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Abstract: Identifying failure modes is an important task to improve the design and reliability of a
product and can also serve as a key input in sensor selection for predictive maintenance. Failure mode
acquisition typically relies on experts or simulations which require significant computing resources.
With the recent advances in Natural Language Processing (NLP), efforts have been made to automate
this process. However, it is not only time consuming, but extremely challenging to obtain maintenance
records that list failure modes. Unsupervised learning methods such as topic modeling, clustering,
and community detection are promising approaches for automatic processing of maintenance records
to identify failure modes. However, the nascent state of NLP tools combined with incompleteness and
inaccuracies of typical maintenance records pose significant technical challenges. As a step towards
addressing these challenges, this paper proposes a framework in which online active learning is used
to identify failure modes from maintenance records. Active learning provides a semi-supervised
machine learning approach, allowing for a human in the training stage of the model. The hypothesis
of this paper is that the use of a human to annotate part of the data and train a machine learning
model to annotate the rest is more efficient than training unsupervised learning models. Results
demonstrate that the model is trained with annotating less than ten percent of the total available data.
The framework is able to achieve ninety percent (90%) accuracy in the identification of failure modes
in test cases with an F-1 score of 0.89. This paper also demonstrates the effectiveness of the proposed
framework with both qualitative and quantitative measures.
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1. Introduction

To improve product quality and reliability, it is necessary to implement appropriate
actions to avoid faults. This is typically completed through a process known as Failure
Mode and Effects Analysis (FMEA). A critical step in FMEA is to identify different failure
modes, associated product subsystems, and components where faults occur. The traditional
approach to improving reliability has been to perform finite element analysis to simulate
and predict different failures [1–4]. Typically, failure modes are acquired through historical
documents, bill of materials, and failure analysis reports. This can be a very labor intensive
and time-consuming task that is both inefficient and prone to errors because of incom-
plete data, differences in recording maintenance information, or the lack of a standard
vocabulary for maintenance records among different departments within the industry [5].
Recent advances in Natural Language Processing (NLP) are enabling automated process-
ing of large volumes of textual data. For example, asset rich industries such as mining
require substantive upfront investment specifically to acquire heavy mobile equipment.
In 2022, the capital expenditure of the twenty leading miners was expected to reach USD
70.4 billion [6]. Similar situations exist in other industrial sectors such as aviation, power,
and energy. Clearly, it is necessary to maintain assets over a long-life cycle to ensure
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return on investment along with asset maintenance data stored in company maintenance
systems [7].

There are existing studies that leverage the information from maintenance logs to
identify failure modes to construct a component–failure matrix using various machine
learning techniques [5,8–11]. However, most of the studies focus on techniques related to a
specific domain. In the cases where unsupervised learning techniques are employed, the
number of clusters is typically fixed, making it necessary to provide the number of clusters
or topics present within the documents. Active learning is a semi-supervised machine
learning approach, which involves a human in the training stage of the model. This paper
proposes to bridge this gap with the use of an online active learning method for failure
mode identification. The key contributions of the paper include:

1. An uncertainty-based online active learning model for identifying and classifying
faults in maintenance records;

2. Identifying some of the shortcomings in current state-of-the-art techniques related to
classifying or clustering maintenance records;

3. A proposed standard vocabulary for fault modes across specific industries.

The following section provides a review of the literature including recent develop-
ments to extract failure modes using NLP along with a brief overview of the issues with
maintenance texts. The next section presents the research framework and different querying
techniques in online active learning. The Case Study section demonstrates the advantage
of using the proposed active learning model over NLP techniques on mining equipment
maintenance data. The paper concludes with a discussion of findings, benefits of the
framework, and proposed future work.

2. Literature Review

Natural Language Processing (NLP)-based methods have been used in the past to
obtain failure modes. Extraction of standard failure modes using failure mode classifi-
cation from a failure–experience matrix [12] and bill of materials with recorded failure
information [13] have been successfully demonstrated. A classification method using tree
kernel-based support vector machine to identify bearing failures [14] based on a set cate-
gory of failure modes has also been accomplished. However, these classification methods
pre-suppose the type of failure modes, which is not applicable to complex systems, such as
industrial robots, wind turbines, and more. Such complex systems are likely to have more
failure modes than the set of failure modes under consideration.

Unsupervised learning methods such as cluster analysis have been studied in the
past during the conceptual design phase of systems. For example, “K-means” clustering
combined with a row addition method based on artificially established failure modes and
their frequency was studied in rotating mechanical systems [15] to develop the Component–
Failure (CF) matrix. The K-means clustering algorithm has also been used on preprocessed
software failure text using the representative samples as cluster labels [16]. Processes to
extract failure from maintenance texts using hierarchical clustering and similar distribution-
based clustering methods have been explored [17]. Researchers have also explored clus-
tering historical FMEA data to extract failure modes and convert the structured data in
FMEA sheets into an evolving tree algorithm [18]. Apart from supervised and unsuper-
vised learning, ontology-based methods have also been proposed where the failure modes
are extracted from historical data on maintenance and services [11] as well as repairing
verbatim data [19].

