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Abstract: For many automotive functionalities in Advanced Driver Assist Systems (ADAS) and
Autonomous Driving (AD), target objects are detected using state-of-the-art Deep Neural Network
(DNN) technologies. However, the main challenge of recent DNN-based object detection is that it
requires high computational costs. This requirement makes it challenging to deploy the DNN-based
system on a vehicle for real-time inferencing. The low response time and high accuracy of automotive
applications are critical factors when the system is deployed in real time. In this paper, the authors
focus on deploying the computer-vision-based object detection system on the real-time service for
automotive applications. First, five different vehicle detection systems are developed using transfer
learning technology, which utilizes the pre-trained DNN model. The best performing DNN model
showed improvements of 7.1% in Precision, 10.8% in Recall, and 8.93% in F1 score compared to the
original YOLOv3 model. The developed DNN model was optimized by fusing layers horizontally
and vertically to deploy it in the in-vehicle computing device. Finally, the optimized DNN model is
deployed on the embedded in-vehicle computing device to run the program in real-time. Through
optimization, the optimized DNN model can run 35.082 fps (frames per second) on the NVIDIA Jetson
AGA, 19.385 times faster than the unoptimized DNN model. The experimental results demonstrate
that the optimized transferred DNN model achieved higher accuracy and faster processing time for
vehicle detection, which is vital for deploying the ADAS system.

Keywords: ADAS; object detection; convolution neural network; TensorRT; deep neural network;
transfer learning; embedded devices

1. Introduction

Perceiving the environment using sensors is essential to autonomous systems such as
Autonomous Vehicles (AV), Advanced Driver Assist Systems (ADAS), robotics, drones, etc.
Autonomous systems can identify their surroundings using various sensors and Artificial
Intelligence (AI) technologies. The camera sensor is one of the most common sensors
used for environmental perception because of its low cost and ability to identify different
types of objects. During the last two decades, computer vision systems for environmental
perception have achieved state-of-the-art performance due to the emerging Deep Neural
Network (DNN) technologies. Since LeCun et al. [1] proposed a Convolutional Neural
Network (CNN) for automated handwritten digit recognition in 1998, many deep CNN
learning models [2–8] have been proposed. Recently, those CNN models based on DNN
have achieved a remarkable object classification and detection breakthrough.

Low latency and high accuracy are required when DNN models are deployed for
automotive applications because response time and reliability are critical. The main draw-
back of DNN-based detection systems is that they need high computational power, so
deploying them on vehicles for real-time inferencing is challenging. A Graphics Processing
Unit (GPU) is used to accelerate the processing of the DNN-based models to provide
high computational power. GPU technologies are continually evolving and increasing
in computing power. In addition, many edge computing platforms have been released
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starting in 2015. These edge computing devices have high costs and require high power
consumption. Due to the high price, using them to deploy the DNN module massively will
be challenging.

Recently, onboard computing units such as the NVIDIA Jetson series [9] (Nano, NX,
AGX, etc.) have been introduced on the market. These onboard computing platforms
are ideal for real-time AI system deployment because they can run the DNN models in
parallel and become the ideal engine for Autonomous Driving (AD) cars and ADAS [10].
Previous research on deploying the DNN models for real-time inferencing [11–14] has
involved either deploying on expensive and high-power consumption devices, lacking a
quantitative assessment of the onboard computing platforms’ performance, or high latency
issues. Since little research has been conducted on deploying the DNN models on these
onboard computing units, studies on how to deploy the DNN model on them and evaluate
their latency and performance are necessary.

