identifying the RQs, (2) recognizing
the article sources, (3) searching articles based on the RQs, and (4) analyzing the search
outcome.

2.1. Identifying Research Questions

Three research questions (RQs) were chosen to guide this systematic review:
(1) RQ1. What different sensor technologies are employed in prenatal monitoring

tasks, how were those sensors placed on body location, and what were the data acquisi-
tion processes?
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(2) RQ2. How was the acquired data preprocessed regarding noise and artifact removal
and prepared for the algorithm development?

(3) RQ3. What specific information was extracted from those sensor signals, how were
they extracted, and how was the performance of the sensor evaluated?

2.2. Article Databases Searched

The primary sources for the relevant literature were Google Scholar, IEEE Xplore,
MDPI, Science Direct, IOP Science, PubMed, and the ACM Digital library. Table 1 shows
the publication date of the 12 selected articles and their total citations.

Table 1. Selected articles, their publication date, and total citation.

Ref Publication Date Citation Number

[3] 2019 41

[4] 2021 65

[7] 2021 53

[20] 2018 30

[21] 2011 6

[22] 2022 42

[23] 2022 33

[24] 2021 41

[25] 2021 40

[26] 2022 32

[27] 2020 15

[28] 2018 42

2.3. Search Terms

The following free-text search terms were used: ‘wearable sensors’, ‘maternal health’,
‘fetal movement’, ‘fetal heart rate’, and ‘fetal ECG’. The search results were strictly restricted
to the English language. The selected full-text articles/references were further analyzed
for this review. The selection was further narrowed by applying the eligibility criteria
described in Table 2.

Table 2. Inclusion and exclusion criteria for this systematic review.

Inclusion Criteria Exclusion Criteria

Articles published in peer-reviewed venues Papers not written in English.

Articles published since 2012 Articles not included wearable sensors.

Articles must address a certain combination of
words, i.e., (sensor/wearable) + (maternal/pregnant

women) + (fetal movement/ECG/HR)
+ (monitoring/physical activities)

Initially, through the database search, a total of 79 publications were identified, and
46 were chosen for title and abstract screening. 67 articles failed to satisfy the eligibility
and were excluded. Finally, 12 articles were selected for the full-text review. Figure 1
demonstrates the flow diagram of the systematic review strategy.
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Figure 1. Flow diagram outlining the systematic review strategy.

2.4. Analyzing Review Outcome

A total of 12 publications were found on monitoring fetal and maternal health (includ-
ing fetal heart rate, fetal movement, maternal physical activities, and stress) using wearable
sensors and detecting abnormalities in the early pregnancy stage. The methodologies can
broadly be categorized as Seismocardiography (SCG), a technique of measuring the vibra-
tions produced by the beating heart [29], Gyrocardiography (GCG), a non-invasive tech-
nique for assessing heart motions by using a sensor of angular motion–gyroscope–attached
to the skin of the chest [30], FECG (Fetal Electrocardiogram), which is a biomedical signal
that gives an electrical representation of FHR (Fetal Heart Rate) to obtain vital information
about the condition of the fetus during pregnancy and labor from the recordings on the
mother’s body surface [31], or MECG (Maternal Electrocardiogram), determined by R-R
interval and QRS complex measurement of the ECG signal. Fetal position and activity can
determine Fetal Movement (FM) and the mother’s heart rate can also indicate the mother’s
stress level. Table 3 outlines the sensor-acquired signals for each study.

Table 3. Outline of sensing modality and acquired signal.

Ref Sensing Modality Acquired signal

[7,20–23] FECG with/without MECG Fetal heart rate (FHR)

[24] Seismocardiogram (SCG), Gyrocardiogram
(GCG) Fetal heart rate (FHR)

[25–27] Position and Activity Fetal movement (FM)

[4] Hand Movement Mother physical activities

[28] Heart Rate Variability (HRV), Heart Rate (HR) Maternal Stress
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3. Sensing Methodologies and Data Acquisition
3.1. FECG/FHR

A fetal electrocardiogram (FECG) signal may provide potentially precise information
about fetal condition during pregnancy and labor. FECG characteristics such as heart rate,
waveform, and dynamic behavior are convenient in determining fetal life, development,
maturity, and the existence of fetal distress or congenital heart disease [32]. The studies
reported in [7,20–24] were focused on FECG/FHR monitoring.

In study [7], a four-layer flexible printed circuit board was fabricated for the mother’s
chest and a two-layer board for the abdomen. The chest sensor (Figure 2) measured
maternal HR, RR (the time elapsed between two successive R-waves of the QRS signal
on the electrocardiogram [33]), and central temperature. The chest sensor included a bio-
potential analog front end (AFE) (MAX30001; Maxim Integrated), a high-frequency three-
axis Inertial Measurement Unit (IMU) (LSM6DSL; STMicroelectronics), and a clinical-grade
thermometer (MAX30205; Maxim Integrated) [34,35]. It was placed under the suprasternal
notch (Figure 2).

