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Abstract: Background: Brain injuries are a common problem in combat sports, especially in disciplines
such as kickboxing. Kickboxing is a combat sport that has several variations of competition, with
the most contact-oriented fights being carried out under the format of K-1 rules. While these sports
require a high level of skill and physical endurance, frequent micro-traumas to the brain can have
serious consequences for the health and well-being of athletes. According to studies, combat sports
are one of the riskiest sports in terms of brain injuries. Among the sports disciplines with the
highest number of brain injuries, boxing, mixed martial arts (MMA), and kickboxing are mentioned.
Methods: The study was conducted on a group of 18 K-1 kickboxing athletes who demonstrate a
high level of sports performance. The subjects were between the ages 18 and 28. QEEG (quantitative
electroencephalogram) is a numeric spectral analysis of the EEG record, where the data is digitally
coded and statistically analysed using the Fourier transform algorithm. Each examination of one
person lasts about 10 min with closed eyes. The wave amplitude and power for specific frequencies
(Delta, Theta, Alpha, Sensorimotor Rhythm (SMR), Beta 1, and Beta2) were analysed using 9 leads.
Results: High values were shown in the Alpha frequency for central leads, SMR in the Frontal 4 (F4
lead), Beta 1 in leads F4 and Parietal 3 (P3), and Beta2 in all leads. Conclusions: The high activity of
brainwaves such as SMR, Beta and Alpha can have a negative effect on the athletic performance of
kickboxing athletes by affecting focus, stress, anxiety, and concentration. Therefore, it is important
for athletes to monitor their brainwave activity and use appropriate training strategies to achieve
optimal results.

Keywords: brain; QEEG; kickboxing; K-1; brain injury; martial arts

1. Introduction

Kickboxing is a combat sport that involves using punches and kicks. In the category
of punches, there are several types, including the straight punch, hook punch, uppercut,
backfist, and jumping punch. As for kicks, the main techniques include the front, round-
house, side, downward, and hook kicks, as well as the knee strike. The rules of K-1 allow
for the use of all these techniques performed with maximum force in constant combat,
which lasts for three, two min rounds with one min intervals, making the fights quite brutal
and spectacular. Additionally, the fights take place in a ring, which reduces the escape
area and facilitates the direct exchange of strikes between the fighters [1]. Head traumas
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and brain injuries are a common problem in combat sports, especially in disciplines such
as kickboxing. Although, on the one hand, these sports require high skills and physical
endurance [2], on the other hand, frequent micro brain injuries can cause serious conse-
quences for the health and well-being of the athletes [3,4]. Head blows, particularly in the
temple and forehead areas, can lead to concussion, increased occurrence of post-traumatic
stress disorder, and other serious internal injuries [4–8]. Head and brain injuries are becom-
ing an increasingly important topic in numerous scientific studies [9–16]. According to an
international panel of experts in the field of sports-related brain injuries, it is important
to pay attention to the diagnosis, management, and rehabilitation of brain injuries [15].
Evidence-based guidelines describing the assessment and management of brain injuries
in sports have been presented by the American Academy of Neurology [17]. Among the
sports disciplines with the highest number of brain injuries, boxing, MMA, and kickboxing
are mentioned [18]. In the study by McCrory et al., 2009, 2013, the authors focused on
diagnostic protocols and treatment of brain injuries in sports, as well as ways to prevent
such injuries. In the research, it has been shown that special attention should be paid to
the increased risk of repeated brain injuries in sports which, as a consequence, can lead to
serious health consequences [19,20]. Laccarino et al., 2017 focused on mild traumatic brain
injuries in combat sports athletes, as well as methods for diagnosing and treating them.
In this study, it was indicated that mild traumatic brain injuries in combat sports athletes
can lead to serious health problems, such as difficulty concentrating, mood disturbances,
and memory-related problems [21]. Bledsoe et al., 2005 conducted a trial on this topic
in professional boxing. According to the authors of the study, this risk is very high and
represents one of the most serious threats to the health of athletes [22]. In a study conducted
by the National Football League (NFL), it was found that 6.1% of NFL players had at least
one documented brain injury between 2012 and 2015 [23]. In a study conducted on a group
of American football-playing students, it was found that prolonged exposure to repetitive
brain injuries can lead to an increased risk of chronic traumatic encephalopathy (CTE) [24].

