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Abstract: The wide-field telescope is a research hotspot in the field of aerospace. Increasing the
field of view of the telescope can expand the observation range and enhance the observation ability.
However, a wide field will cause some spatially variant optical aberrations, which makes it difficult
to obtain stellar information accurately from astronomical images. Therefore, we propose a network
for restoring wide-field astronomical images by correcting optical aberrations, called ASANet. Based
on the encoder–decoder structure, ASANet improves the original feature extraction module, adds
skip connection, and adds a self-attention module. With these methods, we enhanced the capability
to focus on the image globally and retain the shallow features in the original image to the maximum
extent. At the same time, we created a new dataset of astronomical aberration images as the input
of ASANet. Finally, we carried out some experiments to prove that the structure of ASANet is
meaningful from two aspects of the image restoration effect and quality evaluation index. According
to the experimental results, compared with other deblur networks, the PSNR and SSIM of ASANet
are improved by about 0.5 and 0.02 db, respectively.
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1. Introduction

With the development of the times and science and technology, space has gradually
become an important position of scientific and technological competition among countries.
Astronomical observation provides an important information basis for this purpose, and
the telescope is an important instrument for astronomical observation. Therefore, people
begin to pay attention to improving the observation ability of astronomical telescopes, and
increasing the field of view is the current hot research direction. Increasing the field of
view can provide the telescope with wider sky coverage [1] and enhance the observation
capability. However, increasing the field of view of the telescope means that multiple
SCMOS or CCD need to be splicing, which leads to the unevenness of the detector plane, the
complexity of the optical design [2], and the introduction of additional refraction elements.

For wide-field astronomical telescopes, different factors, such as the dispersion of
refracting materials, alignment error of components in the observation process, and uneven
optical surface, will produce more complex and serious aberrations than ordinary mirror
telescopes [3]. These aberrations will lead to the spatiotemporal variation of the optical
system quality of the telescope, and introduce the varying point diffusion function (PSF)
in different parts of different images [4], resulting in distorted astronomical images that
can only be obtained through the telescope, reducing the effective resolution of image
weak objects [5], and losing effective information. In order to eliminate these effects,
post-processing of astronomical images has become a necessary task.

One of the most common methods is considering a piecewise invariant PSF [6]. The
image is thus segmented into sub-images where the blur is assumed to be invariant. Blind
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deconvolution methods are then applied to each of these sub-images separately. One of the
classic segmental PATCH [7] algorithms has been applied to the telescope image processing
of adaptive optics systems to improve the results of astrometry and photometry. However,
these methods lead to decomposition artifacts on the reconstructed image [8].

Later methods consider a smoothly varying blur where the space-variant PSF is
modeled by a combination of space-invariant ones [9,10]. These models differ in the
way they interpolate spatially invariant PSFs. However, due to the complex aberrations
and initial PSF parameters in wide-field telescope images, this method is not practical in
wide-field astronomical image restoration.

Meanwhile, with the development of neural networks, deep learning has gradually
come into the limelight. The parallel structure of neural networks improves the opera-
tional efficiency and computational power of the networks, enabling them to adapt to the
local nature of the problem and handle more complex mappings. As a result, they are
increasingly applied to spatially variant blurred image processing, such as using traditional
methods in combination with deep-learning methods. Schuler et al. [11] proposed to learn
the prior of an image by employing a CNN, and then use prior constraints for blur kernel
estimation and finally image deblurring. Yan et al. [12] proposed to use deep learning
for estimating the blur kernel, in reconstructing clear images using adaptive likelihood
probability log-expectation. Sun et al. [13] proposed an image deblurring method based
on CNN and Markov random field. The method focuses on estimating the probability
distribution of blurred image blocks by CNN, further extending the candidate set of mo-
tion kernels predicted by CNN, and finally using Markov random field model to derive
a dense nonuniform motion blur field to enhance the motion smoothing. These meth-
ods mentioned above do not take an end-to-end training approach, and thus the image
deblurring process requires a traditional non-blind deblurring step, resulting in a long,
time-consuming process.

Therefore, many end-to-end methods have also been applied in the field of image
restoration. For example, Zhang et al. used a network combining CNN and RNN to
achieve end-to-end recovery of motion blurred images [14]. Yuan et al. proposed a
dynamic scene deblurring method based on optical flow-guided training and spatial
variable inverse fold product [15]. Nah proposed a multiscale neural network [16] for the
hierarchical recovery of Gaussian blur [17]. Jung et al. [18] proposed an advanced U-Net
model based on global and local residual learning and has an unmatched performance of
previous methods in recovering complex degraded images. In the same year, Jin et al. [19]
proposed an image recovery algorithm based on GAN and multi-scale feature fusion,
which successfully generated more realistic recovered images while improving the image
recovery accuracy. Sainandan et al. [20] used a generative adversarial model to recover
real motion blurred images and proposed to calculate the image perceptual loss using the
feature map of VGGNet model to solve the image The problem of recovering structural
details was solved by proposing to compute image perceptual loss using the feature maps
of the VGGNet model.