Sensors 2023, 23, x FOR PEER REVIEW 5 of 21 
 

 

3. Sensing Methodologies and Data Acquisition 
3.1. FECG/FHR 

A fetal electrocardiogram (FECG) signal may provide potentially precise information 
about fetal condition during pregnancy and labor. FECG characteristics such as heart rate, 
waveform, and dynamic behavior are convenient in determining fetal life, development, 
maturity, and the existence of fetal distress or congenital heart disease [32]. The studies 
reported in [7,20–24] were focused on FECG/FHR monitoring. 

In study [7], a four-layer flexible printed circuit board was fabricated for the mother’s 
chest and a two-layer board for the abdomen. The chest sensor (Figure 2) measured ma-
ternal HR, RR (the time elapsed between two successive R-waves of the QRS signal on the 
electrocardiogram [33]), and central temperature. The chest sensor included a bio-poten-
tial analog front end (AFE) (MAX30001; Maxim Integrated), a high-frequency three-axis 
Inertial Measurement Unit (IMU) (LSM6DSL; STMicroelectronics), and a clinical-grade 
thermometer (MAX30205; Maxim Integrated) [34,35]. It was placed under the suprasternal 
notch (Figure 2). 

 
Figure 2. Overview of the maternal-fetal monitoring system, where chest and abdominal sensors 
capture unique signals from the patient [7]. 

The abdominal sensor measures FHR and uterine contractions. This sensor is placed 
just below the umbilicus (Figure 2). Figure 2 demonstrates sensor placement and capture 
signals from the patient. 

In another study [20], a prototype electrometer-based amplifier was developed using 
Electric Potential Sensing (EPS) technology [36] for non-invasive monitoring of fECG in 
utero from the surface of the maternal abdomen. The prototype was built using a custom 
ultra-high input impedance EPS sensor with an internal input bias current circuitry and 
guarding. It was designed using four dry electrodes. The data was acquired on a laptop 
computer. Data display and storage were controlled by a custom-designed graphical in-
terface based on LabVIEW software [37], which included a peak detection algorithm for 
HR values determination [20]. Figure 3a shows the electrode placement for maternal and 
fetal ECG recording. 

Figure 2. Overview of the maternal-fetal monitoring system, where chest and abdominal sensors
capture unique signals from the patient [7].

The abdominal sensor measures FHR and uterine contractions. This sensor is placed
just below the umbilicus (Figure 2). Figure 2 demonstrates sensor placement and capture
signals from the patient.

In another study [20], a prototype electrometer-based amplifier was developed using
Electric Potential Sensing (EPS) technology [36] for non-invasive monitoring of fECG in
utero from the surface of the maternal abdomen. The prototype was built using a custom
ultra-high input impedance EPS sensor with an internal input bias current circuitry and
guarding. It was designed using four dry electrodes. The data was acquired on a laptop
computer. Data display and storage were controlled by a custom-designed graphical
interface based on LabVIEW software [37], which included a peak detection algorithm for
HR values determination [20]. Figure 3a shows the electrode placement for maternal and
fetal ECG recording.
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In another study [24], fetal heart rate (FHR) was collected using seismocardiogram
(SCG) and Gyrocardiogram (GCG) recordings from abdominal inertial sensors. Three
commercially available wearable sensor nodes (Shimmer 3 from Shimmer Sensing [38])
were attached to the abdominal wall by elastic straps. One sensor node was placed at the
center of the upper abdominal wall, close to the reference fCTG ultrasound probe. The
two remaining sensors were attached to the lower part of the abdominal wall at symmetric
positions (Figure 3B) [24].

The Accelerometers (Kionix KXRB5-2042, Kionix, Inc. USA [39]) record the seismocar-
diogram (SCG) signal and the gyroscopes (Invensense MPU9150, Invensense, Inc. USA [40])
measure the gyrocardiogram signal (GCG) [24].

A fourth study [21] used an ultrasound Doppler heartbeat detector and a toco pressure
sensor resembling a standard fetal monitoring system. It’s an end-to-end low-cost wireless
and mobile fetal monitoring system that employs a body-worn fetal monitoring device
augmented with wireless networking technology to enable a new area of care, allowing
anytime/anywhere monitoring. This device can provide clinical expertise asynchronously
and remotely [21].

In the study by [22], the monitoring system was primarily composed of a data ac-
quisition module, data transmission module, signal storage module, and signal analysis
platform. Electrodes were attached to the skin in a certain way (Figure 3C) in order to col-
lect pregnant women’s Abdomen Electrocardiography (AECG) signals [22]. Three linearly
independent ECG electrodes were used to construct a surface ECG vector map [41]. The
electrode position was designed with three acquisition channels, a reference point, and
a left leg drive. The reference electrode point was 5 cm below the center of the pregnant
woman’s navel. Three acquisition electrodes form a triangle around the navel. The left
leg drive electrode was on the right side of the participant. This configuration was chosen
because it maximizes the SNR [22]. Figure 3C shows the electrode position on the patient.