While promising, the methods described above do not account for the non-uniform de-
scription of failure mode data or the lack of standard vocabulary for FMEA data. Although
efforts have been made to effectively maintain and utilize a standard failure mode vocabu-
lary [13], a systematic approach to standardize failure modes has not been established. To
tackle these issues, a frequency itemset mining [5] approach was proposed to construct the
CF matrix. This approach, however, is computationally expensive as frequency set mining
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is resource-intensive and time-consuming. Frequency itemset mining has also been known
to develop associations or rules that are a product of chance.

Most clustering algorithms, such as K-means and hierarchical agglomerative clustering
algorithms, are similarity-based. These algorithms represent documents as a vector space
model (VSM) [20], where a vector of length ‘V’ represents each document. The weight of a
word typically calculated using TF-IDF (Term Frequency Inverse Document Frequency)
represents the corresponding elements of the vector. Due to the sparsity of short texts, most
of the words will have TF = 1, which means TF is ineffective in calculating the weights. This
representation results in high time and space complexity, creating dimensionality issues in
short texts.

More recently, the focus has been on utilizing a topic modeling approach to extract
hidden failure information from maintenance records [8,21]. Topic modeling has become a
widely used text clustering approach to discover abstract topics and infer hidden semantic
structures from a collection of documents with techniques that can be categorized as
clustering, classification, or probabilistic.

The most widely used approach in topic modeling is the Latent Dirichlet Allocation
(LDA) model which has been used to improve user experience [22], summarize and pro-
vide an overview of discovered themes to recommend books [23], and analyze research
trends [24]. LDA is a generative probabilistic model with three levels of hierarchy [25] for
collections of discrete data such as texts. The finite mixture of topics serves as an underlying
model for each collection of items, which in turn is modeled as an infinite mixture over
an underlying set of probabilities. While LDA works well on long text data, it has been
criticized as not being suitable for inferring topics from short texts [26], having issues with
scaling [27], and ignoring co-occurrence relations [28]. These issues make it unsuitable to
infer topics (failure modes) from maintenance records. It also requires that the number of
topics that are specified as a parameter be supplied to the model.

To overcome the co-occurrence limitation of LDA, a Hierarchical Latent Tree Model
(HLTM) has been proposed [29]. HLTM clusters documents by treating words at the bottom
level as observed binary variables and words at other levels as latent binary variables
representing co-occurrence patterns. While efficient when compared to LDA, this would
be unsuitable for short-text clustering. A latent topic text representation model, based on
the assumption that words in the same topic follow a Gaussian distribution, was proposed
to overcome the limitations of vector representation models and semantic models [30]. To
discover topics, it aims to represent text as a probability distribution, causing it to perform
better than LDA. However, this model is likely to perform less coherently when short
texts are considered due to sparsity and lack of structure. Another proposed method that
clusters texts thematically is based on Formal Concept Analysis (FCA), organizing text in
the form of a concept lattice for topic modeling of Twitter data [31]. FCA also facilitates the
detection of new topics based on the information coming from previous topics. However,
this approach does not generalize well. There are numerous approaches that serve as an
alternative to LDA, yet limitations persist.

With the advent of deep-learning and sentence embedding techniques such as BERT
(bi-directional encoder representation from Transformers), GloVe (Global Vectors for Word
Representation) doc2Vec, and others, short text-classification has made significant progress
in recent years. For example, a recent study [32], sought to identify misinformation per-
taining to COVID-19 by performing sentiment analysis utilizing Twitter data. The study
focuses on attitudes, sentiments, and how misinformation affects “E-learning”. The noise
in textual data is removed using a denoising auto-encoder and an attentional feature fu-
sion mechanism is used to combine multi-level features of ELM-AE (Extreme Learning
Machine—Auto Encoder) with LSTM (Long Short-Term Memory). The authors achieved
an F-1 score of 0.945, which is a higher F-1 score than other state-of-the-art approaches.
A similar study [33] focused on short text classification using a feature fusion framework
based on BERT. The short text defined in this case pertained to Twitter data, which have
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180–200 characters. However, the short text considered focused on maintenance records
which have less than 40 characters, making it much more difficult to classify.