Deep learning has good applications in the field of astronomical image restoration. In
2017, Flamery [21] used CNN for astronomical image reconstruction; Schaweinski et al. [22]
used deep neural networks (DNN) that can handle classical galaxy image inverse fold
products well. In 2018, Sánchez et al. [23] used deep learning to improve the galaxy
morphology of SDSS. In 2019, Sureau [24] used a U-NET deep neural network (DNN)
architecture to learn parameters suitable for galaxy image processing in a supervised setting
and investigated two anti-folding strategies based on Tikhonov and AMDD. Akhaury [25]
used the Tikhonov closed form of the anti-fold product and used Learnlet to anti-fold
galaxy images. In 2021, Buncher et al. [26] used GAN for galaxy image reconstruction. In
2022, Nammour added a new shape constraint called Shapenet [27] to Tikhonet to make it
more effective in the anti-folding of galaxy images.

However, the current network structure of astronomical image restoration is mostly
focused on galaxy images, and few people pay attention to star image restoration.
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In astronomical missions, stars can be regarded as almost perfect point sources. Mea-
suring the position and brightness of stars can be used as a reference point for analysis,
calibration, and scientific research. However, in a real astronomical image, stars occupy a
very small proportion of the entire image, and the distribution is not regular. There may
be almost no stars on one side but a dense distribution on the other side, or there may be
a dense distribution of stars throughout the entire image. This leads to the possibility of
crosstalk between stars, which cannot easily be regarded as separate entities. Especially
in images taken by wide-field telescopes, varying optical aberrations can lead to more
pronounced differences in regional PSFs.

Due to the above reasons, it is particularly difficult for wide-field telescopes to obtain
the PSF prior information in the captured images, which can be avoided by end-to-end
networks in deep learning.

Our proposed network is inspired by U-Net [28]. U-Net is a classical algorithm
proposed by Ronneberger et al. in 2015, which has a wide range of applications in the
field of image segmentation, and people still keep innovating on it, such as MultiResU-Net
proposed in 2019 [29], DC-U-Net in 2020 [30], etc. Gradually, U-Net has been applied to
other fields as well. In 2020, Dong et al. [31] proposed a U-Net-based multi-scale network
for image defogging. In 2021, Cho et al. [32] proposed MIMO-U-Net for implementing
image deblurring with multi-scale inputs.

Therefore, in this paper, we proposed a deep-learning network for the recovery of
images captured by ground-based wide-field telescopes. We adopted the common encoder-
jie decoder structure, set up a U-shaped structure similar to U-Net, added skip connections
between the encoder and decoder, updated the feature extraction module, and added a
self-attention module to the internal feature extraction part for connecting the global and
enhancing the feature extraction capability.

The main contributions of this work are as follows:

• We proposed a network structure for star images, which enhances the feature ex-
traction capability of the network by adding a self-attention mechanism;

• Through the correspondence between Zernike polynomial and optical aberration, we
created a dataset composed of optical aberration images, which can be used to imitate
star images taken by wide-field astronomical telescopes;

• Through experiments, our method had a good restoration effect on both the training
set image and the real image. Compared with the existing methods, our method had
some improvement in PSNR and SSIM.

The organizational structure of the full text is as follows. In Section 2, we describe
the ASANet architecture and introduce how the self-attention module works, and in
Section 3, we describe how the dataset is created and briefly explain the selection of
training strategies. In Section 4, we conduct some experiments, recorded the selection of
some hyperparameters, and compare the restoration effects of other methods, proving
the feasibility and effectiveness of ASANet. In Sections 5 and 6, we provide an analytical
discussion of the experimental results and a final summary.

2. Network Architecture

Our approach is based on images obtained in the star pattern, where stars appear as
dots in the image. Unlike traditional images, each star in these images varies in size and
brightness, some may occupy only a few pixels, the distribution of stars may be sparse or
dense, and there is overlap between stars. These features are part of the reason for detail
loss in the multi-sampling process of convolution and pooling. The information in the
image cannot be completely restored even after the feature extraction after the subsequent
up-sampling. Therefore, we should strengthen the use of feature mapping information in
front of the architecture to preserve feature details, which draws inspiration from U-Net.

Therefore, we propose a network for feature extraction and recovery of input astro-
nomical images, also based on encoder–decoder mechanisms. As shown in Figure 1, the
blue cube on the left represents the encoder used to compress the image and extract features,
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and the cyan cube on the right represents the decoder used to recover the image. Since
autoencoder structures typically have a “thick on both sides and thin in the middle” shape,
the middle position can be used to extract the most prominent features. Therefore, the
white box at the bottom of Figure 1 contains only 3 × 3 convolution layers for feature
extraction. At the end of the decoder is the 1 × 1 convolution layer, which is used to adjust
the output image to an ideal image of the same shape as the input image.
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The functional implementation of this network depends on the encoder and decoder,
whose internal structure is shown in Figure 2.
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As shown in Figure 2, inside each layer of the encoder, we set two convolution layers
as the main bearers of feature extraction, and the convolution kernel size is 3 × 3.After
each convolution, there are the normalization layer and the excitation layer. We used group
normalization (hereinafter called “GN”) and the nonlinear Leaky ReLU layer, respectively,
replacing the common BN (batch normalization) + ReLU.