Research on the brain, conducted using electroencephalography (EEG), is crucial
for understanding its workings and how external factors affect its function. However,
traditional EEG has limitations in providing detailed information on brain activity in
specific areas [25,26]. To overcome these limitations, Quantitative Electroencephalography
(QEEG) has been developed as a non-invasive technique for analysing brain electrical
activity using scalp electrodes. Compared to traditional EEG, QEEG provides more precise
and comprehensive evaluations of brain function, making it useful for identifying subtle
changes in brain activity associated with brain dysfunctions, including injuries [27]. EEG
measures the brain’s electrical activity, while QEEG provides more detailed information
about the characteristics and distribution of this activity in different parts of the brain.
QEEG uses advanced mathematical and statistical methods to analyse and interpret EEG
data, allowing for the identification of patterns that may indicate various neurological or
psychological disorders [28].

Based on the results of quantitative electroencephalography with closed eyes, it can
be suggested that the values measured in this manner should be lower. Closing the eyes
induces changes in brain activity. When we close our eyes, we significantly reduce the
amount of sensory stimuli we receive from the environment, which can lead to a decrease
in brain activity in some areas. One of the areas that may undergo changes is the occipital
area, which is associated with visual processing. With closed eyes, this area may show
lower activity. Additionally, closing the eyes induces a state of rest, which also affects the
decrease in brain activity. However, it should be noted that QEEG results with closed eyes
are important for assessing the resting state and can provide information on brain activity
in such a state [29,30].

In the case of kickboxing athletes, studying brain waves with closed eyes during rest
or relaxation can provide valuable insights into their neurological functioning. This is
because the brain generates lower-frequency waves during these states, which can reveal
abnormalities or deviations that may indicate brain dysfunctions affecting athletic perfor-
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mance or leading to injuries [31]. Furthermore, QEEG can be used to evaluate the impact of
training on brain waves, enabling coaches and trainers to optimize training programmes
while reducing the risk of injuries [25]. However, studying QEEG in kickboxing athletes
presents challenges due to the dynamic and physically demanding nature of the sport.
Nevertheless, the information obtained from such studies can be valuable in enhancing
athletic performance and reducing potential risks. For instance, identifying brain regions
that are particularly active during kickboxing can inform targeted training programmes
to improve performance while reducing trauma occurrence. A review of the literature
allows to indicate a lack of similar studies, and according to current knowledge, no one has
measured K-1 kickboxing fighters using QEEG. The latest QEEG studies mainly concern
medical and rehabilitation aspects, but no one has applied this technology to assess athletes
practicing striking sports during the break period immediately after the starting period,
which can show what changes are induced by performing combat sports.

Therefore, the aim of this study was to develop a model of brain waves using QEEG
with closed eyes in K-1 kickboxing athletes. By analysing the data, researchers can gain
insights into the neurological functioning of kickboxing athletes and identify any abnormal-
ities or deviations that may indicate brain dysfunctions. Additionally, the study was carried
out to assess the impact of training on brain waves and provide information on optimizing
training programmes for enhancing performance and reducing the risk of injuries.

2. Materials and Methods

The study was conducted among a group of 18 K-1 Rules kickboxing athletes with a
high sports level, aged 18 to 28 years. All of the tested athletes were active and competed
at the highest level. The sports level was determined on the basis of training experience,
the opinion of the leading coach, and sports results. Each tested competitor was a medallist
of the highest event in the country, which is the Polish Kickboxing Championships in the
K-1 formula organised by the Polish Kickboxing Association.

Detailed selection criteria for the group are presented in Table 1. The study was
carried out in accordance with the Declaration of Helsinki and was approved by the Ethics
Committee of the University of Rzeszow (protocol code 08/December/2021).

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Training experience of at least 10 years Neurological disorders
Current medical examinations Skin diseases of the head

Participation in at least 5 competitions per year
(having medal from national championship) Cranio-Cerebral Injuries

Taking psychotropic drugs
Injuries and severe knockouts

All participants were informed of the study procedures and abstained from participat-
ing in sparring fights for 14 days prior to the study. Each participant recorded his dietary
intake using the Fitatu smartphone application and was instructed not to consume energy
drinks or other stimulants containing caffeine for 48 h before the study. This was aimed at
eliminating factors that could distort the test results [32].