In this article [23], a mobile wearable measuring system was designed using a micro-
controller, sensors, and a shield, further enhancing its already existing capabilities. The
board acts as a sink of all signals. The sensor, located on the pregnant belly, sends necessary
ECG signals to the sink for further processing. The development board can either store
local sensor data or send them to a web platform via the shield. The shield is responsible
for transmitting, receiving, or harvesting data. In this work, the utilized commercial shield
could send and receive data using Wi-Fi [23].

Table 4 gives information regarding FECG/FHR data collection in the mentioned papers.

Table 4. The information on the data collection of the above-mentioned papers.

Ref Data Gestational Period Participants Experimental Setup

[7] Maternal ECG, SCG,
FECG, EHG Between 25 and 41 weeks 576 Daily regular activities

[20] Maternal and fetal ECG 20, 25, and 30 weeks Not mentioned Recordings were carried out in a private room.
The time period was 30 s and repeated 5 times.

[24] FCTG, FHR Not mentioned 10
The subjects were required to stay in the supine
position, seated position, and standing position.

Five minutes for each position.

[21] FHR 38.5 weeks Not mentioned The system has been tested on both prenatal
and laboring patients.

[22] MECG, FECG, and fetal
QRS complex 37 weeks 3

The experiment protocol consists of 3 steps. (1)
Supine situation for four minutes, (2) sitting

position for two minutes, (3) standing posture
for two minutes. The experiment is designed in

a home-like laboratory environment.

[23] FHR >12 weeks 4

There were two stages. (1) a set of
measurements was obtained by employing
PPG sensors of light-based technology, (2)
results were verified with a professional

cardiograph (golden standard)
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3.2. Fetal Movement (FM)

Fetal movement is one of the most important clinically observed indicators of fetal
activities (such as the position, duration, and relative force of FM). Study [25] used a
multipoint IMU to detect FM signals from the abdomen of the pregnant woman. The FM
signals were detected immediately by evaluating the signal energy and the signal interval
was extracted as the basis of analysis. A triangular measurement shape (Figure 4) was
extended from a circle as the center point. There was an IMU sensor at each of the three
corners. The center circle included a related signal processing circuit, an IMU sensor, a
rechargeable battery circuit, and a Secure Digital (SD) memory card. The device could
closely adhere to the pregnant woman’s abdomen. The casing was made of a thermoplastic
elastomer and the triangulation point for measurement used a flexible flat cable as a signal
transmission line, thus enhancing the softness of the casing [25]. The device design is
shown in Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 21 
 

 

[23] FHR >12 weeks 4 

There were two stages. (1) a set of measure-
ments was obtained by employing PPG sen-

sors of light-based technology, (2) results 
were verified with a professional cardio-

graph (golden standard) 

3.2. Fetal Movement (FM) 
Fetal movement is one of the most important clinically observed indicators of fetal 

activities (such as the position, duration, and relative force of FM). Study [25] used a mul-
tipoint IMU to detect FM signals from the abdomen of the pregnant woman. The FM sig-
nals were detected immediately by evaluating the signal energy and the signal interval 
was extracted as the basis of analysis. A triangular measurement shape (Figure 4) was 
extended from a circle as the center point. There was an IMU sensor at each of the three 
corners. The center circle included a related signal processing circuit, an IMU sensor, a 
rechargeable battery circuit, and a Secure Digital (SD) memory card. The device could 
closely adhere to the pregnant woman’s abdomen. The casing was made of a thermo-
plastic elastomer and the triangulation point for measurement used a flexible flat cable as 
a signal transmission line, thus enhancing the softness of the casing [25]. The device design 
is shown in Figure 4. 

 
Figure 4. The wearable design proposed in this study [25]. 

In another study [27], a passive and wearable device with two accelerometers was 
designed to sense subtle motion in the abdomen of pregnant women in order to replace 
maternal perception for out-of-hospital fetal movement monitoring. Figure 5 shows the 
device. 

A wearable device, similar to a belt, with an INS (Independent Navigation sensor) 
sensor was designed and fabricated to monitor fetal movement [27]. A tri-axial accelerom-
eter was used to measure fetal vibration in the maternal abdomen [42]. The microcontrol-
ler was used to transfer and store data on the micro-SD card, timestamp the data, and note 
the mother’s other activities, such as laughing, coughing, and hiccupping. The device was 
developed to ensure the mother’s comfort and its ability to be worn over a long period. 
When taking measurements, the device was placed around the mother’s waist. The sensor 
was embedded on a rubber pad in order to thoroughly contact the mother’s abdomen. 
When selecting material for the belt, its ability to absorb perspiration, its effect on skin, its 
flexibility, and color were considered [27]. 