This is because BN is used to normalize the features extracted from the corresponding
channel in batch, and the dimension is [N, H, W]. Although it has a good normalization
effect, it is overdependent on the selection of batch size. Once batch size is too small (such
as batch size = 2, 4 or even sometimes batch size = 8), the network performance may
deteriorate. If we choose a large batch size for the field of image processing, the size of the
input target is often large, which will greatly increase the amount of calculation and put
forward higher requirements for hardware configuration.

However, GN is different. Firstly, it divides it into multiple groups based on the
channel dimension, adjusts the dimension of features from [N, C, H, W] to [N, G, C//G, H,
W], and then normalizes each group. The normalized dimension is [C//G, H, W]. Therefore,
using GN instead of BN can still speed up the training and convergence speed, but remove
the dependence on batch size and effectively enhance the feature extraction ability.

As for using Leaky ReLU instead of ReLU, it is because Leaky ReLU gives a non-zero
slope to a negative value, unlike ReLU, which avoids the “dead neuron” by setting its
output to zero on negative input values.

At the end of each encoder, the maxpooling module is used to realize image downsam-
pling. In the decoder, this module is replaced with deconvolution to realize upsampling,
which is also the biggest difference between the decoder and the encoder structure. Most
importantly, we introduced the self-attention module, which is placed between the two
layers of convolution, and add the forward join, which, together with the second layer GN,
can mitigate the possible effects of gradient disappearance and gradient dispersion.

However, the representation ability of the network is still limited by the kernel size of
the neighborhood. Even if the receptive field gradually increases in the later period, it can
only pay attention to the local area and ignore the contribution of other parts of the global
area (such as pixels far away) to the current area. To solve this problem, we introduced the
self-attention mechanism [33].

The self-attention mechanism is a variant of the attention mechanism that reduces its
dependence on external information and is better at capturing the internal relevance of
data or features. In the field of image processing, the self-attention mechanism learns the
relationship between one pixel and pixels in all other locations, and uses the features of
all locations to help generate the details of the picture. The working principle is shown in
Figure 3.
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In the self-attention module, we took the feature map output by the convolution layer
as input x, and carried out linear mapping (usually referring to 1 × 1 convolution) of x
to obtain three feature spaces, f , g, and h. Then we used them to calculate the weight of
self-attention:

sij = f (xi)
T g(xj) (1)

β j,i =
exp

(
sij
)

N
∑

i=1
exp

(
sij
) (2)

where β j,i is used to represent the relationship weight of the ith position to the generated jth

region, also known as the attention map, and N is the number of feature positions.
We multiplied h with β j,i adjusted by Softmax to attain the output result of self-

attention layer:

oj =
N

∑
i=1

β j,ih(xi) (3)

Oj = v
(
oj
)

(4)

where v(x) represents 1 × 1 conv, which is used to adjust the shape of the output result to
be consistent with the input feature map.

We multiplied the above results by a learnable coefficient γ and added the original
feature map to obtain a new feature map for a new round of feature extraction:

yi = xi + γOi (5)

After increasing self-attention, we mainly relied on neighborhood features in the
initial stage of network training, and then gradually increased the weight of dependence
on distant regions, which solved the problem of long-range dependencies of common
convolutional structures.

Compared with other methods, ASANet is able to consider the overall situation and
focus on the key points, and fully take into account every “independent” star point, so
that they are not subject to cross-talk between neighboring stars, so as to achieve good
restoration effect.

3. Dataset Generation and Learning Details

Most of the common astronomical image restoration research aims to realize the mor-
phological classification of galaxies. The object of this kind of restoration is the galaxy
image with a certain contour and structure. The blur and aberration usually come from the
atmospheric distortion caused by atmospheric turbulence rather than the error of the optical
system itself. Thus, in such experiments, ideal contrast images can be obtained with space-
based telescopes, without atmospheric interference. For example, Utsav Akhaury et al.
extracted HST cuts measured by CANDELS [34] from F606W filters (V-band) and destroyed
these images to simulate their blurred noise version; Sureau et al. directly uses the HST im-
age without atmospheric turbulence to convolve the Euclidean PSF with known variations
to form a certain spatial variation ambiguity.

However, what we needed to recover was the astronomical image taken by the ground-
based wide-field survey telescope. The optical aberration mainly comes from the unflatness
of the wide-field detector and the optical system error rather than the atmospheric turbu-
lence. The systematic error could not be eliminated, so it was difficult to obtain the ideal
real control image, which had to be realized by simulation.