In this research, the authors focus on deploying the computer-vision-based vehicle
detection system for real-time inference on the embedded device. The overall developing
procedures for the proposed system are depicted in Figure 1. To develop the vehicle
detection system, images from various scenarios were collected using a camera sensor
mounted on a Chevy Bolt and labeled the ground truth locations of the target objects on the
collected images. The available public data set was also appropriately processed. Five DNN
models were retrained using the transfer learning technology to reuse the information from
the pre-trained DNN, YOLOv3 [15]. The developed model was optimized and converted
into a TensorRT to deploy the system for real-time inferencing [16]. The DNN model
can be optimized by fusing layers and tensors and tuning kernels. Finally, the optimized
DNN model was deployed on the embedded device in a vehicle and the performance was
evaluated in terms of accuracy and speed using various testing scenarios.
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In this paper, Section 2 presents a detailed literature review of object detection and
deployment of the perception system. Next, Section 3 discusses and illustrates procedures
for developing the optimized DNN model using transfer learning. The evaluations of the
five different DNN models developed using the transfer learning technology are shown in
Section 4. Finally, the future research scope and conclusion are discussed in Section 5.
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2. Related Work

Perception sensing in AD and ADAS involves collecting data from vehicle sensors
and processing these data into an understanding of the environment around the vehicle.
The camera is crucial in understanding the scene around the car, so vision-based object
detection is a vital part of the perception system. Because of these reasons, object detection
for ADAS has received great attention over the last decade. Many earlier object detection
algorithms were built based on handcrafted features due to a need for more effective image
representation [17,18]. The performances of these handcrafted features were saturated
until the rebirth of Convolutional Neural networks (CNNs) in 2012. Since Alex Net [19]
won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [20] and achieved a
significant milestone in the field of deep learning, a CNN renaissance has started [4,21,22].

Nowadays, the popular DNNs for object detection in images are categorized into two
groups: two-stage detectors vs. one-stage detectors. The two-stage detectors are region-
based proposal DNN models such as RCNN [4], Fast RCNN [23], and Faster RCNN [2]. To
localize and segment objects, those models propose the regions and apply CNNs to classify
the object types. For example, Faster R-CNN combines two CNNs, one that proposes
regions and the other that uses those proposals to output detections [2]. When the image
is fed through the Region Proposal Network (RPN), it outputs a set of rectangular object
proposals using the sliding window approach. At each sliding window location, they
simultaneously predict multiple region proposals relative to reference boxes known as
anchors. The non-maximum suppression is adapted based on the threshold score to develop
a single object proposal to reduce the redundancy with the object proposal.

On the other hand, one-stage DNN detectors include You Only Look Once (YOLO) [5,15],
Single Shot multi-box Detector (SSD) [24], and RetinaNet [25]. For example, in a unified
object detection model, YOLO [5] takes a single input image, divides the image into S × S
grid cells, and proposes bounding boxes and probabilities for each region. The model
directly regresses from the input image to a tensor, representing class scores and locations of
each object. The input images need to go through the network once, so the model processes
images faster.

Regarding deploying DNN models, Hui et al. [11] presented selection guidance and
characterized a GPU platform based on accuracy, latency, and energy efficiency. They stated
that edge AI processors could deliver better efficiency from the experimental observations.
Tiny-YOLO and YOLOv2 models were deployed on three-edge AI platforms. The authors
showed that the deployed systems had better latency and energy efficiency than the GPU
platform. In [12], authors presented an integrated framework using an Nvidia Drive PX2 as
an individual module that modified image streaming functionality to make the input image
format compatible with the object detection framework to deploy DNN modules. They
conducted experiments on the prototype vehicle and achieved 51 ms processing time on
the Nvidia Drive PX2 platform. However, the Nvidia Drive PX2 platform is still expensive
and requires high power consumption.

