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Abstract: Lung cancer is a high-risk disease that causes mortality worldwide; nevertheless, lung
nodules are the main manifestation that can help to diagnose lung cancer at an early stage, lowering
the workload of radiologists and boosting the rate of diagnosis. Artificial intelligence-based neural
networks are promising technologies for automatically detecting lung nodules employing patient
monitoring data acquired from sensor technology through an Internet-of-Things (IoT)-based patient
monitoring system. However, the standard neural networks rely on manually acquired features,
which reduces the effectiveness of detection. In this paper, we provide a novel IoT-enabled healthcare
monitoring platform and an improved grey-wolf optimization (IGWO)-based deep convulution
neural network (DCNN) model for lung cancer detection. The Tasmanian Devil Optimization (TDO)
algorithm is utilized to select the most pertinent features for diagnosing lung nodules, and the
convergence rate of the standard grey wolf optimization (GWO) algorithm is modified, resulting
in an improved GWO algorithm. Consequently, an IGWO-based DCNN is trained on the optimal
features obtained from the IoT platform, and the findings are saved in the cloud for the doctor’s
judgment. The model is built on an Android platform with DCNN-enabled Python libraries, and the
findings are evaluated against cutting-edge lung cancer detection models.

Keywords: Internet-of-Things; healthcare monitoring; lung cancer; tasmanian devil optimization;
improved grey wolf optimization; deep convolutional neural network

1. Introduction

Lung cancer is one of the most common diseases in the world, accounting for 1.3 mil-
lion diagnoses and 1.2 million deaths per year [1]. The most prevalent lung disorders have
been lung cancer, asthma, pneumonia, and pulmonary edema. The respiratory illnesses in-
clude lung circulation, tissue disorders, and airway disorders, with asthma being a specific
chronic lung disease that worsens the lung’s breathing difficulties [2]. Bronchitis, pneumo-
nia, and bronchiolitis are the three forms of lung infection caused by bacteria and viruses
that seriously infect the lungs. They are all harmful to the lungs and can be life-threatening.
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It permits the oxygen to deliver carbon dioxide, while the humidity level and temperature
allow the waste gases to be removed. Incurable lung disorders worsen breathing conditions
and leave scars on the body, reducing people’s life expectancy by 25% in five years. The
primary activities of the respiratory system are protection, gas exchange, air movement,
and sound generation, with the avoidance of lung illnesses and other physical treatments
being one of the most important needs for a longer life [3].

Since lung cancer patients do not have symptoms until the disease has advanced to an
inoperable level, their chance of survival is just about 15%, even with therapy; however,
if diagnosed early, the treatment is highly effective, improving the survival rate by up to
67% [4]. Consequently, one of the main challenges is to come up with strategies that aid
in early lung cancer diagnosis and thereby enhance the healthcare system for lung cancer
patients [5]. Several procedures, such as chest radiography, sputum cytology, light-induced
fluorescence endoscopy, and serum biomarkers, are being used to identify lung cancer,
however, none of these have been demonstrated to be effective in accurately diagnosing
the disease. Serum tumor indicators on pathological types, staging, monitoring, and
prognostication of lung cancer [6] with serum squamous cell carcinoma antigen (SCC) [7],
carcinoembryonic antigen (CEA) [8], and neuron-specific enolase (NSE) [9] are regarded
to be successful strategies for lung cancer detection; nevertheless, these are laborious
techniques [10]. Recent advances in artificial intelligence technology, on the other hand,
have resulted in strong neural network models that resemble the human brain system
and have shown the ability to anticipate a very complicated system with high accuracy,
with little effort and time [11]. On the other hand, the proliferation of sensing technology
through the Internet-of-Things (IoT) platform represents sensible objects such as processing
capabilities, locating systems, programs, and other devices that sense and acquire data for
various reasons [12].