3.1. Zernike Polynomial

Aberration is a kind of imaging defect in the optical system, which can be decomposed
into a linear combination of orthogonal polynomials. Since the orthogonality of Zernike
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polynomial in a circle has the characteristics of inverse transformation and minimum
information redundancy of the described image, and each order mode can correspond to
Seidel aberrations in optical design (such as defocus, astigmatism, coma, etc.), in this paper,
we chose Zernike polynomial as the basis function of aberration description:

ϕ(ρ, θ) =
n

∑
i=1

aiZi(ρ, θ) (6)

Here, ϕ(ρ, θ) is the phase distribution on the pupil plane, n is the highest order
of Zernike polynomial, Zi and ai represent the ith term polynomial and its coefficients,
respectively, ρ is the polar radius, and θ is the polar angle.

Zernike polynomials usually assume that the maximum number of terms is 35, of
which the first eight terms are defined as low-order aberrations, followed by higher-order
aberrations. In this article, we only used the first 15 Zernike terms for aberration coupling.

3.2. Aberration Image Generation

Generally speaking, image degradation is to transform an image from an ideal image
into an actual defect image we see, while image restoration is on the contrary. The whole
process can be shown in Figure 4 below.
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Here, we expressed the ideal image with f (x, y) and the degraded image with g(x, y).
The degradation process can be divided into the degradation function h(x, y) (usually
known as point spread function, PSF) and the noise loaded on the image n, with ∗ repre-
senting the convolution process. Then, the image degradation model can be expressed as:

g(x, y) = h(x, y) ∗ f (x, y) + n(x, y) (7)

To put it simply, the convolution of the original image and PSF is the main factor
of image degradation. Therefore, to simulate an aberration image, the ideal original star
should be selected first, and then the appropriate PSF should be convolved with it to
generate an aberration image.

For wide-field telescopes, due to the change of incident angle, the image presented by
the edge field of view and the center field of view will be significantly different. Therefore,
we manually cut out circular stars with clear outlines and saturated brightness from
the central region of the real image as ideal stars for subsequent generation of single
optical aberrations.

According to Fourier optics, the general imaging process can be regarded as a low-pass
filtering operation on the spectrum of an object. The low-pass filter is called the transfer
function in optics, its Fourier transform is called the shock function, and the square of the
modulus of the shock function is called the point spread function (PSF). In short, PSF is the
modular square of the Fourier transform of the wavefront function at the pupil so that the
Zernike polynomial which corresponds with Seidel aberration one by one could be chosen
as a transfer function to generate corresponding PSF.
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According to the process of image degradation, we can convolve the original star with
PSF to attain an aberration image. In Figure 5, we illustrated this process. We used the
seventh term of the Zernike polynomial to fit PSF, and intercepted the star from the real
astronomical image as the ideal point target, and finally convolved the two to obtain the
comet image.
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Figure 5. Use the generated PSF to convolute with the selected ideal star to obtain the image of
optical aberration.

The distribution of star points in the real star map is random and disorderly, and
multiple star points may overlap and block each other. To achieve this effect, we used
30,000 single star point aberrations and blank images filled with pure black to carry out
random, multiple, and multi-level overlapping and splicing, to ensure that the number
and distribution of star points in each image are irregular, and the whole dataset should
have authenticity and specificity at the same time. Finally, a labeled dataset containing 500
spatially variant aberration images was generated.

3.3. Network Learning Details

In the training process, we used a dataset image with a resolution of 512 × 512 as the
training input and set the batch size to 8. The activation function was chosen as Leaky
ReLU, He Initialization can ensure that the information can flow effectively during the
forward and backward propagation, so that the variances of the input signals of different
layers were approximately equal, and therefore more suitable for initializing the network
parameters in this network model. L2 loss was used as the loss function and a combination
of Adagrad and SGD was used for network optimization. The initial learning rate was set to
0.01. According to our experiments, 500 epochs were sufficient for the network to converge.

4. Experiments

In this section, we first introduced the evaluation metrics used to judge the quality of
image restoration. Secondly, different hyperparameters were set for training to select the op-
timal training strategy. Then, the ablation study was carried out to verify that the increased
self-attention structure was meaningful. Finally, we used different methods to restore the
real astronomical image, and verified the feasibility of the algorithm by comparison.
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Our experiments were conducted on a computer with 16 GB of RAM, an Intel Core
i7 8700 K, a 3.6 GHz processor, and an Nvidia 1080ti GPU. The network architecture was
implemented in TensorFlow2.0 and Python 3.6.

4.1. Evaluation Metrics

Image quality evaluation methods can be divided into subjective evaluation methods
and objective evaluation methods. Subjective methods are based on human judgment and
may not require reference to images. For image restoration, most of the existing methods
are based on the full reference evaluation in the objective evaluation methods. The ideal
image was selected as the reference, the difference between the image to be evaluated and
the reference image was compared, and the distortion degree was evaluated.

In this paper, we chose PSNR and SSIM, which are widely used in the image field.