2.1. Active Learning

Active learning, also referred to as “query learning” or “optimal experimental design”,
is a subset of machine learning where a learning algorithm can interact with the user to label
unknown data points with desired outputs. It is a type of semi-supervised machine learning
algorithm. The algorithm selects a subset of samples to be labeled next from a pool of
unlabeled data. The fundamental belief is that if the algorithm can choose the observations
it wants to learn from, it can perform better than the traditional learning algorithms
with substantially fewer observations [34]. The observations under consideration can be
categorized into three subsets. If N is the total number of observations under consideration,
during each iteration i, N can be broken up into three subsets:

• (N–K)i: observations where the label is known;
• Ki: observations where the label is unknown;
• Ci: A subset of Ki that is chosen to be labeled.

The decision whether to query a specific label depends on whether the gain from
querying the label is greater than the cost of obtaining that information. This practice
can take a few different forms depending on the budget limit and other factors, namely:
1. membership query synthesis, 2. pool-based sampling, and 3. Stream-based selective
sampling.

2.1.1. Membership Query Analysis

Membership Query Analysis was the first active learning scenario to be investi-
gated [35]. In this scenario, the algorithm may request a label for any unlabeled observation
in the input space, including queries generated instead of the ones sampled from an
underlying distribution. For finite problem domains, query synthesis is often tractable
and efficient [36]. This idea has also been extended to regression learning tasks [37] for
predicting the absolute coordinates of a robot hand.

The scenario described here is not applicable to all cases since it involves the generation
of synthetic data. In this method, the active learner creates its own examples for labeling.
This method is suitable for situations where it is easy to generate an example of data. For
instance, some have tried to classify handwritten characters using neural networks using
human oracles [38]. The queries generated by the learner often contained unrecognizable
symbols and were mostly artificial hybrid characters that had no natural semantic. To over-
come this limitation, an innovative and promising approach using a “robot scientist” [39]
has been investigated to discover metabolic pathways in yeast saccharomyces cerevisiae
(Brewer’s yeast). This approach is promising in domains where humans are not the oracles.

2.1.2. Pool-Based Sampling

Most real-world datasets have many unlabeled data. In pool-based active learning [40],
the algorithm is trained on a fully labeled part of the data. This helps the algorithm to
determine the instances that would be most beneficial to be added to the training set in
the next iteration. An informativeness measure evaluates all the data before a query or a
set of queries is carried out. It is one of the most popular active learning scenarios and has
been studied for various applications such as image classification and retrieval [40–43]. The
downside of this algorithm is the amount of memory required.

2.1.3. Stream-Based Selective Sampling

This scenario assumes that obtaining unlabeled data is inexpensive. It first selects
samples from the actual distribution before deciding whether to request the oracle for
labels. Stream-based selective sampling, alternatively known as sequential active learning,
draws out each unlabeled instance one at a time from the data before making the decision
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to query. If the underlying distribution is non-uniform or unknown, the queries will be
sensible, coming from the real distribution [34].

There are different strategies to help the algorithm arrive at a decision on whether
to carry out a query. One approach is to use an informativeness measure and make a
biased random decision by favoring more informative observations to be queried [44].
Another approach is to select the observations that are still ambiguous to the algorithm.
A naïve strategy approach is to set a threshold for the informativeness measure and to
select observations that are above the threshold.

Active learning has been increasingly used in the realm of fault diagnosis [45–47].
A novel probabilistic framework, based on active learning, was used as an online strategy
for SHM [47]. It was found that active learning was more efficient and accurate compared
to traditional machine learning algorithms. The authors used vibration data from dif-
ferent sensors on a Z24 bridge and simulated vibration measurements from an aircraft
engine to classify faults. Similarly, an active learning method based on uncertainty and
complexity was proposed for gearbox fault diagnosis [46]. The authors used empirical
mode decomposition–singular value decomposition (EMD-SVD) to obtain feature vectors
from sensor signals, and then used active learning combined with Random Forest to train
and classify faults in a gearbox. The results from both studies showed that active learning
models outperformed traditional machine learning models. While the use of sensor data to
identify and classify fault modes is a novel approach, it does not deal with the classification
of textual data. The authors make an assumption that sensor data is readily available to
identify faults. This is not the case for most industries, which are still hesitant to invest in
expensive sensors for health monitoring. Hence, this paper suggests the use of maintenance
records, which are maintained by most industries and require little to no investment in
additional hardware for fault mode acquisition.

To recap, although there are many approaches that have been proposed for topic
modeling, LDA continues to be the most frequently used algorithm. The methods that
serve as alternatives to LDA are not well-suited for short-text clustering. The next section
provides details of issues with short-text clustering, specifically maintenance text, which is
the focus of this paper. It will also provide a brief overview of the issues with the typical
text pre-processing steps/pipeline that exist in the NLP realm. To support the discussion, a
summary of the literature review is provided in Table 1 below.

Table 1. Summary of Literature.