There are three categories of IoT [13]: industrial, consumer, and enterprise IoT, where
the manufacturing process is enhanced to employ selections and devices. It links a wide
range of products to exchange and link data with smartphones, appliances, and wearables
devices. It serves the demands of the consumer and expands the network of interconnected
devices, including those connected to thermostats, vehicles, appliances, and homes. The IoT
includes devices such as wearables, security systems, trackers, and door locks that capture
and exchange data (e.g., temperature, pressure, motion, and light, etc.) to interact with
other information across sensors, bridges that perform specifications, activation, security,
communication, and detecting activities. It uses sensors to perceive multiple objectives
in several domains and has proven efficient in production, agility, mobility, security, and
healthcare systems with low costs. The performance of the IoT system is, however, hindered
by several limitations, including connectivity challenges, integration issues, complexity,
security concerns, privacy concerns, and noisy data [14].

Primary, secondary, and territorial healthcare systems [15] assist people by providing
care and sickness prevention. The emergence of IoT technologies enables wearable devices
to monitor patients, which are used to diagnose sickness and chronic diseases, thereby
improving people’s health and viability, resulting in smart healthcare [16]. The advantages
of smart healthcare, which monitors, analyzes, and records health information, include
education, immunization, child healthcare, and nutrition. The benefits of smart healthcare
services, therefore, include healthcare prevention, rehabilitation, promotion, treatment, and
diagnostics. All sensors and devices are connected to specialized devices that communicate
with the patient’s body via smart sensors and connected devices. It analyzes the state
of healthcare records and provides the information needed to follow patients and their
healthcare and access their medical records. The software packages are utilized to get
healthcare feedback, knowledge-based decision support, and data from the patient’s respi-
ratory system. Their details are then saved in a database for future planning and training
to encapsulate the desired healthcare through healthcare applications. Consequently, it
enhances integrated medical care with patient mobility, improved treatment, and cost sav-
ings. However, one of the most challenging tasks is acquiring data and identifying the most
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important attributes, as intimately linked data and its features play a vital role in enhancing
the accuracy and sensitivity of these models [17]. In this paper, we developed a novel
IoT-enabled healthcare monitoring platform and a grey-world optimization-based deep
convolution neural network model with optimal feature selection based on the Tasmanian
Devil Optimization algorithm to aid in lung cancer identification. Our contribution is
threefold, as detailed below.

1. We developed an IoT platform, inferred the mechanism for acquiring lung disease
data, and investigated the process for extracting the most significant attributes em-
ploying the Tasmanian Devil Optimization (TDO) algorithm, which enables high
accuracy in the diagnosis of lung cancer.

2. We investigate the mechanism of the Grey-Wolf Optimization algorithm and modify
its convergence rates, resulting in an improved GWO algorithm that is employed to
fine-tune the parameters of the deep convolutional neural network model. Eventually,
we presented an IoT-enabled platform with an IGWO-based DCNN model for lung
cancer detection.

3. The developed model was trained and tested on the benchmark Exasens dataset, and
its accuracy, sensitivity, specificity, and precision were evaluated against state-of-the-
art clinical decision support systems (CDSS), regional-based convolutional neural
networks (RCNN), active contour method (ACM), and Mask Region-Convolutional
Neural Networks (Mask R-CNN) models for lung cancer detection.

The remainder of the article is organized as follows: Section 2 describes the related
works. The suggested framework is designed in Section 3, and the experimental findings
are discussed in Section 4. Section 5 concludes the article.

2. Literature Survey

Almezhghwi et al. [18] introduced a support vector machine, Alex Net, and VGG-16-
based deep learning models for image classification of chest X-rays. Their research shows
that the first method (Support vector machine) accurately predicts the classification of X-ray
image data, while the second and third methods estimate the classification and features of
skin lesions. This implies that the multi-class support vector machine uses twelve throat
disorders for feature classification, with a robust, rapid, and easy prediction of lung disease.

A novel medical prediagnostic approach combining deep learning and fine-tuning
has been shown by Han et al. [19]. Hemorrhagic stroke and lung images are segmented
and categorized for classification reasons. The segmentation process classifies the actual
images based on the network object of the image. The performance of the suggested
approach is measured in terms of accuracy, speed, and efficiency. As a result, several
aspects of diseases in the health-of-things domain are examined to refine the classification
and segmentation process.