4.1.1. PSNR

MSE (mean square error) and PSNR (peak signal-to-noise ratio) are common quality
assessment methods based on pixel statistics. They measure the quality of the image to be
evaluated from a statistical point of view by calculating the difference between the gray
value of the corresponding pixel of the image to be evaluated and the reference image. The
definition formula is as follows:

MSE =
1

m× n

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (8)

where I(i, j) and K(i, j), respectively, represent represents the grayscale value of each pixel
in the original and the restored image, m and n are the length and width of the image.

PSNR = 10 log10
2552

MSE
(9)

4.1.2. SSIM

PSNR and MSE measure image quality by calculating the global size of the pixel
error between the image to be evaluated and the reference image, ignoring some visual
features contained in the image content, especially the local structure in image forma-
tion. Therefore, we introduced an evaluation index SSIM (structural similarity) based on
structural information.

SSIM evaluates the similarity of the two images through brightness l(x, y), contrast
c(x, y), and structure s(x, y). These three dimensions form a complementary relation-
ship and form a description of image quality under the common constraints of the three
dimensions. Therefore, SSIM can be expressed as:

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ (10)

where α, β, γ are used to adjust the weight of three parts. In actual calculation, we usually
chose α = β = γ = 1.

After expanding l(x, y), c(x, y) and s(x, y), respectively:

l(x, y) =
2µxµy

µ2
x + µ2

y

stabilization
=

2µxµy + C1

µ2
x + µ2

y + C1
(11)

c(x, y) =
2σxσy

σ2
x + σ2

y

stabilization
=

2σxσy + C2

σ2
x + σ2

y + C2
(12)

s(x, y) =
σxy

σxσy

stabilization
=

σxy + C3

σxσy + C3
(13)
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where µx and µy represent the standard deviation of images x and y, σx and σy represent
the sum of the variances of x and y, σxy is the covariance of x and y, and C1 , C2 , and C3
are constants for making the calculation more stable.

Then, SSIM can be expressed as follows:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (14)

4.2. Training Strategy Selection

In the learning process of the network, the input image should be preprocessed to
adjust the resolution of the image, so as to improve the computing speed and learning effect
of the network. Hyperparameters such as loss function and optimizer have a significant
impact on the training effect of the network and should be selected carefully.

4.2.1. Comparison of Images with Different Resolutions

Increasing the image resolution can improve the performance difference between
stars and other regions, so that the convolutional neural network can learn more detailed
features. Reducing the image resolution can reduce the computing cost to the greatest
extent and speed up the network operation. Considering the limitation of the computing
power of the server, we send the image resolution of 512 × 512 and 256 × 256 to the
network, respectively, as a test. To ensure fairness, the image with different resolutions is
uniformly adjusted back to 512 × 512 after the network output.

As can be seen in Figure 6, the 256 × 256 image on the left, restored to 512 × 512 size
via the network, has weaker star energy, marked jagged edges, and far fewer stars than the
one on the right. This is because the resolution of the input image is too small to lose much
detail in the multi-layer structure of the network.
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Figure 6. (a) The training results after the image with a resolution of 256× 256 is input into the network;
(b) the training results after the image with a resolution of 512 × 512 is input into the network.

In terms of training speed, as shown in Table 1, the network inference speed will be
slightly improved after the resolution is reduced, but this time difference is not enough for
us to sacrifice part of the recovery effect, so 512 × 512 is still a better choice.
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Table 1. The time to process an image of different resolutions.

Resolution 512 × 512 256 × 256

Time 63 ms 54 ms

4.2.2. Loss Function Selection

In terms of loss functions, L2 Loss and L1 Loss are the most commonly used regression
loss functions in image restoration tasks [35]. The difference between them is mainly
reflected in the attitude towards outliers. The former is sensitive to outliers and needs to be
given more weight to predict and deal with outliers, but gives a more stable closed-form
solution. The latter is more robust in dealing with outliers, but the gradient is constant and
the solving efficiency is low.

In order to choose the better one from these two methods, we used L2 Loss and L1
Loss, respectively, to train 500 epochs of the network without changing all other parameters,
in which the loss curve and image restoration effect are taken as reference items, as shown
in Figure 7.
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As can be seen from the loss curve in Figure 7, there is no obvious difference between
the two in the training set. In the validation set, although the final convergence value of
the two reached a good level, the curve of L2 Loss was significantly smoother. From the
view of the restored image, the outer edge contour of the star point was significantly softer
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and smoother in the image restored using L2. Therefore, we finally selected L2 Loss as the
loss function.

4.2.3. Optimizer Selection

The optimizer has many options, such as SGD, Adgrad, and Adam, each of which has
its own advantages and disadvantages.

Firstly, the overall optimization framework of the optimizer is introduced, in which the
parameter to be optimized is written as w, the objective function is f (w), and the learning
rate is α:

For each epoch (t):

1. Calculate the gradient of the objective function with respect to parameters:

gt = ∇ f (wt) (15)

2. Calculate first-order momentum and second-order momentum according to the
historical gradient:

mt = φ(g1, g2, . . . , gt) (16)

Vt = ψ(g1, g2, . . . , gt) (17)

3. Calculate the descending gradient at the current moment:

ηt = α•mt/
√

Vt (18)

In fact, the learning rate changed from α to α/
√

Vt.