Cantero et al. [13] discussed several quantization levels applied to a collection of deep
learning models to accelerate deployment for real-time applications on resource-constrained
devices, including Variscite i-MX8M-Plus board and Edge TPU (Tensor Processing Unit)
Coral Dev Board. They reviewed significant challenges in developing embedded deep
learning applications and carried out a benchmark of embedded hardware platforms. They
could deploy “CenterNet” and “SSD” architectures on both hardware devices. However,
they did not make a quantitative assessment of the performance of the converted models,
which were only done by visual inspection of the detected object. In [14], the authors
developed a method of region detection followed by target detection to detect small-scaled
targets from large-scale remote sensing images with a light-weighted neural network of
17 million parameters. They used different scale information gathered by featured pyramid
structure by integrating feature maps. However, the average inference time took 279 ms per
network input on “MAXN” power modes, and there was a need to optimize the network
to reduce the inferencing time. Stäcker et al. [26] discussed various approaches to optimize
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the run time performance of DNNs for object detection on edge AI devices. The techniques
employed include model compression, quantization, and pruning which can reduce the size
and complexity of the model and improve its runtime performance. They found that the
available power supply in the embedded environment significantly impacted the runtime.

3. Development of the Obstacle Detection System Based on Transfer Learning

Developing object detection systems using DNNs involves many procedures, from
data preparation for machine learning to deploying the system on the embedded device for
real-time inferencing. An object detection system generally has two major phases: training
and inferencing. Training is the phase in which the neural network algorithm tries to
learn from the data. Each network layer is assigned random weights at the beginning of
training. The training algorithm runs a feed-forward pass through the data and makes
predictions. The predictions are then compared against the actual labels, and an error is
computed via a loss function. This error is then backpropagated through the network,
and weights in layers are updated accordingly via a weight update algorithm, such as the
Gradient Descent algorithm [27]. After many iterations to update associated weights to
reduce the loss function, the training will be stopped when the prediction error is less than
the threshold. On the other hand, the inference phase is the stage in which a trained model
is used for real-time predictions. It is a production phase in which the model is deployed
on the embedded computer unit to generate the real-time object detection output from a
live-streamed camera sensor.

Developing a robust vehicle detection system with a relatively small dataset is chal-
lenging. Additionally, collecting data and generating ground truth data is a tedious and
time-consuming task. However, utilizing the pre-trained DNN models trained with a
large amount of data, the already-learned features in the pre-trained DNN model can be
generalized across most types of images. By transferring those learned features from the
pre-trained DNN model to the new DNN model in a similar domain, we can develop a
new DNN model with relatively small data samples.

3.1. Pre-Trained Object Detection Model: YOLOv3

To develop a reliable vehicle detection system for collision avoidance, YOLOv3 [15]
was chosen as the pre-trained network. YOLOv3 is one of the most popular DNN models,
and has been trained on a large MS COCO (Microsoft Common Objects in Context) [28]
dataset that included a 200 k labeled image as a dataset. YOLOv3 uses a trained DarkNet53
as feature extraction layers and conducts detections at three different scales, as shown
in Figure 2. The residual blocks in the DarkNet53 are represented as Res*n in Figure 2,
where n is the number of repetitions of the residual block. The residual layer in the residual
block is based on deep residual learning by implementing feed-forward neural networks
with shortcut connections (or skip connections) proposed by He et al. [3]. This allows
neural networks to deepen without exhibiting a higher training error and to display higher
accuracy with increasing depth compared to previously proposed networks.

In each scale of YOLOv3, the input image is divided into S × S grids, and each grid is
responsible for detecting the object whose center falls within that grid. Each grid predicts B
bounding boxes (B = 3 in YOLOv3), and each bounding box requires information about the
center of the bounding box (x, y), the width and height of the bounding box (w, h), and
the confidence score. The confidence score of the box, C(object), represents the probability
that the box contains the object. YOLOv3 generates K-class (K = 80) probability values for
each bounding box in each grid cell. Figure 3 shows the predicted outputs at one scale,
13 × 13 grid cells. Each grid cell has three boxes, and each box in the grid cell contains
85 outputs, including the bounding box information, confidence score, and probabilities of
80 classes.
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The loss function, Loss, used in the YOLOv3 model contains three loss functions: the
localization loss for bounding box prediction, the loss from the box confidence score, and
the classification loss for conditional class probabilities presented in Equations (1)–(4) [29].
In YOLOv3, the Binary Cross Entropy (BCE) function is used instead of the mean squared
error function when calculating confidence loss and classification loss. The BCE function is
defined in Equations (5) and (6).