A clinical decision support system (CDSS) was developed by Rehm et al. [20] to
identify patient ventilation management in the critical care unit. The IoT device used to
transmit and store data from numerous devices and ventilators is monitored by the critical
care unit. The development of a machine learning classifier leverages an acute respiratory
distress syndrome (ARDS) to anticipate the condition. It improves illness identification,
management, and diagnosis. The analyzed scalability problems are optimized, though.

Ahmed et al. [21] used a regional-based convolutional neural network (RCNN) in an
IoT-based framework to detect COVID-19. In their model, a deep learning architecture was
used to assist COVID-19 identification from samples of chest X-rays amplified by sensors,
while the model of the Region Proposal Network (RPN) is used for executing regions and
proposals. Distinct datasets are investigated and assessed using a varied learning technique,
resulting in accurate and perfect case recognition; as a consequence, diverse images are
anticipated for different architectures.

Ma et al. [22] introduced length-of-stay (LOS) to assess paediatric and respiratory
disorders using the decision tree method. In their approach, the two techniques of ex-
pansion and computation turn dates, texts, and numbers into numeric data from a wide
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range of data types. Following that, the data is analyzed to construct and test the decision
tree algorithms. It accurately classified different ailments while cutting healthcare costs.
Therefore, they used multi-class-based classification algorithms to categorize the diseases.

A fully automated approach based on the health of things was demonstrated by
Xu et al. [23] to classify CT images. In their model, a two-step technique is employed to
classify and segment CT (computed tomography) images, and so the images are classified
by 14 models in the first stage by segmenting the lesion into 8 models to discover the
existent regions. The image classification approach outperforms in terms of being more
precise, reliable, and effective.

To segment CT images of the lungs, Skourt et al. [24] developed a deep learning-based
method. In this approach, the segmentation process classifies the image to recover and
extract the segmented maps, while the pooling and up-sampling are the two layers used
to minimize the spatial dimension of encoder and decoder objects. Although diverse
segmentation tasks are conducted in wide regions, they have not explored the classification
of lung cancer.

In contrast to the typical method, which complements existing training data to identify
the region of lung segments, Medeiros et al. [25] suggested an Active Contour Method
(ACM) approach for lung segmentation. In their method, the margins of pulmonary regions
increase the fuzzy border detector to better curve adaption, thereby accelerating the region
to initialize the lung segments. Although the model appears to perform fast, precisely, and
sensitively at the selected level, the system lack to support the real-time diagnostic systems.

Cai et al. [26] devised a Mask Region-Convolutional Neural Network (Mask R-CNN)
and ray-casting volume rendering algorithm to undertake the 3D modules of the pulmonary
nodule. Their proposed method, which comprises multiple modules such as pre-processing,
segmentation, and three-dimensional, was capable of detecting other diseases and improv-
ing the segmentation network. The findings demonstrate the applicability of a multi-view
technique for various parameters, allowing for more exact segmentation and detection of
the pulmonary nodules. Table 1 tabulated the literature survey.

Table 1. Literature Survey.

Author Methods Advantages Limitations

Almezhghwi et al. [18]
support vector machine, Alex
Net, and VGG-16-based deep

learning models

A robust, rapid, and easy
prediction of lung disease Minimum scalability

Han et al. [19] Medical prediagnostic
approach

Higher accuracy, speed, and
efficiency

Less aspect of health-of-things
domain

Ahmed et al. [21] RCNN Resulting in accurate and
perfect case recognition Computational; difficulties

Ma et al. [22] Length-of-stay (LOS) Accurately classified different
ailments Huge cost

Xu et al. [23] A fully automated approach More precise, reliable, and
effective Not suitable for big dataset

Skourt et al. [24] Deep learning
Minimize the spatial

dimension of encoder and
decoder objects

Not explored the classification
of lung cancer

Medeiros et al. [25] Active Contour Method
(ACM) approach

Perform fast, precisely, and
sensitively

System lack to support the
real-time diagnostic systems.