Title Year Objective Method

[15] Failure Mode Analysis of Mechanical
Systems at Conceptual Design Stage 2006 To determine the

criticality of failure modes K-means Clustering

[22] A correlated topic model of science 2007
To improve user

experience by using identified topics as
guides

Correlation Topic
Modeling

[17] A case study of failure mode analysis
with text mining methods 2007 To automate failure

mode extraction Multiple methods

[18] Clustering and visualization of failure
modes using an evolving tree 2015 To cluster and visualize failure modes in

FMEA document as tree structures Evolving Tree

[14]
A Preliminary Study of Clinical

Abbreviation Disambiguation in Real
Time

2015 To recognize
clinical abbreviations

Word sense
disambiguation

[19]

A data and ontology-driven text
mining-based construction of

reliability model to analyze and
predict component failures

2016
To enhance the reliability
estimation of automobiles

using textual data
Ontology

[31] A step forward for Topic Detection in
Twitter: An FCA-based approach 2016 To improve topic

detection process
Formal Concept

Analysis
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Table 1. Cont.

Title Year Objective Method

[11]

Knowledge management of
automobile system failures through
development of failure knowledge

ontology from maintenance
experience

2017

To enhance knowledge management of
automobile system

failures to aid in design and
maintenance of automobiles

Ontology

[23]
Unsupervised Topic Modelling in a

Book Recommender System for New
Users

2017
To summarize the overview of

discovered themes for book
recommendation

LDA

[24]
Analyzing research trends in personal

information privacy using topic
modeling

2017

To analyze the research trends
between 1972 and 2015 on personal

information privacy to offer
direction for future research

LDA

[29] Latent tree models for hierarchical
topic detection 2017

To model patterns of word
co-occurrence and

co-occurrence of those
patterns to overcome LDA limitation

HLTM

[30] Latent Topic Text Representation
Learning on Statistical Manifolds 2018

To provide effective text
representation and text

measurement with latent
topics

Gaussian Mixture
Model

[47]
Probabilistic active learning: An
online framework for structural

health monitoring
2019 Fault mode Classification

using sensor signals
Online Probabilistic

Active Learning

[5]
A data-driven approach for

constructing the component-failure
mode matrix for FMEA

2020
Failure mode extraction of

automobile seat module to build a
Component–Failure Matrix for FMEA

Association Rule
Mining

[21]

A Framework Based on K-Means
Clustering and Topic Modeling for

Analyzing Unstructured
Manufacturing Capability Data

2020

To discover patterns in
manufacturing capability corpus with

clustering
suppliers’ capability

K-means Clustering
and

Topic Modeling

[45]
An Applicable Predictive Maintenance

Framework for the Absence of
Run-to-Failure Data

2021
Predictive maintenance framework to

identify and classify faults using sensor
signals

Autoencoder
and

simple linear
regression

[32]

Topic Modeling and Sentiment
Analysis of Online Education in the

COVID-19 Era Using Social Networks
Based Datasets

2022 To identify misinformation related to
COVID-19 as it pertains to E-Learning

Attentional Feature
Fusion
with

ELM-AE and LSTM

3. Overview of Maintenance Text Issues

A typical NLP pre-processing step involves:

1. Tokenization: Tokenization is the fundamental step in NLP which is a process of
segmenting texts into tokens from sentences into words and characters. It is possible
to use the token occurrences of a document as a vector representation. This process
converts unstructured text into structured data for analysis.

2. Removing stop words: The stop word removal process involves removing common
language articles, pronouns, and prepositions such as ‘and’, ‘the’, or ‘to’ in English.
This process not only frees up space but also improves processing time for any
ML model. Stop words can be removed by performing a lookup operation from a
predefined list. It is important to note that there is no universal list of stop words.
This is true especially when it comes to technical text. The trend in the past few years
has shifted from using a long list of stop words to not removing any stop words at
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all. Because this process decontextualizes the sentences, it is typically not suitable to
perform sentiment analysis.

3. Stemming: This is the process of reducing a word to its root form. Stemming typically
removes prefixes and suffixes, generating the stem of the word. It is a relatively fast
and simple process. The issue with stemming is that it can generate stems that are not
actual words, thus affecting the accuracy of NLP.

4. Lemmatization: The base of a word in its base form or dictionary form is called
a lemma. The process of reducing words to lemma is termed lemmatization. The
primary difference with stemming is that lemmatization takes context and grammar
into consideration. The process itself requires access to a dictionary or a knowledge
base mapping words to their lemma forms. This process is slower and computationally
more expensive compared to stemming.