2.1. QEEG Procedure

The procedure of quantitative electroencephalography (QEEG) involves coding
the EEG record digitally and analysing it statistically using the Fourier transform
algorithm [33,34]. Each examination of an individual lasted approximately 10 min, with
the subject’s eyes closed. The analysis involved measurement of amplitude and power
of specific frequencies, while taking the standard norms for adults into account. It was
assumed that lower frequency waves had a higher amplitude, with Delta waves being
considered normal below 20 µV, Theta below 15 µV, Alpha below 10 µV, the Sensimotor
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Rhythm (SMR), read Beta 1 and Beta2 below 6 µV, as per the standard. The EEG signal was
transformed using the Cz, Pz, and Fz electrodes as the reference site [35] and quantified
using Elmiko and DigiTrack software (version 15, PL) (ELMIKO, Warsaw, Poland). Nine
channels were recorded for the study, which included Delta, Theta, Alpha, SMR, Beta 1, and
Beta2 waves at electrodes (frontal—FzF3F4, central—CzC3C4, and parietal—PzP3P4). The
amplitude of QEEG rhythms was calculated using the medical standards of the DigiTrack
apparatus. The fast Fourier transform (FFT) algorithm was used to analyse the signal spec-
trum, with the result of the function being: f(z) = A(z) + j*F(z). The Fourier decomposes the
EEG time series into a voltage by frequency spectral graph, commonly called the „power
spectrum”, with power being the square of the EEG magnitude, and magnitude being the
integral average of the amplitude of the EEG signal, measured from (+) peak-to-(−) peak,
across the time sampled [36]. For FFT analysis, the minimum signal amplitude was set
to 0.5 µV, with a minimal temporal distance between single maximal values of 0.5 Hz. A
computing buffer of 8.2 s (2048 assessment points, accuracy 0.12 Hz) was used for the anal-
ysis, resulting in a set of amplitude values for each defined part of the frequency spectrum.
The calculation resolution was defined by the gap between single values measured in Hz
and was dependent on the signal sampling frequency and the length of the computing
buffer, r = fs/N, where r represents the calculation resolution, fs is the signal sampling
frequency, and N is the length of the computing buffer. The results of the spectrum analysis
in the FFT panel in DigiTrack showed peak-to-peak amplitudes. To ensure appropriate
reliability, measurement epochs of several seconds were implemented [31]. The epoch
length determined the frequency resolution of the Fourier, with a 1-s epoch providing
a 1-Hz resolution (plus/minus 0.5 Hz resolution), and a 4-s epoch providing a 0.25 Hz
resolution (plus/minus 0.125 Hz resolution). To eliminate artifacts, the method of blind
separation—BSS signals (Blind Source Separation)—were used. This is the estimation of
unknown source signals on the basis of registered ones or the extraction of interfering sig-
nals for their subsequent elimination. The source of artifacts, i.e., undesirable components
in the EEG signal, may be: heart rate, eye movement (blinking), facial expressions (facial
muscle movements), jaw movement or swallowing, and chest movement during breathing.
In addition, the value of the signal measured outside the brain activity at the measurement
site consists of signals from other areas of the brain and other disturbances from outside the
body. Blind signal separation algorithms in EEG-related research are aimed at removing
the aforementioned artifacts as precisely as possible, so that in the further steps of signal
analysis only process those from the areas of the cerebral cortex of interest [27].

2.2. Statistical Analysis

Statistical analysis of the collected data was conducted using Statistica v.13.3 (TIBCO
Software, Palo Alto, Santa Clara, CA, USA) software. Basic descriptive statistics were
calculated, including mean, standard deviation, lower and upper quartiles, minimum
and maximum values. The significance of differences between individual channels was
calculated using one-way ANOVA for dependent groups, with a significance level set at
p < 0.05. The choice of test was based on the assumption of normal distribution, which
was verified using the Shapiro-Wilk test, and homogeneity of variance, which was verified
using the Levene’s test. Additionally, effect size was reported based on eta-squared values.
The results of the study were presented in graphs created using Canva, and the normative
scale for QEEG values was adopted as follows: Delta—up to 20 µV, Theta—up to 15 µV,
Alpha—up to 10 µV, SMR—6 µV, Beta I—6 µV, Beta2—6 µV [37,38].

3. Results

It should be noted that the average Delta values are diverse in different brain regions,
suggesting that Delta activity is more concentrated in the frontal area than in others.
Additionally, the minimum and maximum values and quartiles suggest that in some
areas, Delta activity is more variable than in others. The average values are within the
reference range, but the maximum values significantly exceed it. High maximum values
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were recorded in all leads. In the frontal lobe, the variation in leads appeared statistically
significant (Table 2, Figure 1).

Table 2. Descriptive statistics of Delta waves from all channels (µV).

Delta
0.5–4 Hz Mean Min Max Q1 Q3 SD

Fz 19.54 13.03 33.78 13.84 22.19 7.50
F3 14.01 11.48 22.84 12.19 14.21 3.01
F4 15.10 10.62 26.35 12.28 16.00 4.33

p < 0.001 ES = 0.23

Cz 16.85 9.13 24.98 13.03 19.45 4.47
C3 16.24 12.19 23.23 13.98 19.43 3.54
C4 16.14 10.62 26.35 13.28 18.62 3.87

p = 0.86 ES = 0.00

Pz 16.88 10.62 26.35 12.28 22.28 5.32
P3 17.34 11.48 34.21 12.83 21.99 6.78
P4 15.96 10.62 26.35 13.28 19.45 4.13

p = 0.61 ES = 0.03

Sensors 2023, 23, x FOR PEER REVIEW 6 of 18 
 

 

 

Figure 1. Mean values for Delta against the reference standard. 