Cai et al. [26] Mask R-CNN
Capable of detecting other
diseases and improving the

segmentation network

Higher time taken for
execution
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3. The Proposed IoT-Enabled Platform with IGWO-Based DCNN Model

The deep CNN accomplishes lung disease classification employing both the training
and testing mechanisms, as shown in the block diagram in Figure 1. The figure depicts the
IoT body sensor devices that collect each patient’s health data and identify lung cancer using
the proposed IoT-enabled IGOW-based DCNN model representing a detailed healthcare
monitoring system, and is explained in the following sub-section.
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Figure 1. The schematic diagram with workflow of the proposed IoT enabled grey-wolf optimization-
based deep convolution neural network (IGWO-based DCNN) model.

3.1. Pre-Processing

Pre-processing is important in rationalizing the data for effective algorithm use and
thus helps to clean the dataset by removing redundancies and dealing with missing values.
Consequently, we verified the patient’s blood pressure, cholesterol levels, and age groups,
and replaced the missing attribute with specified values [27], such that the values are
substituted in the same position for the matched attributes [28]. Furthermore, the patient’s
health concerns are classified into distinct groups based on the type of lung pain.

3.2. Feature Selection

Considering the Tasmanian devil hunting behaviour patterns, it presents two sources
of food, feeding on carrion and hunting and nourish on prey [29], which is employed
to accomplish the optimal control, enabling the Tasmanian Devil Optimization (TDO)
algorithm to acquire the important features that are closely related to lung cancer diagnosis.
The features’ optimal control mechanism imitates the Tasmanian devil’s algorithm search
and attempts to locate the most suitable food sources as given by Equation (1).
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The preliminary Tasmanian devil population is signified as MA, and the jth potential
solution is signified as Maj. Likewise, the applicant valuation of the kth value is defined
as Maj,k, and the space, including the problems and factors y, is symbolized as X. The
objective function is expressed in the following Equation (2).

Fit =



Fit1
...

Fitj
...

FitX


X×1

=



Fit(Ma1)
...

Fit
(

Maj
)

...
Fit(MaX)


X×1

(2)

where F represents the optimal solution and Fitj represents the jth candidate solution of
the objective function [30].

Phase of exploration: The Tasmanian devil in the jth position chooses carrion first from
the neighborhood by estimation based on the choice of random conditions as expressed in
Equation (3).

DBj = Mai, i ∈ {1, 2, · · · , X|i 6= j}, j = 1, 2, · · · , X (3)

The chosen carrion in the jth Tasmanian devil is depicted by DBj. The new place is
dependent on the chosen carcasses in the search space. The new agent’s updated place
could be formulated as given in Equations (4) and (5).

manew, R1
j,k =


maj,k + S.

(
Dj, k − I.mj,k

)
, Gdj < Gj

maj,k + S.
(

Dj, k −mj,k

)
, Otherwise

(4)

Maj =


manew, R1

j,k , Gnew, R1
j < Gj

Maj, Otherwise
(5)

Based on the initial strategic plan, the new and updated condition has been signified
as manew,R1

j,k . The absolute function and the arbitrary durations are both between 0 and 1,
while the random number I is between 1 and 2 [31].

Phase of exploitation: Depending on the position of the predators, the same location
of other Tasmanian devil populations can be assumed with the choice of prey as described
by Equation (6).

Pj = Mai, i ∈ {1, 2, · · · , X|i 6= j}, j = 1, 2, · · · , X (6)

When it discovers an improved result based on the objective function, it changes its
current stance and decides on a new role as expressed by Equations (7) and (8).

manew, R2
j,k =


maj,k + S.