Figure 4. The wearable design proposed in this study [25].

In another study [27], a passive and wearable device with two accelerometers was de-
signed to sense subtle motion in the abdomen of pregnant women in order to replace mater-
nal perception for out-of-hospital fetal movement monitoring. Figure 5 shows the device.
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A wearable device, similar to a belt, with an INS (Independent Navigation sensor) sen-
sor was designed and fabricated to monitor fetal movement [27]. A tri-axial accelerometer
was used to measure fetal vibration in the maternal abdomen [42]. The microcontroller
was used to transfer and store data on the micro-SD card, timestamp the data, and note
the mother’s other activities, such as laughing, coughing, and hiccupping. The device was
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developed to ensure the mother’s comfort and its ability to be worn over a long period.
When taking measurements, the device was placed around the mother’s waist. The sensor
was embedded on a rubber pad in order to thoroughly contact the mother’s abdomen.
When selecting material for the belt, its ability to absorb perspiration, its effect on skin, its
flexibility, and color were considered [27].

Table 5 listed the number of participants and the FM recording time mentioned in
the papers.

Table 5. The information on the FM data collection of the above-mentioned papers.

Ref Gestational Period Participants Time

[25] Over 28 weeks 13 1 h

[26] Over 38 weeks 20 30 min

[27] 28 to 40 weeks Initially 77 20 min

3.3. Maternal Health

Maternal health is the health of women during pregnancy, childbirth, and the post-
partum period. Maternal health revolves around the health and wellness of pregnant
women, particularly when they are pregnant, at the time they give birth, and during child-
raising [43]. Improving maternal health is key to saving the lives of more than half a million
women who die as a result of complications from pregnancy and childbirth each year [8].

3.3.1. Daily Activities and Lifestyle

During pregnancy, physical activity can either create or prevent health issues depend-
ing on the different stages of maternity. Therefore, it is important to track different activities.
Smartphones, mobile sensors, GPS, ambient sensors, and mobile apps can help to monitor
activities. PAR (physical activity recognition) systems based on body-worn sensors provide
better results than those based on either ambient or mobile phone sensors [4].

During the study [4], 61 subjects at various stages of maternity performed ten physical
activities: walking up/down stairs, cooking, eating, hand exercise, laundry, lying down,
walking, front bending, side bending, and standing. Data were collected by installing
the wearable sensor module at the wrist position on either the left or right hand. Sensors
at the wrist position are easily installed and managed using a smartwatch. According
to their physical condition, the participants performed each activity for between 2 and
5 min. A single wearable sensor module consisting of an accelerometer, a gyroscope, and
temperature sensors was installed at the wrist position [4].

Tracking or monitoring health parameters in daily life environments and adapting
daily activities during pregnancy is important. Maternal adaptations during pregnancy
lead to changes in lifestyle behaviors that may impact pregnancy complications. In the
study [5], they focused on lifestyle behaviors (physical activity, sleep, stress, diet, and
weight management) that can be tracked using state-of-the-art wearable technology.

3.3.2. Stress Monitoring

There is a major concern about pregnancy-associated stress and anxiety, which are
key risk factors for various pregnancy complications involving the health of the mother
and fetus [44,45]. Maternal adaptations to decrease stress levels are important to facilitate
a successful pregnancy. This algorithm was designed to adapt to changes in heart rate
that occur during pregnancy [46,47]. To indicate the stress level, this study focused on
measuring heart rate at rest [28].

For the first dataset, the participants wore a Garmin vívosmart-2 device over a period
of 7 months. Heart rate, activity, and sleep information were gathered from the extracted
data. The stress was measured when the subject was at rest. The second dataset was
obtained from a Garmin vívosmart-3 device with a stress level classification. The heart rate,
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sleep, activity, and stress classification were extracted from the data; these data were used
to test the performance of the algorithm in a supervised setting [28].

3.3.3. Temperature and Oxygen Level

In study [7], another type of sensor (a limb sensor) was used. The limb sensor measured
photoplethysmogram (PPG), a simple optical technique used to detect volumetric changes
in blood in peripheral circulation [48], and skin temperature. The limb sensor wraps around
the index finger of the participant to collect PPG and peripheral skin temperature. Figure 2
shows the acquired signal.

3.4. Survey Based Report

Study [3] focused on the perception of pregnant women and their providers at a rural
health clinic regarding the use of wearable technology to monitor health and environmental
exposures during pregnancy.