4. Update parameters according to the descending gradient:

wt+1 = w− ηt (19)

Steps 3 and 4 are consistent for each algorithm, and the main difference is reflected in
1 and 2.

As the most representative optimization method, SGD does not have the concept of
momentum, that is to say:

mt = gt (20)

Vt = I2 (21)

and the descent gradient is ηt = α•gt. SGD tends to converge well, but the learning rate is
constant, leads to a slow decline rate, and may oscillate continuously on both sides of the
gully, staying at a local optimum.

The concept of second-order momentum was added to Adagrad, so that the learning
rate could be adjusted adaptively. For parameters with more updates, the accumulated
information could not be affected by a single sample, so the learning rate could be lower.
For parameters with occasional updates, the learning rate needed to be higher in order to
know more information. The second order momentum is represented by the sum of the
squares of all gradients in that dimension:

Vt =
t

∑
τ

g2
τ (22)

This method is a greater improvement in the parameter space towards a more gentle tilt
and is suitable for scenarios with sparse data. However, since the second-order momentum
is one-way increasing, the learning rate continues to decline and the convergence rate
gradually slows down. Once the learning rate decreases to 0, the learning process of the
network stops, no matter whether there is still no learned data.
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Adam is the most commonly used optimization method at present. At the same time,
first-order vector and second-order vector introduce the optimization process, so there is:

mt = β1•mt−1 + (1− β1)•g (23)

Vt = β2 ∗Vt−1 + (1− β2)•g2
t (24)

These are also common β1 and β2 in the Adam code to manipulate first-order and
second-order vectors, respectively.

As can be seen from the above two vector formulas, Adam is not sensitive to the
learning rate, so it is often set to 0.0001 by default. Compared with Adagrad, Adam only
accumulates second-order momentum within a fixed time window without storing all
gradients globally, so it is suitable for large-scale data processing. However, Adam also
depends more on time and parameter gradient. With the change of time, if there is a sudden
change of data, it may cause a change in Vt, resulting in the shock of the learning rate in the
later period, and the network cannot converge.

Each of the three methods has its pros and cons, and we trained each as an optimizer
in order to choose the more appropriate one. The training data came from our simulation
dataset, and the Loss function was L2 Loss, with a total of 500 epochs. The loss curve of the
training process is shown in Figure 8.
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(b) loss curve of training set and verification set when Adam is used as optimizer; (c) loss curve of
training set and verification set when SGD is used as optimizer.

As can be seen from Figure 8, SGD converged slowly in the early stage and the curve
was smooth, but Adagrad and Adam converged quickly. However, the convergence curves
of both of them showed different degrees of oscillation, and the stability was slightly
poor. From a loss and accuracy point of view, Adagrad’s value was the best of the three
optimizers due to the incomplete convergence of SGD.

In order to better balance the learning speed and recovery effect of the network, we
tried to use the combination of SGD and Adagrad: the first 300 EPOches adopted Adagrad,
which had the advantage of fast convergence. After 200 epochs, we switched to SGD and
slowly found the optimal solution. Similarly, we conducted 500 rounds of training on the
same dataset using SGD, Adagrad, and their combinations, respectively. We then extracted
an image from the dataset and tested its recovery, as shown in Figure 9.
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Figure 9. (a) Original images; (b) images restored when using SGD; (c) images restored when using
Adagrad; (d) images restored when using Adagrad + SGD.

In Figure 9b, due to incomplete convergence of SGD, the stars in the figure still had
some residual aberrations, and some dim stars were not found. Figure 9d shows the
test results of Adagrad as the optimizer. Compared with SGD, this method increased the
number of stars and corrected optical aberration effectively. Figure 9d shows a reconstructed
image combining the two optimizers. In addition to effective aberration correction, the
outer edges of the stars were more fluxy-contouring, giving each star a greater concentration
of energy.

Therefore, the combination of our task SGD and Adagrad was the best way to optimize.

4.3. Ablation Experiments

In this section, we perform ablation experiments. Our network structure was based
on an encoder–decoder structure, referring to U-Net, whose internal structure was dif-
ferent from U-Net. Therefore, we divided the network into four parts: the ordinary
encoder–decoder network (consisting only of convolution, upsampling, and downsam-
pling), ASANet’s basic network (with the addition of GN + Leaky ReLU), skip connections,
and a self-attention mechanism. Through ablation experiments, we gradually demonstrated
that the structural design of ASANet made sense.

In this section, we conducted five groups of experiments, which used the encoder–
decoder mechanism, ASAnet infrastructure, ASANet without self-attention, ASAnet with-
out skip connection, and ASAnet, respectively, to restore real images. The training strategy
is described in Section 3.3. Because the source of the images is confidential, we will not
discuss them here. The effect of image restoration was evaluated from subjective and
objective perspectives. The subjective approach was to visually view the restored image, as
shown in Figure 10. Objective methods are quality evaluation indicators, such as PSNR
and SSIM, as shown in Table 2.