(
aj, k − I.mj,k

)
, Gqj < Gj

maj,k + S.
(

mj, k − aj,k

)
, Otherwise

(7)

Mj =


Mnew, R2

j,k , Gnew, R2
j < Gj

Mj, Otherwise
(8)
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Considering the Devil chosen value as a target of predators and following the previous
value, an optimal scheduling solution is established, and the procreation of the devil’s place
is approximated following Equations (9)–(11).

manew
j,k = maj, k + (2s− 1).s.maj, k (9)

s = 0.01
(

1− 1
maximum iteration

)
(10)

Maj =


Manew

j , Gnew
j < Gj

Maj, Otherwise
(11)

The current incarnation is portrayed as an iteration, while the total number of iterations
is indicated as the maximum iteration. The most pertinent and low-dimensionality features
are picked from the dataset attributes as a result of its new status, where the jth Tasmanian
devil of the neighbourhood is Mnew

j and the fitness value is Gj.

3.3. Improved Grey Wolf Optimization Algorithm-Based Deep-CNN for Lung Cancer Detection

The IoT-enabled healthcare monitoring system allows the Improved Grey Wolf Opti-
mization (IGWO) algorithm to fine-tune parameters for training via the Deep Convolutional
Neural Network (DCNN) model, resulting in high detection efficiency of lung cancer. This
section explores the IGWO’s operating mechanism for parameter tuning and the IGWO-
based DCNN model.

A. Improved Grey Wolf Optimization

The social leadership hierarchy and group hunting behaviour of GWO are improved
in terms of convergence rate, resulting in the IGWO that determines the optimal solution in
group β being placed at the top of the hierarchical pyramid to assist the rest of the group
and the position of the prey as presented in Equation (12). The IGWO is then used to
integrate data from the IoT-enabled healthcare system to fine-tune the settings for training
through the DCNN for lung disease diagnosis.

Mk(t)
r =

((
Wβ ×Mk

β(t)
)

+
(

Wγ ×Mk
γ(t)

)
+
(

Wδ ×Mk
δ(t)

))
+ µ(t) (12)

The solution to each d dimension issue can be represented as k = 1, 2, · · · , d and the
position of the prey can be evaluated for the kth element at the t iteration and is represented
as F : Mk

r (t). The rigorous social leadership of the grey wolf pack and its weights can be
represented as W =

(
Wβ, Wγ, Wδ

)
and each weight should be between 0 and 1 such that

their aggregate equals 1, as indicated by the inequality and equity criteria provided in
Equations (13) and (14), respectively [32].

1 ≥ Wβ > Wγ > Wδ ≥ 0 (13)

Wβ + Wγ + Wδ = 1 (14)

The stochastic error can be evaluated as µ(t) ∼ X(0, σ(t)) [33], where the standard
deviation and mean of the Gaussian distribution are stated as σ(t) and µ(t). Consequently,
we define the property of dynamic deviation as given in Equation (15) and thereby we
update the location of the kth wolf as represented by Equation (16). Eventually, at the kth

dimension at the tth and jth solutions are regarded as Mk
j(t).

σ(t) > σ(t + 1) (15)

Mk
r (t + 1) = Mk

r (t)− R×
∣∣∣Mk

r (t)−Mk
j(t)

∣∣∣ (16)
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The new local optimal is explored provided that |R| > 1 by employing the random (R)
in the interval [−2, 2] and the prey searching and attacking are implied utilizing the |R| > 1
and |R| < 1 conditions, respectively. The new position can be derived using Equation (5)
outside the restriction, where the constraints are estimated by random steps, as shown in
Equation (17).

Mk
r (t + 1) =


Mk

r (t) + v×
(

Uk −Mk
j (t)

)
, i f Mk

j (t + 1) > Uk

Mk
r (t) + v×

(
Lk −Mk

j (t)
)

, i f Mk
j (t + 1) > Lk

(17)

where Uk and Lk indicate the upper and lower boundaries of the constraints, respectively,
and V is an arbitrary value between 0 and 1. The wolf’s random movements are consid-
erably determined when executing the prey-finding process, as shown in the systematic
flowchart of the standard GWO algorithm in Figure 2.
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Given that the GWO converges slowly, with a lower convergence rate at the early
stage and a higher convergence rate at the latter stage [34,35], we updated the convergence
rates at the early and later stages by integrating Equations (18) and (19), respectively.

h = 0.9×
(

2− t× 2
Max_iter

)
(18)

h = 1.2×
(

2− t× 2
Max_iter

)
(19)

where h is the convergence rate, t is the iteration index, and Max_iter is the total number
of iterations. Likewise, to minimize the local optimal fall, we utilize sine-cosine functions
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illustrated in Equation (20), and the resulting improved GWO algorithm is then employed
to fine-tune the parameters for training through the DCNN for lung cancer diagnosis.