An anonymous 21-question electronic survey was administered to family medicine
or obstetrics and gynecology providers at a rural health clinic, while a 21-question paper
survey was made for pregnant women who came to the clinic for prenatal care. One
hundred and three individuals responded to the survey as patients and 28 health care
responded to the provider survey. The recruitment of pregnant patients and their medical
providers took place at the Mountain Area Health Education Center (MAHEC), a rural
health clinic that serves the entire 16-county region of Western North Carolina (WNC) [3].
Figure 6 shows the patient and providers response regarding wearable sensors.
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Table 6. Sensors’ description of the above-mentioned papers.

Ref Sensors Description

[7] Accelerometer, clinical-grade
thermometer, and pulse oximetry module

An accelerometer sensor measures the acceleration of anybody or an
object [49]. A thermometer is used to measure and display body

temperature [50]. A pulse oximeter is used to monitor the amount of
oxygen carried in the body [51].

[24] Commercial IMU Shimmer 3 from Shimmer Sensing (accelerometers and gyroscopes) [38]

[20] EPS Sensor It is a feedback-enhanced and stabilized electrometer-based amplifier
that operates based on current displacement measurements.

[21] Toco Sensor Measures the tension of the maternal abdominal wall [52].

[22] AgCl electrode It has good conductivity, low noise, and a stable baseline.

[23] PPG sensor An uncomplicated and inexpensive multi-point measurement method
that is often used for heart rate monitoring purposes [53].

[25] Multi-point IMU Used to measure acceleration, angular velocity, and magnetic fields [54].

[26] Two mCube MC3672 accelerometers Ultra-low-power, low-noise, integrated digital output 3-axis
accelerometers with a feature set optimized for wearable [55].

[27] Tri-axial accelerometer Provides simultaneous measurements in three orthogonal directions [56].

[4] Accelerometer, gyroscope, and
temperature

An accelerometer sensor measures the acceleration of anybody or an
object. A gyroscope senses angular velocity [49,57].

[28] Garmin vívosmart 2 smart bands The device monitors heart rate at the wrist and includes helpful tools
such as all-day stress tracking [58].

4. Data Processing and Algorithm Development

In the comprehensive vital signs monitoring study [7], the data were filtered by a
modified Pan–Tompkins algorithm and the R-peak, which indicates maternal HR, was
detected. SpO2 was calculated by filtering the red and infrared channels, detecting peaks,
and calculating the pulse amplitudes ratio. RR was recorded using composite chest wall
movement data obtained from the x and y-axes of the accelerometer and the ECG signal.
Continuous temperature measurements on the chest and limb sensors obtained from direct
readings allow the fever curve to be monitored.

In the fetal heart rate (FHR) detection using seismocardiogram (SCG) and Gyrocardio-
gram (GCG) study [24], the readings of the respective axes were first band-pass filtered to
focus on the desired frequency components. A zero-phase infinite impulse response (IIR)
band-pass filter with cut-off frequencies of 0.8 Hz and 50 Hz was used to pre-filter the SCG
waveforms. The observation from GCG was similar to SCG. Therefore, the information
from all three sensors was merged to enhance the signal quality of SCG and GCG separately.
The preprocessed SCG and GCG signals were converted by CWT with a Morse wavelet [24].

In this study of an electrometer-based amplifier prototype [59], developed using
EPS technology for fECG monitoring, the sensor output voltage was fed to an analog
filter with cut-off frequencies of 0.5 Hz and 100 Hz during the amplification stage. This
customized version of the sensor was used to record maternal and fetal ECG signals. The
low noise levels achieved within the sensor design avoided the use of post-processing
stages and allowed visualization of the QRS complex in the raw fetal ECG trace, as shown
in Figure 7 [20].
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The analog output was fed to a commercial National Instruments data acquisition
system. The data were acquired using a laptop computer. Display and storage of the data
was controlled using a custom-designed graphical interface based on LabVIEW software,
including an algorithm for peak detection to determine HR values [20].

In the study of the toco sensor, an instrumentation amplifier with a gain of 100 ampli-
fied the signal to the ADC input range. Further baseline subtraction and gain adjustment
were implemented in the gateway software. A gateway was used for local data storage and
visualization and to communicate with the mobile data network to transmit data to the
server [21]. Both the wireless gateway and Bluetooth module emitted nonionizing radiation
at frequencies ranging from 1 to 2.5 GHz. The FCC limit on the Specific Absorption Rate
(SAR), a measure of the rate of energy absorption by the body when exposed to an RF
field [60], for cellular telephones is 1.6 W/kg. Figure 8 represents various timings for data
transmission in the system.

In study [22], the signal of each channel was divided into six non-overlapping seg-
ments (10 s for each segment) and the average of their corresponding SampEn values was
returned as the result of the current channel. The signal quality was assessed by comparing
the SampEn value in each channel with a constant threshold, that was set to 1.5 for AECG
recordings. The average SampEn value was greater than 1.5 for the channels that were
regarded as poor quality and subsequently excluded. SampEn less than 1.5 was considered
as a good-quality signal and reserved. If less than two channels were of good quality, the
two channels with the penultimate and the smallest SampEn values were reserved. The
notch filter was applied to remove the power line interference in this work. The combina-
tion of the Butterworth filter and median filter was applied to remove baseline drift and
impulsive artifacts. The power line interference, baseline drift, and impulsive artifacts of
the AECG were mostly removed after the signal noise-canceling step [22].