Table 2. Quantitative results for different network architecture.

Description PSNR SSIM

Encoder–decoder 31.7839 0.8747

Basic network 32.1961 0.8803

Basic network + skip connection 34.5649 0.9012

Basic network + self-attention 34.6324 0.9034

ASANet 35.4375 0.9157
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Figure 10. (a) The original image. (b) Images restored when using encoder–decoder; (c) images
restored when using the basic network; (d) images restored when using ASAnet without self-
attention; (e) images restored when using ASAnet without skip connection; (f) images restored
when using ASANet.

For an intuitive comparison, two locations were selected and the stars at the corre-
sponding locations were enlarged in the six images in Figure 10, where Figure 10a is the
original image. As can be seen from the circled area, the shape of the two recovered stars in
Figure 10b was not clear, and the weak stars were largely lost. At the same time, due to the
extreme lack of network learning ability, the reconstructed image even showed artifacts.
Figure 10c removed the artifacts and retrieves a small amount of the missing star, but their
energy is weaker, causing the star to dim. The star still did not have a regular shape, just
two irregular clumps of pixels. In Figure 10d, only the basic structure +skip connection
was used to retain the underlying features, so the number of stars increased significantly.
Here the stars had a profile, and their energy was more concentrated. In Figure 10e, the
basic structure +self-attention was used to better assign weight to the network, so the star
had shrunk into a circle with concentrated energy. However, because many relatively faint
and small stars were lost in the process of convolution and downsampling, the feature
map sent to self-attention lacked underlying features. Although self-attention can capture
the weight relationship of the entire image, the incomplete feature map made the number
of star points still less than that in Figure 10d. Figure 10f was made using our ASANet.
Although the star in this image was not perfectly round, its outline was smooth and natural,
with concentrated energy. Almost all stars in other locations could be reconstructed, with
good results.

As can be seen from the evaluation indexes in Table 2, with the improvement of the
network structure, the quality evaluation of the restored image gradually increased. Due
to differences in learning effectiveness, both the encoder–decoder structure and ASAnet’s



Sensors 2023, 23, 3745 16 of 21

infrastructure obtained low values, with the encoder–decoder structure obtaining the
lowest value due to the presence of artifacts in the image. With the addition of jump
connections or self-attention, the quality evaluation was raised to a new level, which also
corresponded to the significant improvement of the recovery effect in Figure 9d,e. Of
course, it was the images recovered using ASAnet that ended up with the highest scores.

Through the verification of Figure 10 and Table 2, it can be determined that each
structure plays an important role in our network, which together enables our network to
better recover astronomical images.

4.4. Comparison with Different Methods

Currently, in the field of deep learning, the most widely used image restoration
network architectures include the deep automatic encoder (DAE), generative adduction
network (GAN), and cascading network. The depth autoencoder first extracts the image
features, and the decoder reconstructs the image according to these features. Our method
belongs to this category. The GAN method tends to make the generator produce clear
images, so that the discriminator cannot distinguish them from the real clear images. The
cascaded network consists of several modules, which are cascaded successively to build
a deeper structure and process blurred images in stages. The strategy of a multi-scale
deblurring network is to first restore low-resolution deblurring images and then gradually
generate clear results with high resolution.

Since cascaded networks usually utilize CNNs as fuzzy kernel estimators to construct
a two-stage image deblurring framework, i.e., a CNN-based fuzzy kernel estimation stage
and a kernel-based deconvolution stage, which belong to the early methods, while the
current deep-learning methods aim to directly learn the complex relationship between
image blur and clarity. Therefore, we chose three networks, corresponding to the remaining
three types of methods mentioned above, for experimental comparison, which are the
encoder–decoder structure with nested skip connections proposed by Gao et al. [36] (the
authors did not name the network, so we will refer to it as NSC-ED in the following),
DeblurGan proposed by Kupyn [37], and the multiscale deblurring method proposed by
Nah et al. [16].

For NSC-ED, we processed the images as 256 × 256 as training inputs for a total of
3000 pairs. During training, the batch size was set to 8 and all weights were initialized
using the Xavier method; the bias was initialized to 0. The network was optimized using
the Adam method with default settings of β1 = 0.9, β2 = 0.999 and ε = 10−8. The learning
rate was initially set to 0.0001 and decayed to 0 using a power exponent of 0.3.

For DeblurGan, a total of 1000 images with a resolution of 256 × 256 were input.
The loss function was set to the sum of content loss and adversarial loss, using Adam for
optimization. The learning rate was set initially to 0.0001 for both the generator and critic
(discriminator). After the first 150 epochs, we linearly decayed the rate to zero over the
next 150 epochs.

For multi-scale, we also used our dataset with 3000 pairs of images as the input.
The loss function was a combination of multi-scale MSE loss and adversarial loss, using
Adam as the optimizer, with a batch size = 2 and a learning rate of 0.00002, for a total of
900 iterations.