Mk
j (t + 1) = sin(t)M1 + sin(t) cos(t)M2 + cos(t)M3 (20)

B. Improved grey wolf optimization algorithm-based deep convolution neural network
model

The deep convolution neural network classifier configuration comprises several layers,
each of which defines a combination of nodes and functionalities, as depicted in Figure 3.
The convolution layer generates image features, while the classification strands generate
the final output [36]. The DCNN classifier’s input layer is initially applied utilizing feature
vectors recorded from the lung cancer patients, and the feature maps are further reduced
by employing convolutional filters in the deep convolution neural network model for
lung cancer detection. The neurons between layers communicate with each other via
configurable heaps with the gradient output, which can be mathematically characterized
as demonstrated in Equation (21).

CVp+1 = CVp +
J

∑
f =0

J

∑
h=0

(We) f × (bi) f (21)

In the above equation, * denotes the convolution layer and CVp+1 signifies the repaired
extracted features of the convolution layer, where the weight lifting of the convolution
layer identified by (we) f and the bias denoted by (bi) f are optimally optimized utilizing
IGWO algorithm [37].
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The learning behaviour of the lung cancer detection model is improved by integrating
a batch normalization layer between the convolution operation and the ReLU layer; as a
result, this layer is accountable for regulating both the gradients and the authorizations
in the system to ensure efficient training. The local information is transferred from the
convolution layer to the quasi-ReLU layer, which has neither mass nor bias. Obtaining
bottom-up samples from the returned features from the convolution layer within the max-
pooling enables the reduction in information and geographic size. Depending on the
preceding layer of the convolutional layer, the identical process of producing the finished
piece within the fully connected layer is represented by Equations (22) and (23).

AR = X
(

CVp+1
)

(22)
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Cp+1 = CVp +
J

∑
f =0

J

∑
h=0

(CV) f × (Bias) f (23)

This implies that the suggested IGWO algorithm determines the weights of the training
DCNN classifier for the optimum solution. Eventually, the output FC layer is regularized us-
ing the SoftMax activation function to facilitate efficient classification layer processing [38].
The categorization covering, which is the topmost layer of DCNN, applies the options
generated by the SoftMax activation to each and all input data intended to check lung
cancer for each selected feature vector [39,40]. Finally, the proposed IGWO-based DCNN
model recognizes different stages of lung disorders such as asthma, chronic obstructive
pulmonary disease (COPD), and normal.

4. Results and Discussion

This section describes the experimental setup, the dataset used, the results obtained,
and the comparative outcomes in a broader context. The proposed IoT-based lung disease
prediction healthcare monitoring system is built on the Android operating system and
Python libraries.

4.1. Dataset Explanation

The proposed IGWO-based DCNN model is trained on the Exasens dataset [41], a
lung diseases dataset with four types of respiratory diseases: asthma, chronic obstructive
pulmonary disease (COPD) infected, and normal. The experimental results are incorporated
on an NS-2 GPU-based computer with a16GB RAM and GTX1050 GPU as well as an Intel
Core i5-8300H CPU trying to run TensorFlow 1.15. Belong to this dataset, 70% of data
for training and rest of 30% data used for testing purpose. The optimized deep learning
model is trained by adjusting the network configuration so that the modeling gets better
over the course of training. The dataset, additionally, includes demographic data collected
from sample saliva of four groups acquired from the Research Center Borstel, Bio Material
Bank Nord (Borstel, Germany) following the samples collection regulations of the Luebeck
University ethics committee [41].