While helpful, these steps also cause several issues with tailoring Natural Language
Processing tools to expert-driven text data [48]. The pre-processing step may cause issues
such as removing asset identifiers (ABB IRB 140) or result in reversing the meaning of
certain orders when stop words are removed. This is problematic. When the goal is to
construct a CF matrix, it becomes imperative to identify not only the failure modes but
to identify the sub-system and components where the issue occurs. Therefore, Technical
Language Processing (TLP) encourages semi-supervised models with human-in-the-loop
to tailor NLP tools for technical text data. One approach to address this issue is to use
active learning, which needs an oracle to label the data iteratively. A text classification
model can then be trained to recognize the failure modes and label them on incoming
data. This requires only a small amount of input from the user. Models have demonstrated
classification with sufficient accuracy [37,41,42,49–51]. In the case of this paper, the focus is
mainly on the extraction of failure modes for the purpose of sensor selection. This makes
the components in which the issue occurs of less importance.

Technical texts are typically short texts that average about four to five words per
row. This makes it difficult to use certain NLP tools such as TF-IDF as it requires large
volumes of text and repeating words to gain meaningful information. The vectorization of
high-dimensional data results in sparsity, requiring high computing and storage capacity.
This makes it challenging to determine the number of clusters, and the clusters obtained
will be difficult to label, which is the goal of this paper.

There are several clustering methods that have been proposed to deal with the issue
of sparsity in vector representation for short-text clustering [52–55]. To enrich the repre-
sentation of short text, most of the proposed approaches mentioned above use external
sources such as Wikipedia or Wordnet, which sometimes lead to inconsistency. To deal
with this issue, a corpus-based topic diffusion technique has been proposed which focuses
on finding words that do not appear in the text that are related to its content [56].

Hybrid LDA models that learn vector representation were proposed to overcome
the short-text clustering limitation of LDA models [57]. In a study comparing short text
classification with non-negative matrix factorization (NMF), it was shown that NMF outper-
forms LDA [58]. Another extension of the LDA model is the Gibbs Sampling for Dirichlet
Multinomial Mixture (GSDMM) model, which extends LDA with a Dirichlet Multinomial
Mixture [59]. GSDMM has been shown to perform better on short texts compared to other
hybrid LDA models. GSDMM not only infers the number of topics present in a document,
but it also achieves a good balance between completeness and homogeneity. GSDMM
assumes that the same symmetric distribution of Dirichlet priors is given to all words,
which is not realistic. To overcome the limitation of GSDMM, a method that combines
Chi-square statistics with GSDMM has been proposed and shown to perform well on
railway maintenance data [60]. However, the stability of the model was shown to last for a
shorter duration.

In summary, it is challenging to adapt the NLP text pre-processing pipeline for main-
tenance data. Inconsistency in performance is one of the issues with clustering models
that utilize external resources to deal with the sparsity of short texts. Hybrid LDA models
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outperform traditional LDA models in short-text clustering. However, hybrid LDA models
do not extend to maintenance texts.

4. Research Framework

Figure 1 provides an overview of the research framework. As shown, it begins with a
sensor fault mapping process, which takes either the maintenance logs or FMEA data as input,
whichever is available. Note that it is better to utilize maintenance logs as input if the system
is deployed and operational since there is actual failure data. In case the system is still in the
design phase, it is better to use FMEA data, which provides anticipated failure data.
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Exploratory analysis of the raw data is conducted with the construction of word
clouds, n-gram analysis, and a co-occurrence network. During the text processing stage,
all special characters are removed, and any misspelled words are corrected. The pre-
processed text is then clustered using non-parametric Bayesian algorithms such as GS-
DMM and a hierarchical LDA model to extract the failure modes. To establish a baseline
model, a similarity-based Hierarchical agglomerative clustering algorithm is used. The
algorithm uses soft cosine measurement to measure the similarity between sentences.
Topic modeling using LDA is also performed to illustrate its performance on short texts,
specifically maintenance data. Finally, clustering using sentence embedding to identify
failure modes is carried out. To support this, a supervised learning algorithm for text
classification is used by an active learning model. The performance of unsupervised models
is compared using Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI).
The supervised and active learning models are compared based on classification accuracy.

5. Case Study

This section demonstrates the extraction of failure modes for an operational system
using maintenance records on several excavators collected from the Mobile Mining Equip-
ment Reliability Database [61]. The maintenance logs used in this study were collected from
eight excavators where the asset code has been de-identified. The data were obtained via
the prognostics data library [62]. The details of how the data were collected are described by
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Hodkiewicz and Ho [63]. The dataset contains records of maintenance services performed
on eight similarly sized excavators/assets at different mine sites across Australia over a
period of ten years. The asset types have been de-identified to an uppercase letter (A, B, C,
D, and E). The dataset has five variables. A brief description of each variable is provided in
Table 2. Type of maintenance is a categorical variable with six levels as follows:

• PM01: unplanned or breakdown maintenance;
• PM02: planned or preventive maintenance;
• PM06: accidental damage;
• PM13: Repair of a spare for an asset;
• PM04 and PM05: unknown.