The above training strategy basically follows the original authors’ choice, but we made
some minor changes to the batch size and the number of iterations due to the computational
power limitation of the server and the reduced difficulty of image learning.

In addition, in the field of traditional methods, RL, as one of the most classical al-
gorithms, is still applied flexibly in the image field and is the most common method in
practical applications. In this paper, for realistic purposes, we chose to include the RL +
Tikhonov regularization method in our experiments.

In this round of experiments, we prepared several sets of real images and restored
them separately using the above method. The restored images are shown in Figure 11, and
we arranged them in vertical rows for easy viewing. For easier viewing, we zoomed in
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on the same parts selected from each set of images. The stars in these regions are either
densely distributed or have significant optical aberrations, making it easy to compare the
recovery effects.

According to the restoration results in Figure 11, it can be seen that RL, as a classical
method, is not flexible enough to deal with PSF images with spatial variations. After many
iterations, star points were lost, energy could not be collected, and the generated details
were poor. Both NSC-ED and multiscale networks achieved image restoration by different
levels and multiple processing, and the energy aggregation effect was better than RL, but
the detailed features were still easily lost. Among them, NSC-ED can retain the underlying
features better due to the presence of nested skip connection, so the number of star points
recovered was more. Multi-scale uses multi-scale images as input, but the star map is very
sensitive to the resolution, and the change of scale will lead to the loss of some information,
so the number of stars recovered is not much. Compared with these two, the GAN network
mechanism is simple, and the generated images can remember the star positions well and
retain the details better, but there is some difference in the correction effect of distortion.
Our network, on the other hand, has a skip connection, which can effectively preserve the
underlying features and retain the number of stars better. The addition of self-attention
enhances the feature extraction ability and is more friendly to recover the shape contour
of stars.
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From an objective point of view, we should also evaluate the quality of these images.
We calculated the PSNR and SSIM of these images and took their average values recorded
in Table 3.

Table 3. Quantitative results of different methods.

RL NSC-ED GAN Multi-Scale Ours

PSNR 34.5014 34.9134 34.4641 34.7096 35.4154
SSIM 0.8802 0.8981 0.8781 0.8901 0.9124

The quality metrics in Table 3 can be used as the most direct criterion, except that
the GAN-based model quality evaluation indexes are usually IS (inception score) and FID
(Frechet inception distance), with poor performance in PSNR or SSIM. The index values
of the other methods are all lower than our ASAet, which also proves that the effect of
ASAnet is superior to other methods.

Combining the above comparison results, our proposed ASANet achieves better
results than the other methods.

Of course, we do not exclude that the change of training strategy may lead to the
performance degradation of other methods, which instead proves that our network can be
trained with fewer data.
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5. Discussion

The proposed ASANet method has a strong learning capability to more accurately
restore astronomical images with spatially varying PSFs, and requires very little data to
build a robust network model.

Compared with traditional methods, the end-to-end approach can reduce the re-
liance on a priori information and does not need to consider PSF modeling. Compared to
other deep-learning methods, our approach uses a relatively simple network structure to
achieve the restoration of single-frame astronomical images by introducing a self-attentive
mechanism that takes into account both global details and local structure.

In addition, we do not intentionally deal with noise during pre-processing. After
real image restoration, we found that this network actually has some denoising ability.
This ability is unstable without training and needs to be investigated more deeply in
subsequent studies.

6. Conclusions

In this paper, we proposed a method called ASANet to repair astronomical images.
First, we proposed a network called ASANet to accomplish the restoration of spatially

variant astronomical images. In this network, the feature extraction capability was im-
proved by changing hyperparameters such as normalization and adding skip connections.
In addition, a self-attention module was added to make better use of the original feature
layer when fusing different feature mapping information. This network structure allowed
us to train a powerful network model with fewer data for the end-to-end restoration of
astronomical images. In addition, astronomical image datasets with spatially varying PSFs
were independently constructed for training.

Then, we conducted several experiments. To select an appropriate training strategy,
we validated the input images with different resolutions and selected the most suitable
loss function and optimizer for this study. To verify the necessity of improving the net-
work structure, we conducted an ablation study to demonstrate that ASAnet can better
fuse feature information at different levels and combine local and global feature distribu-
tion weights, which can help the network to acquire feature information of images more
effectively and achieve image recovery.

Finally, we compared different methods, including three deep-learning methods and
one traditional method, and verified that ASANet can better eliminate optical aberrations
in images and achieve high-quality astronomical image restoration.

Unfortunately, the limited computational power of the server and the limited image
resolution and dataset image size used for learning limited the actual restoration effect of
the network to some extent. In addition, there was often some noise in real astronomical
images, and although we did not specifically consider noise, ASANet showed the potential
of de-noising in our experiments.

In the next research, we will further optimize the network structure, reduce the
computational effort, and conduct more targeted research on noise reduction to ensure a
more perfect result in applications.
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