4.2. Experimental Setup

The proposed work has been implemented with the incorporation of the microcon-
troller and other readily available hardware devices, coupled with the LoRa communication
hardware that forwards the data to the cloud storage system. Different features such as
the patient’s age, chronic diseases, and gender have been saved and combined with the
patient’s ID in the suggested system. The data collection and processing are carried out
on a Raspberry Pi single-board computer with the hardware configuration described in
Table 2.

Table 2. The hardware and their configuration setup used in the experiment.

Hardware Explanation

SX1272 Act as transmitter and receiver with 900 MHz LoRa

AD8232 The electrocardiographic board used in Analog Devices

User Computer Inter® CoreTM i5-2400CPU@3.10 GHz PC

Raspberry Pi-IV 1.5 GHz quad-core 64-bit ARM Cortex-A72 CPU

4.3. Performance Metrics

The proposed IGWO-based DCNN for lung disease is assessed using sensitivity, speci-
ficity, accuracy, precision, disease prevalence, and negative predictive value. The outcomes
are evaluated against cutting-edge clinical decision support systems (CDSS) [20], regional-
based convolutional neural networks (RCNN) [21], active contour method (ACM) [25],
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and Mask Region-Convolutional Neural Networks (Mask R-CNN) [26]. For clarity, the
performance measurements are discussed in more detail below.

(i) Sensitivity

The sensitivity evaluates the various methods by assessing the capacity of the an-
ticipating based on the features acquired against the method’s estimated outcomes, as
indicated in Equation (24).

Sen =
Gp

Gp + H f
(24)

(ii) Specificity

The specificity describes the ratio of true negative values to the total number of false
cases in the system, with values of 0.0 and 1.0 for the worst and best case scenarios,
respectively, and numerically can be stated as shown in Equation (25).

Spe =
G f

G f + H f
(25)

(iii) Accuracy

The accuracy is measured as the proportion of properly classified predictions (points)
to the total number of predictions between 0 and 1, and it relies on how the data is
normalized for the algorithm, as given in Equation (26).

Acc =
Gp + G f

Gp + G f + H f + Hp
(26)

(iv) Precision (Negative Predict Value)

The precision measures the number of accurate positive predictions made by the
algorithm, and it is determined mathematically as the ratio of properly predicted positive
instances divided by the total number of positive examples anticipated, as provided in
Equation (27).

Pre =
Gp

Gp + Hp
(27)

(v) Disease Prevalence

The disease prevalence is the clinical prognosis that defines the likelihood of discov-
ering the disease (i.e., lung disease) among patients before the screening test and can be
expressed mathematically, as described in Equation (28).

DP =
Gp + G f

Gp + G f + H f + Hp
(28)

(vi) Negative Predict Value

The negative predictive value (NPV) is the proportion of patients with negative test
results who are already healthy, and it is mathematically defined as the ratio of subjects
properly classified as negative to all those with negative test findings (Equation (29)).

NPV =
G f

G f + Hp
(29)

In the above Equations (28) and (29), the Gp represents the true positive, G f denotes the
true negative, Hp denotes the false positive, and H f denotes the false negative, respectively.
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4.4. Comparative Study