Many different types of filters and algorithms were used for data processing in these
12 publications. Table 7 gives a description of the filters.

In the IMU sensor study [25], all the signals received by the IMU went through an
Inter-Integrated Circuit, the hardware filter filtered out the 60 Hz noise, and the data were
sent to the MCU. The signals from various channels were processed by a Kalman filter to
reduce noise and then the position, duration, and Relative Force (RF) of the fetal movement
were determined from the signal interval generated by the energy evaluation [25]. The
process of the software is shown in Figure 9.
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Table 7. Description of filters used in the mentioned papers.

Filter and Function Description

IIR The infinite impulse response (IIR) filter is a recursive filter in that the output from the filter is
computed by using the current and previous inputs and previous outputs.

CWT Continuous Wavelet Transform (CWT) is a technique for analyzing signals. It uses inner products
to measure the similarity between a signal.

Kalman filter It is an algorithm that provides estimates of some unknown variables given the measurements
observed over time.

BlockJS This method is based on determining an optimal block size and threshold of a signal. More
information can be found in [61].

LevelIndependent This method estimates the variance of the noise based on the finest-scale (highest-resolution)
wavelet coefficients [61].

Hampel The Hampel Filter block detects and removes the outliers of the input signal [62].

Haar, sym2 Valid built-in orthogonal wavelet family for denoising. More information can be found in [61].

Three main features were extracted from the signal to analyze fetal movement [25]:

• FM duration calculation
• FM relative force calculation
• FM position evaluation

In the duo accelerometer study [26], the denoising process was applied. The model
was set as the baseline of the data and subtracted from raw data to remove 0 Hz noise. The
Wavelet denoising tool, ‘denoise,’ with the specific parameters ‘Wavelet’, ‘sym2’, ‘Denoising
Method’, BlockJS’, ‘NoiseEstimate’, ‘LevelIndpendent’ in MATLAB, was applied. Another
tool, ‘hampel’, was applied to detect and remove outliers [23,59].
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After analyzing the fetal movement waveform, three main groups of features (statisti-
cal, morphological, and wavelet features) were selected. Minimum, maximum, standard
deviation, mean, and median common statistical features were extracted. Absolute area,
relative area, absolute area of the differential, entropy, and kurtosis were also extracted. The
‘Haar’ wavelet was used to decompose the data and extract the approximate coefficients of
the discrete wavelet transform. The mean, median, and standard deviation of the wavelet
transform were also selected as features for classification. Since each axis had 13 features,
the total number of features was 78 [26].
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Figure 9. System structure diagram and the features of fetal movement [25].

Predictive models to map X to Y were built using a convolution neural network. The
Convolutional Neural Network (CNN) architecture was adopted from [63].

In the PAR study [4], two different window sizes (one second and two seconds) and
two configurations (overlapping and non-overlapping) were selected. In the one-second
window size, the 0.5 s. Mean, SD (Standard Deviation), cosine similarity, RMS (Root Mean
Square), Skewness, Kurtosis, Max value, Min value, Frequency Domain Features, Entropy,
Zero Crossing, Quartile Range, and Absolute Time Difference between Peaks features were
extracted from the data. A total of 43 features were used to represent the sensor data.
K-Nearest Neighbors, Decision Tree, Random Forest, Induction rules, and Gradient boosted
trees classifiers were used on the proposed MPAR system. Each classifier follows the
general rule of supervised machine learning algorithms, where the classifier parameters are
trained with the help of a training set and then its classification/recognition performance is
evaluated with a completely disjoint test set. The dataset of this study is available upon
request [4].

Table 8 depicts the sensors or devices that were used for monitoring maternal or
fetal health. The number of participants in each study and the sensors’ communication
technology is also shown.
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Table 8. Overview of the analysis.