Table 2. Different fields in the dataset.

Fields/Variables Description Data Type

BscStartDate Date of commencement of maintenance
work Date

Asset De-identified asset type Categorical
OriginalShorttext Description of maintenance work needed String/Unstructured text

PM Type Maintenance work type Categorical
Cost Cost in Australian dollars Float

For the analysis, PM01, PM13, PM04, and PM05 are considered with a focus on
identifying failure modes for sensor selection in predictive maintenance. The occurrences
of each of the above-mentioned categories are shown in Figure 2. A marginal distribution
plot of the cost of each asset over time is provided in Appendix A.

Sensors 2023, 22, x FOR PEER REVIEW 9 of 21 
 

 

5. Case Study 
This section demonstrates the extraction of failure modes for an operational system 

using maintenance records on several excavators collected from the Mobile Mining Equip-
ment Reliability Database [61]. The maintenance logs used in this study were collected 
from eight excavators where the asset code has been de-identified. The data were obtained 
via the prognostics data library [62]. The details of how the data were collected are de-
scribed by Hodkiewicz and Ho [63]. The dataset contains records of maintenance services 
performed on eight similarly sized excavators/assets at different mine sites across Aus-
tralia over a period of ten years. The asset types have been de-identified to an uppercase 
letter (A, B, C, D, and E). The dataset has five variables. A brief description of each variable 
is provided in Table 2. Type of maintenance is a categorical variable with six levels as 
follows: 
• PM01: unplanned or breakdown maintenance; 
• PM02: planned or preventive maintenance; 
• PM06: accidental damage; 
• PM13: Repair of a spare for an asset; 
• PM04 and PM05: unknown. 

For the analysis, PM01, PM13, PM04, and PM05 are considered with a focus on iden-
tifying failure modes for sensor selection in predictive maintenance. The occurrences of 
each of the above-mentioned categories are shown in Figure 2. A marginal distribution 
plot of the cost of each asset over time is provided in Appendix A.  

Word clouds are powerful techniques to represent textual data. The size and color of 
each word indicate its frequency and importance. The word cloud generated using 
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This makes it easier to expect clusters containing certain failure modes. This process also 
helps in identifying the extent to which the documents need to be pre-processed. 

Table 2. Different fields in the dataset. 

Fields/Variables Description Data Type 
BscStartDate Date of commencement of maintenance work Date 

Asset De-identified asset type Categorical 

OriginalShorttext Description of maintenance work needed String/Unstructured 
text 

PM Type Maintenance work type Categorical 
Cost Cost in Australian dollars Float 

 
Figure 2. Maintenance type for different assets.

Word clouds are powerful techniques to represent textual data. The size and color
of each word indicate its frequency and importance. The word cloud generated using
maintenance data (Figure 3) provides a glimpse into the dominating failures of the asset.
This makes it easier to expect clusters containing certain failure modes. This process also
helps in identifying the extent to which the documents need to be pre-processed.
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Most of the failure modes present in Figure 3 are associated with lubricants or hy-
draulic fluids, indicating that lubricant leaking is a major problem in these excavators. The
component that experiences frequent maintenance issues appears to be the engine on the
right-hand side or ‘r/h engine’. Some of the terms are repetitive such as ‘grease line’ v/s
‘grease lines’ indicating the plural form of the line is considered a separate word. It might
be possible to remove this discrepancy by stemming the word to its base form. However,
doing so will make it difficult to interpret the results of the clusters to identify the cluster
label or failure mode. There are some terms such as repair grease which do not create this
problem. To ensure that these two terms occur together, it is necessary to conduct n-gram
analysis on the data.

N-gram refers to a continuous sequence of n words. If the number of words is two, it
is called as bigram, for three words, it is called a trigram, and so on. If the most frequently
occurring words are considered in isolation, as shown in Figure 4, it would be difficult to
recognize the context in which a word was used. It becomes somewhat easier to understand
the texts if bigrams are considered, shown in Figure 5. However, it is still difficult to discern
the failure modes for some of the entries, such as ‘rh engine’, which simply lists the name
of the component where the fault is present. Considering the first step is to identify the
failure modes within the document, at least three words need to be considered, shown in
Figure 6. There are some repetitive observations that refer to the same failure mode but
are worded differently, such as ‘repair broken grease’ and ‘broken grease line’. Some of
the words refer to the same failure mode but also list the component where the fault can
be observed. A co-occurrence network provides insight into which words are most likely
to appear together. The higher the likelihood, the more prominent the edge between the
two words. A co-occurrence network with a forced atlas 2 layout (a force-directed layout
used for network spatialization) was created using Gephi, as shown in Figure 7. The size of
the labels represents the degree of the associated nodes in the network. The co-occurrence
network confirms most of the findings in bigrams that most of the components or lubricants
need to be replaced. The major issue that these machines have is oil leaks as they are more
likely to occur together. Another issue that can be inferred from this is that most of the
issues appear in the ‘rh engine’ than in the ‘lh engine’.
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5.1. Tokenization