Loss = Losslocalization + Losscon f idence + Lossclassi f ication (1)

Losslocalization = λ1 ∑S2

i=0 ∑B
j=0 Iobj

ij

[(
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)2
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)2
]

,
(2)

Losscon f idence = ∑S2
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∑
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∑
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BCE
(

pij(k), p̂ij(k)
)
= −

(
pij(k)logp̂ij(k) +

(
1− pij(k)

)
log
(
1− p̂ij(k)

)
), (6)

where Iobj
ij = 1 if the jth bounding box in grid cell i is responsible for detecting the object,

otherwise 0; Inoobj
ij is the complement of Iobj

ij ; λ1 and λ2 are the parameters to control the
penalties from the localization and confidence loss, respectively; and p̂ij(k) is the conditional
probability for class k in the jth bounding box of grid cell i. The input’s final inferences are
generated by applying the non-maximal suppression algorithm.

3.2. Transfer Learning for Obstacle Detection

To develop a reliable vehicle detection system, the pretrained DNN model YOLOv3 is
utilized. Transfer learning is referred to as “Knowledge Transfer”, “Multi-task Transfer”,
and “Knowledge Consolidation” in early studies [30,31]. Transfer learning reuses a pre-
trained DNN model extensively trained on large datasets to solve a new task with a similar
domain [4,17,21,22]. The typical training procedure for object detection includes taking a
large set of data from different classes on which the inference is to be done. The training
takes much time and computation power for such a large dataset. These pre-trained deep
neural network models have learned primitive features in images such as object shapes,
edges, and lighting with visual image data in its convolution layers using a huge amount of
data samples. Because these features are generalized across most types of images, utilizing
those learned features from big data in the existing DNN model for a new model with
relatively small data samples provides better accuracy than training the new model from
scratch [32].

In addition, transfer learning reduces the time needed to train a network and removes
the need for an extensive data set along with complexities that come with large data, such
as labeling and checking the uniformity across the training class. Developing a DNN-based
object detection system with small image data samples is challenging and performs poorly.
However, by utilizing a pre-trained DNN model trained with big data, the learned primitive
features can be transferred to a new system with a smaller image dataset. Transfer learning
generally achieves a high start, higher slope, and asymptote, as presented in Figure 4. More
details on the benefits looked for by transfer learning are discussed in [30].
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The procedures for transfer learning are summarized in the following steps, as pre-
sented in Figure 5:

1. Unfreeze the several layers in the pre-trained DNN model while keeping all the other
layers frozen;

2. The network runs through a feed-forward pass through the network using the training
data samples for the new model;

3. The class scores predicted at the output layers are compared against the actual labels
in the training dataset for transfer learning;

4. The error for the classification is then computed using the loss function;
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5. The error is then backpropagated through the network while updating the weights
using Stochastic Gradient Descent (SGD) for optimization.
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Repeat Steps 1–5 until the loss function converges or a certain number of training
epochs is completed.