Ref Sensors/Device Monitoring Participants Communication Storage

[4] Accelerometer, gyroscope,
and temperature MPAR 61 Wi-Fi Raspberry-PI device

memory

[7] Chest, Limb, and
Abdominal sensors

FHR, MHR,
temperature 576 Android or iOS Mobile Device

[24] Three commercial wearable
sensor nodes FHR 10 MATLAB Memory Card

[20] EPS Sensor FECG - Laptop LabVIEW software

[21] Toco Sensor FHR - Bluetooth module,
Wi-Fi Gateway

[22] portable, home-based FECG
monitoring device FECG 3 Bluetooth Memory Card

[23] Prototype wearable device FHR 4 Internet ThingSpeak.com [64]

[25] IMU sensors FM 13 Wire transmission SD card inside the
device

[26] Two mCube MC3672
accelerometers FM 20 SoC and

smartphone Laptop/PC

[27] Tri-axial accelerometer FM 77 Mobile phone Micro SD card

[28] Garmin vívosmart 2 smart
bands

Heart rate at rest
(Stress) 20 Internet Virtual Private Server

(VPS)

5. Discussion

This study provides a systematic review of the existing wearable sensors for monitor-
ing maternal health during pregnancy. This review analyzes all twelve available research
articles describing wearable sensors and maternal and fetal health. It focuses on three
research questions: different sensors module, preprocessing of the signal, and recogni-
tion or detection method. Tables 7 and 8 give a summary of the employed sensors and
data-obtaining methods.

For measuring FECG and FHR-ESP, Toco, prototype, or commercial sensors were
used [7,20–24]. These sensors were placed on the abdominal wall and chest of the mother
to measure MECG. Maternal heart rate was calculated to determine the stress level. IMU
sensors and accelerometer sensors were used to measure fetal movement [25–27]. Limb
sensors and wearable sensor modules on the wrist measured the mother’s body temperature
and physical activities [4,7]. The data collected through these sensors were connected to
smartphones and laptops, helping to display and store the data.

Data collection time was different for different methodologies. For studies [25–27],
data collection for fetal movement detection was 1 h, 30 min, and 20 min respectively. For
FECG and MECG recording, the participants had to remain in certain positions to ensure
uninterrupted recording [21,22]. For [20,22,24], the recording was 30 s, 7 min, and 15 min
respectively. The data collection was carried out during different stages of pregnancy, with
no subject monitored throughout the whole pregnancy period.

Filtering is found to be required to remove external noise or artifacts. Most research
studies used a notch filter to remove the power line noise [65] and an FIR or IIR filter
to remove the artifact from the signal. Some devices have built-in filters and so they do
not need to perform filtering externally. The study [23] developed a board employing
a microcontroller, sensors, and a shield. This board performs the further processing of
the FECG signal after acquiring the signals. In ref. [20], the study developed a prototype
device that amplifies the fetal ECG signal and performs the analog filtering. The other
studies primarily use commercially available sensors and perform the data processing
and filtering in MATLAB, LabVIEW, Raspberry-PI, and other software. This section also
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covers the feature extraction methods. Most relevant features were extracted from the data
before proceeding to the next step. Table 6 gives an idea about the extracted features in
these studies.

These studies used machine learning and deep learning methods to evaluate or detect the
signal. Table 9 shows the pre-processing methods and performance of the research analysis.

Table 9. Description of the research analysis.

Ref Pre-Processing Feature Extraction Methods Accuracy

[24] Band-pass filter and IIR
pass band filter

CWT (Continuous Wavelet
Transform) Cepstrum method Reliability from SCG is

75.02% and GCG is 75.52%

[21] Embedded filter on a
microcontroller - Benchtop tests The Concordance Correlation

Coefficient of FHR is 88%

[22]
Notch filter,

Butterworth filter, and
median filter

QRS Detection

Adaptive Dual
Threshold (ADT) and

Independent
Component Analysis

The average Se, PPV, ACC,
and F1 score are 99.62%,

97.90%, 97.40%, and 98.66%,
respectively

[25] Notch filter, Kalman
filter

FM Duration Calculation,
FM Relative Force

Calculation, FM Position
Evaluation

a phantom test and
clinical trial Accuracy 90.3%

[26]

Wavelet, sym2,
Denoising Method,

BlockJS, NoiseEstimate,
LevelIndpendent

Min, max, SD, mean, and
median. absolute area,

relative area, absolute area of
the differential, entropy, and

kurtosis

k-fold cross-validation Accuracy 86.6%

[27] Embedded
microcontroller filter

Extracting a laughing or
kicking window, Extracting a
normal window, Numerical

step

Deep Learning: STFT
combined with CNN Accuracy 73% and 88%

[28] Digital filtering K-means clustering,
Random Forests Accuracy 97.9%

[4] -

Mean, SD, cosine similarity,
RMS, Skewness, Kurtosis,

Max value, Min value,
Frequency Domain Features,

Entropy, Zero Crossing,
Quartile Range, and

Absolute Time Difference
between Peaks.

K-Nearest Neighbors,
Decision Tree, Random
Forest, Induction rules,
and Gradient boosted

trees.