Tokenization is a process that makes it easier to remove punctuations and numbers
which typically do not provide much information in unstructured textual data. As an
example, consider ‘#1 Swing Motor contamination switch’. After tokenization, it becomes
‘[‘#’, ‘1’, ‘Swing’, ‘Motor’, ‘contamination’, ‘switch’]’. It is important to note that tokenization
can trigger certain complications when it comes to technical data. In the case of abbreviated
words, the period following the word should be part of the same token and not a separate
token. This can be problematic as technical texts often have hyphens, parentheses, and
other punctuation marks. Care should be taken so that a phrase with a single meaning with
white space, such as ‘New York’, is not split into two different words.

The emerging trend seems to be to forgo tokenization entirely and develop the NLP
algorithms at the character level, which makes it easier to avoid the pitfalls of tokenization.
The nuances of the tokenization schemes are not enough of a crucial issue to be dealt with
at the development stage of an NLP model. However, adjusting the tokenization scheme is
often the easiest way to improve the model for failure modes that are worded differently,
such as repair broken grease and broken grease line.

5.2. Text-Preprocessing

Certain words such as ‘cyl’, ‘hyd’, and ‘eng’ were changed to not count as separate
words from ‘cylinder’, ‘hydraulic’, and ‘engine’, respectively. The misspelled words were
corrected using TextBlob, a text processing library, and inspected manually for any incorrect
corrections. Special characters were removed using regular expressions. All operations
were performed in Python 3.
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Figure 7. Complete co-occurrence network of corpus.

6. Results and Discussion
6.1. Topic Modeling

There are several approaches to inferring the failure modes using an unsupervised
learning approach. The most popular approach is LDA. The biggest challenge when



Sensors 2023, 23, 2818 14 of 20

attempting to model LDA is deciding the number of topics to use as a hyperparameter.
A coherence score is typically used to assess the quality of the topics, and a higher coherence
score is better. The LDA was modeled using genism [62] in Python, making it easier to
calculate the model coherence score. Unfortunately, for short texts, the number of topics
to pick is not obvious, as shown in Figure 8. Increasing the number of topics continues
to increase the coherence score, thus providing little guidance to select the number of
topics. Another possibility is to select the number of topics as the first peak (topic = 10)
according to Figure 8. This would result in losing information on certain failure modes or
mis-categorizing them. Furthermore, this makes it difficult to ascertain failure modes when
selecting the sensors to detect failure modes.
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Although HDP had a lower coherence score, the number of topics discovered were
closer to the ground truth. However, if the contents of the topics are plotted as a word
cloud, as shown in Figure 9, it becomes evident that the topics have several of the same
words that make up the bulk of the topic. This makes it difficult to identify the failure mode
in each topic.
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GSDMM provided the same result as HDP. Although it had a lower coherence score,
the number of topics discovered was close to the ground truth. The summarized result of
all three algorithms is provided in Table 3. The caveat here is that the coherence score alone
is not a good statistic to indicate the performance of the model. The words that make up
the topic should always be investigated before drawing a conclusion.
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Table 3. Results of Topic Modeling Algorithms.

Model Number of Topics Discovered Coherence Score

HDP 22 0.35
LDA 99 0.68

GSDMM 25 0.33

While some of the topics discovered made sense, many of the topics were hard to
interpret or to establish a one-to-one relationship between the failure mode and the topic.
This is due to the issues discussed in the section Overview of Maintenance Text Issues.
Clustering with sentence embeddings is another option to extract meaningful information
from short texts.

6.2. Clustering Texts with Sentence Embeddings

To cluster text data, it is necessary to represent them numerically. This is achieved
using either embeddings or vector representations. There are several sentence embedding
models that have been made available for use as pre-trained models. These models are
known to perform well for sentences with semantical similarities. Given the size of the
dataset, it is best to use a pre-trained model. Three different BERT models were used
(all-mpnet-base-v2, all-MiniLM-L6-v2, and all-distilroberta-v1).

The embedded sentences have more than seven hundred dimensions, making them
computationally expensive. Hence, dimensionality reduction was performed using Uni-
form Manifold Approximation and Projection for Dimension Reduction (UMAP) [63].
Another issue with high dimensional data is the meaning of measures such as Euclidean
distance and Manhattan distance in high dimensional space.