The Udacity dataset [33] was used to retrain the pre-trained YOLOv3 model for transfer
learning. The Udacity dataset comprises 22,065 labeled images collected in various driving
scenarios during daylight. The sample images of the training dataset are given in Figure 6.
The dataset was split into 80:20 for training the new model and evaluating the trained
model. A total of 17,652 images in the Udacity dataset were used to re-trained the DNN
model to develop an accurate detection system using transfer learning. The pre-trained
YOLOv3 model was developed using the MS COCO dataset [28] to classify 80 different
categories of objects in images. The transfer learning converts the pre-trained YOLOv3
DNN model into a vehicle detection system that detects vehicles in images. Transfer
learning reuses the generalized features (object’s shape, edges, corners, etc.) learned in
YOLOv3 to develop a new vehicle detection model with relatively small data samples.
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The model developed by transferring learning was deployed on the in-vehicle com-
puting unit. The chosen embedded GPU device was the NVIDIA® Jetson AGX Xavier™
Developer Kit. The NVIDIA Jetson AGX was selected because it is in a compact form
factor (4.2 × 4.2 × 4 inches) with a reasonable price. In addition, this embedded system
has a powerful computing power of up to 32 TOPs (Tera operations per second) with a
512-core Volta GPU. Furthermore, it accelerates AI applications efficiently and powerfully
in an embedded module under 30 W because it is supported by CUDA®, cuDNN, and
TensorRT™ software libraries to optimize the DNN modules [16]. However, the inferencing
time using an un-optimized DNN model is not acceptable for real-time applications. That
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is why optimizing the DNN model is an indispensable step in running the DNN model for
real-time applications.

3.3. Optimization of the DNN Model for Real-Time Inferencing

Optimizing the DNN system to make it run on the in-vehicle embedded device is
an essential step. The DNN model optimization can be done in several ways. Figure 7
summarizes how TensorRT generates the optimized TensorRT engine by compressing the
DNN model and hardware mapping [16]. During model compression, the optimization
procedure restructures the network graph in three different ways in order to perform
the operations more efficiently: (1) Kernels are vertically fused to perform the sequential
operation together. For example, the three layers of convolution, batch normalization,
and Relu in Figure 7a are merged into one layer, CBR in Figure 7b. (2) Layers are fused
horizontally to a single wider kernel if they share the same input and filter size with
different weights. For example, layers in red-dotted rectangles in Figure 7a are fused
vertically first and then combined horizontally to generate a 1 × 1 CBR layer in the red-
dotted box in Figure 7b. (3) To reduce the computation, the useless layers are eliminated
by analyzing the model. The dead layers, which are required only in the training and
validation of the model, are useless and eliminated by parsing the network model to reduce
computation. Figure 7a is the network graph before the model compression, and Figure 7b
shows the compressed network graph restructured.
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In addition, half-precision acceleration is conducted during the model compression to
improve computing efficiency. Half-precision arithmetic operations require less memory
and computing power and are much faster than single- or double-precision data. During
the training of the DNN model, full 32-bit precision was used for the accuracy of gradient
backpropagation [27]. However, half-precision FP16 or INT8 can be utilized for the infer-
encing task because it does not require backpropagation. Kernel auto-tuning optimizes
software for highly efficient execution on a target hardware platform. In hardware mapping,
kernel auto-tuning is performed by selecting the optimal pre-implemented algorithms and
the optimal batch size based on the target GPU platform to maximize parallel operations.
Furthermore, memory footprints are removed, and memory reuse is improved by designing
streaming technology in CUDA to maximize parallel operations [16].

The optimization procedures are summarized in Figure 8. First, the vehicle detection
model is retrained on the TensorFlow-Keras framework using transfer learning. The
TensorFlow-Keras model is converted into the Darknet weights for feasibility and easy
conversion. Then, the Open Neural Network Exchange (ONNX) model [34] is generated
from the Darknet weights. ONNX [34] converts the deep learning models from different
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frameworks to a common set of operators, which are common groups of building blocks
of deep learning. Finally, the ONNX parser in TensorRT parses the ONNX model. Then,
TensorRT optimizes the ONNX model on the target embedded device and generates the
TensorRT engine. The TensorRT engine is able to run for real-time inferencing without the
overhead of a framework.
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4. Experiments on the Real-Time Inferencing System for Obstacle Detection

Five different DNN models were developed by freezing different layers using the
transfer learning technology. Those five different DNN models are defined below:

• TL Model #1: the DNN model is re-trained from scratch by freezing the Darknet53
body (185 layers) and retraining the whole 67 layers after the Darknet;

• TL Model #2: the DNN model is developed by re-training the last 15 layers;
• TL Model #3: the DNN model is developed by re-training the last 12 layers;
• TL Model #4: the DNN model is developed by re-training the last 6 layers;
• TL Model #5: the DNN model is developed by re-training the last 3 layers.