Accuracy 89%

From Table 8, we can see that only 3 of the studies achieved an accuracy above
90% [22,25,28]. After reviewing the articles, we can propose that further work and devel-
opment are needed in the field of wearable sensors for monitoring the health of pregnant
women. All the wearable sensors mentioned in the articles used in monitoring were tested
in a lab environment or clinical trial. Furthermore, the monitoring processes carried out
in the papers reviewed here were conducted for a limited time and only during a certain
gestational period. The number of participants is also limited and more rigorous testing is
required [4,7,20–28]. Only in study [7] were bandage sensors implemented; these are more
flexible than other sensors. Some pregnant women expressed discomfort wearing these
sensors [25]. Maternal physical activity recognition was conducted for only ten activities [4].
For continuous monitoring during daily activities throughout the whole pregnancy, there
will be many motion artifacts in the acquired signal. These are hard to recognize and
remove. Table 10 describes the pros and cons of the sensor modalities used in the studies.
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Table 10. Pros and Cons of the sensor modalities used in the articles.

Ref Pros Cons

[4] Adjustable like a wristwatch and has low battery power
consumption.

Sensors positioned at the wrist position, that were used
with only ten activities, did not consider other

parameters such as ECG and FM.

[7] Sensors are low-cost, flexible, comfortable, and suitable
for real-time measurement. Did not include FM in the study.

[20]
It is non-invasive in nature; dry electrodes that do not
require skin preparation or gels to be applied on the

body and reduce moving artifacts.
The recording time was very short.

[21]
It has a mobile cellular gateway for a wide range.

Communication and browser-based user interface for
remote monitoring and diagnostics and a low cost

The sensors are designed with straps, adjustable belts
attached to external Bluetooth, and a central unit that

can be a little uncomfortable for pregnant women.
The number of participants was small.

[22]
Consists of biocompatible electrode materials, noise

suppression design, an amplification circuit, data
transmission, and a storage module.

Tested for short-time recording; the number of subjects
was small, and power analysis conducted was not

performed.

[23]
It is a cheap and reliable system; the user does not need
to trigger an alert manually, making it easy to operate

for the end user and the clinician.

The was in a preliminary stage and the system needs to
be widely tested; the development board size and

weight needs to be further reduced

[24] Three different measurement positions were evaluated
and compared for each result.

The test was conducted at rest and was not suitable
during movement for motion artifacts.

[25] The design configuration is flexible. The participant had to click the counter when they felt
fetus movement.

[26] This algorithm could handle motion artifacts, proving
its robustness The number of participants was small

[27]
Low-cost device; the sensors are non-invasive and
non-transmitting. As such, it can be used over an
extended period with no negative health impact.

The data were only recorded for 20 min.

[28] This study was able to implement a real-time stress level
estimation algorithm, and it worked in an online setting. Most of our data from this study do not have true labels.

The sensors or devices used in these studies are safe for both mother and their child
and most are commercially available. None of the studies claim any risk in using their
sensors for monitoring fetal or mother health. The experiments were supervised by profes-
sional doctors [21,23–25]. The subject experimental protocol of studies [3,4,22,26–28] were
approved by the Ethics Committee. However, it is not mentioned whether these sensors
were FDA-approved or not, and no conclusive statement was provided on how rigorously
testing was performed by an independent reviewer or institution.

Future work in this field will be focused on developing sensors for continuous moni-
toring throughout the pregnancy period. The primary focus will be to develop a sensor
that can detect any abnormalities in fetal ECG or movement in real-time and give feedback
or alert to the patients and the doctor so that the necessary steps can be taken in time and
any further complications can be avoided. More flexible sensors, such as the bandage
sensors used in the article [7], need to be developed; they will be more convenient and
comfortable for pregnant women. There is a need to increase the number of participants
for more accurate results. Addressing the limitations and issues of the wearable device
will lead to more opportunities to develop wearable sensors, thereby leading the way in
commercializing the sensors.

6. Conclusions

In this systematic review, we focus on three major research questions, including the
sensor’s description and processing, data preprocessing, and performance. The existing
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sensors were thoroughly examined in this review, and their limitation and future scope
were identified. The sensors used in these articles help to monitor maternal health (moni-
toring MECG, body temperature, and stress level) as well as fetal health (FECG, FM). In the
study, we found that pregnant women considered wearing a mobile sensor and reported
no privacy concerns. According to Runkle et al., seven in ten women agreed to change
their behavior or lifestyle during pregnancy after receiving recommendations or messages
from a smartphone through wearable sensors. Most of the studies we mentioned applied
Machine Learning and Deep Learning methods to the pre-processed signal to detect or
evaluate the performance. The accuracy in these studies was around 80% to 90%, which
is acceptable according to the articles. So, we can state that wearable sensors significantly
contribute to maternal health during pregnancy. Although there is demand and need for
wearable healthcare monitors or sensors, there are still some limitations and challenges. Im-
proving accuracy, testing in free-living conditions, enhancing the comfort level of wearable
sensors, and continuous and longitudinal monitoring requires the further development of
wearable sensors and devices. If these challenges can be addressed, wearable sensors may
substantially contribute to reducing the mortality rate due to pregnancy complications or
other maternal health issues.
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