HDBSCAN was the clustering algorithm used due to its robustness on variable density
clusters. The model itself does not require the number of clusters as the hyperparameters.
The clustering algorithm was used on all three sentence embedding models. However, the
results were far from satisfactory. All three embedding models suggested more than fifty
clusters, which is far from the ground truth. The comparison of clustering using the three
different embedding models is shown in Table 4.

Table 4. Performance of clustering sentence embeddings.

Model ARI NMI Loss Clusters

all-mpnet-base-v2 0.036 0.344 0.100 82
all-MiniLM-L6-v2 0.041 0.373 0.122 93
all-distilroberta-v1 0.040 0.326 0.125 67

There can be issues with the performance of embedding models, which are known
to perform well on short texts, due to the data used for training. For example, sentence
embedding models use everyday language for training. This is not suitable for this case as
most of the words used in the maintenance records are not everyday words. This suggests
a need to train a custom embedding model using only maintenance data. While this has
been accomplished [64], unfortunately, the model is not available to the public. This is most
likely due to the confidentiality associated with the data.

6.3. Active Learning with Ensemble Modeling

In this approach, multiple models are combined in the prediction process. This is a
typical solution when the following challenges are encountered during modeling:

• High Variance: The model is very sensitive to the inputs provided.
• Low Accuracy: One model fit of the entire training data may not provide accurate

results.
• Noise and Bias: The model relies heavily on one or a few features for prediction.
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It is challenging to create a model that would produce highly accurate results given
the limitations of machine learning. Multiple models are combined to boost the overall
accuracy. Reducing model error and maintaining generalization objectives can be achieved
with aggregating the output from the models. There are several ensemble models such as
Adaptive Boosting (AdaBoost), Random Forest, and XGBoost, to name a few.

A random forest classifier is chosen to perform the classification task. Random Forest
uses a subset of training samples as well as subset of features to build multiple trees. The
goal is not to select and compare the performance of different ensemble models but to
demonstrate the effectiveness of active learning.

Different sampling methods were used to test the active learning approach using the
modAL library [64] in Python. Uncertainty sampling provided the highest accuracy. The
results were achieved with default parameters without any hyperparameter optimization.
The model was trained on 185 out of 2303 observations. This approach improved the
accuracy by 10%. It took 52 h to manually identify all failure modes present within the
maintenance records. However, the active learning model took less than 10 min to identify
all failure modes. This saves substantial time and cost in terms of labor hours required to
identify the failure modes.

6.4. Model Comparison

This section compares the active learning model with both unsupervised and super-
vised learning models that have been introduced earlier in this paper. The comparison
with unsupervised learning models is shown in Figure 10. While the standard algorithm
for topic modeling LDA overestimates the number of topics present in the document, both
HDP and GSDMM, which are meant for short texts (<180 characters), are much closer in
their estimation of the actual number of failure modes present. However, the pre-trained
embedding models perform similarly to LDA, indicating that these models are not meant
for short texts, especially technical texts. It is important to note that short texts are typically
defined in terms of characters present in a tweet, which is not the same for technical texts
(<50 characters).
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An ensemble learning model, namely random forest, was the core of the active learning
model. Instead of accuracy, the F-1 score is a more accurate metric for classification models
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with imbalanced classes. The F-1 score for the random forest model was found to be
0.86. The F-1 scores of different supervised learning models and active learning models is
presented in Table 5.

Table 5. F-1 scores of supervised and active learning models.

Model F-1 Score

Random Forest 0.86
Stochastic Gradient Descent 0.83

K-nearest neighbors 0.80
Decision Trees 0.67

ADA Boost 0.70
Support Vector Machines 0.82
Multi-Layer Perceptron 0.83

Entropy Sampling 0.85
Uncertainty Sampling 0.88

Margin Sampling 0.83

It is evident from the comparisons with different models that active learning models
perform better when compared to supervised or unsupervised learning models.

7. Conclusions and Future Work

In this paper, a framework to extract failure modes from maintenance records using
online active learning is proposed. This work illustrates the challenges faced in identifying
failure modes from maintenance records. The limitations of current unsupervised learning
models to perform a cluster then label approach are illustrated with a case study. These
are primarily due to the limitations of the NLP tools, such as vectorization and sentence
embeddings, being geared towards non-technical terms. The case study is also used
to demonstrate the effectiveness of using a human-in-the-loop approach with the same
NLP tools.

While contributions made by this work are significant, there remain research avenues
that can be explored to further improve the performance of both unsupervised and semi-
supervised methods. An example would be training and embedding a model specifically
with maintenance data. However, this requires large amounts of data, most of which
are confidential, making partnerships with industry necessary. An additional area for
further development using the output from this framework is to map the sensors to failure
modes. In turn, this would serve as an input for sensor selection and sensor specification
selection models.
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