In this section, we contrast the proposed IGWO-based DCNN model’s performance to
that of the existing CDSS [20], RCNN [21], ACM [25], and Mask R-CNN [26] models while
taking into account the aforementioned performance assessment criteria. In Figure 4, the
sensitivity comparison analysis of the different lung disease-predicting models is presented.
The graph indicates that employing the IGWO algorithm enhances the performance of the
DCNN by attaining the highest sensitivity of 97.67%. Meanwhile, CDSS [20], RCNN [21],
ACM [25], and Mask R-CNN [26] reach 90.21%, 89.67%, 95.34%, and 93.54%, respectively.
The work’s specificity is compared to comparable works and plotted in a graphical form,
as seen in Figure 5. From the graph, it can be seen that the suggested work has a higher
specificity of 98.12%, whereas other works have a lower proportion. The suggested IGWO
expands search-ability and, as a result, expands the prediction of lung diseases and reduces
inaccurate prediction.
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In comparison to existing methodologies, the presented study has greater prediction
accuracy, as depicted in Figure 6. The lung disease prediction of our suggested health-
care monitoring system reaches 98.27%, whereas the techniques CDSS [20], RCNN [21],
ACM [25], and Mask R-CNN [26] show 91.78%, 95.26%, 92.89%, and 91.76%, respectively.
Figure 7 shows the precision-based comparison analysis. When compared to the other
methods, which only achieve low precision, our suggested strategy obtains a precision
of 99.15%. The suggested work was followed by the RCNN and ACM, which achieved
around 94.0% and 92.0% precision, respectively, compared to the CDSS and Mask-RCNN,
which achieved 88.0% and 88.5% precision, respectively.
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The disease prevalence values and prediction values of the suggested and current
techniques are compared in Tables 3 and 4 while taking into account the PPV and NPV
values. It should be noted that the highest PPV value and vice versa have been attained
when the disease prevalence is higher. In comparison to the DCSS, ACM, RCNN, and
Mask-RCNN, the suggested IoT-enabled healthcare system outperforms with higher values



Sensors 2023, 23, 2932 14 of 16

of the NPV and PPV. The PPV value of our suggested technique, for instance, is 99.78%
when the records are equal to 5000, which indicates that lung disease is likely to occur
following the screening test in this case. When evaluating 5000 records, however, the
NPV value of our proposed strategy is 99.69%, which is greater than the other alternatives.
Computational time analysis is depicted in Table 5. The time of Gray wolf optimization
(GSO) is 8.1 s which is minimum to PSO and GA.

Table 3. Disease prevalence analysis based on positive predicted values (PPV).

DP Records
PPV(%)

CDSS RCNN ACM Mask R-CNN Proposed

67 567 86.56 89.90 91.23 94.46 98.87

79 895 92.65 91.67 95.45 93.36 99.23

100 1568 93.56 93.56 92.56 96.78 99.45

198 5000 94.34 94.89 93.66 97.78 99.78

Table 4. Disease prevalence analysis based on negative predicted values (NPV).

DP Records
NPV(%)

CDSS RCNN ACM Mask R-CNN Proposed

67 567 92.45 89.45 90.67 93.56 98.67

79 895 89.45 90.35 91.63 94.29 98.89

100 1568 91.98 91.56 92.40 95.78 99.45

198 5000 94.78 92.11 93.00 96.28 99.69

Table 5. Computational time analysis.

Algorithms Time in Seconds

Particle swarm optimization (PSO) 13 (s)

Genetic Algorithm (GA) 10 (s)

Gray wolf optimization (GSO) 8.1 (s)

5. Conclusions

In this study, we introduced a novel IoT-enabled healthcare monitoring platform based
on an Improve Grey Wolf Optimization (IGWO)-based deep convolutional neural network
(DCNN) model. The fundamental mechanism of the Tasmanian Devil Optimization (TDO)
algorithm for identifying the most relevant features for diagnosing lung disease is inves-
tigated. The standard GWO’s convergence rate is modified, and the resulting improved
GWO algorithm is used to fine-tune the parameters of the DCNN model. The suggested
framework is developed using the Python DCNN libraries and the Android operating
system, and it is tested by employing the Exasens benchmark dataset from the Research
Center Borstel and the Bio Material Bank Nord (Borstel, Germany). The dataset consists of
demographic data taken from saliva samples of four different groups, including those with
asthma, chronic obstructive pulmonary disease (COPD), infection, and normal. Following
the simulation outcomes, the suggested IGWO-based DCNN model outperform to the
existing CDSS, RCNN, ACM, and Mask R-CNN models in terms of precision, accuracy,
sensitivity, and specificity. In more detail, the suggested approaches have precision, accu-
racy, sensitivity, and specificity of 99.15%, 98.27%, 97.67%, and 98.12%, which are superior
to the current CDSS, RCNN, ACM, and Mask R-CNN methods.
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