The evaluations of the DNN models were conducted with the 8227 images, including
4364 Udacity testing samples separated from training and 3863 new images collected. The
newly collected images shown in Figure 9 were labeled using MATLAB Image Labeler
tool [35] for the ground truth locations of the target objects. The evaluations of the DNN
models on the testing data samples were conducted on the laptop computer, Dell Alienware,
with the processor 9th Gen Intel® CoreTM i7. The performances of the DNN models for
vehicle detection were measured with three metrics, Precision, Recall, and F1 score defined
in Equations (7) and (8). F1 score is a harmonic mean of Precision and Recall takes both
metrics into account. Instead of calculating the simple average of two metrics, Precision
and Recall, the F1 score punishes the extreme values and balances both metrics.

Precision =
TP

(TP + FP)
, Recall =

TP
(TP + FN)

, (7)

F1 score = 2× Precision × Recall
(Precision + Recall)

, (8)

where TP = the total number of cases where the model detects positive samples correctly,
FP = the total number of cases where the model incorrectly detects negative samples as
positive samples, and FN = the total number of cases where the model misses the detection
of positive samples.

Six different DNN models including the original YOLOv3 [15] were evaluated using
the 8227 testing images. The evaluation results are summarized in Table 1. Considering
Precision, Recall, and F1 score, the best performance model is TL Model #4, in which
the last six layers are retrained using 80% of the Udacity data set. The three metrics,
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Precision, Recall, and F1 score of TL Model #4, are 90.09%, 93.07%, and 91.56%, respectively.
Compared to the original YOLOv3 model, TL Model #4 improved by 7.1% in Precision,
10.8% in Recall, and 8.93% in F1 score. TL Model #4 reused most of the smaller details,
such as edges and lines, in the pre-trained original YOLOv3 model, but weights on the
final layers were fine-tuned to generalize the object classification. Figure 10 shows the
inferencing outputs from the best performance model, TL Model #4.
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Figure 9. Sample images were collected and labeled to evaluate the DNN models. The red boxes in
the images are the ground truth locations of the target objects.

Table 1. Evaluation results of the DNN models for vehicle detection.

DNN Models Re-Trained Layers
Metrics

Precision × 100 Recall × 100 F1 score × 100

Original YOLOv3: – 82.99 82.27 82.63
TL Model #1 67 layers 79.49 82.29 80.86
TL Model #2 15 layers 79.24 89.63 84.11
TL Model #3 12 layers 81.12 89.19 84.96
TL Model #4 6 layers 90.09 93.07 91.56
TL Model #5 3 layers 88.10 91.82 89.93
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On the other hand, TL Model #1, which was trained from scratch, shows poor perfor-
mance because TL Model #1 did not utilize the primitive features learned in the original
YOLOv3 model by training the whole 67 layers after Darknet53. The accuracy of the transfer
learning model highly depends upon the similarity of the domains. It is also greatly affected
by the quality and quantity of the data set used to retrain and the fine-tuning approach.
The original YOLOv3 model contains the DarkNet53 as a feature extract network trained
on the ImageNet dataset [20]. Additionally, the whole YOLOv3 model was re-trained with
the MS COCO dataset, which is a comprehensive and diverse dataset. In TL Model #1, all
the layers after the DarkNet53 were retrained on a relatively small Udacity dataset that was
not necessarily as comprehensive as the MS COCO dataset. This explains why the F1 Score
was lower than the original YOLOv3 model and signifies the importance of the fine-tuning
approach while retraining the model using transfer learning.

The best performing DNN model, TL Model #4, was deployed on the NVIDIA Jetson
AGX Xavier directly, and the inferencing time was measured. In Figure 11a, one RGB
camera is mounted on the windshield in the testing vehicle, a Chevy Bolt. One NVIDIA
Jetson AGX and a 13-inch display device were placed near the dashboard to monitor the live
streaming outcomes, as shown in Figure 11a. The sample detection result is presented in
Figure 11b, where the red bounding boxes are the detected vehicles in the image. However,
the average inferencing time of the DNN model, TL Model #4, on the Jetson AGX was
1.721 fps for the image frames with the size 640 × 480. It is not feasible to run the model for
the real-time inferencing task on the embedded device.
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Figure 11. Deployment of the un-optimized transferred DNN model: (a) Hardware set-up for real-
time inferencing; (b) the example output of the un-optimized transferred DNN model on Jetson AGX
with fps information.

Since the low response time and high accuracy of automotive applications are critical
factors when the system is deployed, the best model, TL Model #4, is optimized by following
the procedures explained in Section 3.3. It is converted into the ONNX model first, and
then the TensorRT engine:
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1. Convert the trained model into the ONNX mode;
2. The ONNX model is converted into TensorRT engine. During the conversion, the

network graph is restructured to perform the operations more efficiently.

The TensorRT engine is deployed on the NVIDIA Jetson AGX device to run real-time
inference. The optimized TL Model #4 runs on the embedded device with an average
inferencing time of 35.082 fps for the image frames with the size 640 × 480. The optimized
TL Model #4 can perform inference 19.385 times faster than the un-optimized TL Model #4.
Figure 12 presents real-time inference with the optimized TL Model #4.
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5. Conclusions and Future Scope

This paper addresses deploying the DNN model on an embedded device for automo-
tive applications. Low response time and high accuracy are critical factors for automotive
applications when the system is deployed for real-time inferencing. The novelties of the
proposed vehicle detection system are summarized as follows: Using the transfer learning
technology, five different DNN models were developed and evaluated. The best perform-
ing transferred model, TL Model #4, achieved 90.09% in Precision, 93.07% in Recall, and
91.56% in F1 score. The transferred model, TL Model #4, improved by 7.1% in Precision,
10.8% in Recall, and 8.93% in F1-score compared to the original DNN model’s performance.
The best performing model, TL Model #4, has been optimized to reduce the processing
time using TensorRT. The optimization process restructures the model layers by fusing
horizontally and vertically and accelerates half-precision FP16 or INT8 for inferencing to
improve computing efficiency. Finally, the optimized TL Model #4 was deployed on the
NVIDIA embedded in-vehicle computing device to run the program in real-time. The aver-
age processing time for 640 × 480 image frames was 35.082 fps on the NVIDIA Jetson AGX,
which improves the processing time to 19.385 times faster than the original un-optimized
TL Model #4. The experimental results demonstrate that the optimized transferred model,
TL Model #4, achieved robust object detection accuracy and fast processing time, which is
vital for deploying the ADAS system.

Based on the research outcomes of this paper, we have concluded as follows: (1) trans-
fer learning is a way to develop an object detection system with relatively small data by
utilizing the pre-trained DNN models. The model’s performance will differ based on the
number of re-trained layers. If the size of data samples for transfer learning is relatively
small, re-training the last few layers performed better than re-training the many layers from
scratch. (2) The optimization process is essential to deploy the DNN model for real-time
inferencing. In this research, the optimized DNN model can run 19.385 times faster than
the un-optimized DNN model. The fast inferencing time makes the DNN model able to be
deployed on a small-scale in-vehicle computing platform like NVIDIA Jetson AGX.

For future research, comparison experiments could be done on the various in-vehicle
embedded devices for processing time. It is also essential to research how much the obstacle
detection system can be improved by fusing different sensor information. In addition,
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further research on how to deploy a sensor-fused obstacle detection system for real-world
implementation is required.
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