 
The highest average Theta activity was observed in Fz, while the lowest average ac-

tivity was noted in P4. Standard deviations also differed across different electrode loca-
tions, with Fz having the highest, indicating greater variability in Theta activity for this 
region. The average values were within the reference range. However, the recorded max-
imum values in the FZ, F3, F4 leads were outside the reference range (Table 3, Figure 2). 

 

Table 3. Descriptive statistics for Theta waves from all channels (µV) 

Theta 
4-8 Hz 

Mean Min Max Q1 Q3 SD 

Fz 13.83  9.19  27.55  11.77  14.91  4.20  
F3 12.56  9.88  17.19  11.78  13.70  1.86  
F4 12.99  9.90  18.37  11.91  14.37  2.14  

 p=0.34 ES=0.06 
Cz 9.08  6.69  11.67  7.38  10.10  1.66  
C3 8.58  6.59  11.10  7.63  10.59  1.69  
C4 8.91  5.78  11.78  6.71  11.78  2.48  

 p=0.51 ES=0.04 
Pz 8.53  5.14  10.62  6.85  10.62  2.11  
P3 8.99  6.01  10.93  7.54  10.12  1.68  
P4 8.38  5.08  10.08  7.25  10.08  1.85  

 p=0.36 ES=0.06 

 

Figure 1. Mean values for Delta against the reference standard.

The highest average Theta activity was observed in Fz, while the lowest average
activity was noted in P4. Standard deviations also differed across different electrode
locations, with Fz having the highest, indicating greater variability in Theta activity for
this region. The average values were within the reference range. However, the recorded
maximum values in the FZ, F3, and F4 leads were outside the reference range (Table 3,
Figure 2).

Table 3. Descriptive statistics for Theta waves from all channels (µV).

Theta
4–8 Hz Mean Min Max Q1 Q3 SD

Fz 13.83 9.19 27.55 11.77 14.91 4.20
F3 12.56 9.88 17.19 11.78 13.70 1.86
F4 12.99 9.90 18.37 11.91 14.37 2.14

p = 0.34 ES = 0.06
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Table 3. Cont.

Theta
4–8 Hz Mean Min Max Q1 Q3 SD

Cz 9.08 6.69 11.67 7.38 10.10 1.66
C3 8.58 6.59 11.10 7.63 10.59 1.69
C4 8.91 5.78 11.78 6.71 11.78 2.48

p = 0.51 ES = 0.04

Pz 8.53 5.14 10.62 6.85 10.62 2.11
P3 8.99 6.01 10.93 7.54 10.12 1.68
P4 8.38 5.08 10.08 7.25 10.08 1.85

p = 0.36 ES = 0.06

Sensors 2023, 23, x FOR PEER REVIEW 7 of 18 
 

 

 
 

 

Figure 2. Mean values for Theta against reference standard. 

 
In the assessment of the Alpha wave, the highest peak amplitude was observed at 

C3, while the lowest peak was observed at F3. The standard deviation values indicate that 
the greatest variability in Alpha activity was observed at the peak amplitude of the skull 
(Cz) and parietal regions (C3; C4), which exceeded the reference norms. It is worth noting 
the asymmetry observed between F3 and F4, which exceeded a difference of 20% (Table 
4, Figure 3). 

 

  Table 4. Descriptive statistics of Alpha waves from all channels (µV) 

Alpha 
8-12 Hz 

Mean Min Max Q1 Q3 SD 

Fz  8.77  6.31  14.34  6.87  9.31  2.77  
F3 7.81  5.45  11.56  6.77  7.58  1.89  
F4 10.13  5.58  35.37  6.11  10.12  7.33  

 p=0.27 ES=0.08 
Cz 10.30  5.58  18.58  7.53  10.70  4.17  
C3 11.02  5.34  19.79  8.34  16.71  4.42  
C4 10.64  7.01  19.88  7.14  16.18  4.40  

 p=0.71 ES=0.03 
Pz 8.26  4.69  12.07  6.18  9.94  2.32  

Figure 2. Mean values for Theta against reference standard.

In the assessment of the Alpha wave, the highest peak amplitude was observed at C3,
while the lowest peak was observed at F3. The standard deviation values indicate that the
greatest variability in Alpha activity was observed at the peak amplitudes of the skull (Cz)
and parietal regions (C3 and C4), which exceeded the reference norms. It is worth noting
the asymmetry observed between F3 and F4, which exceeded a difference of 20% (Table 4,
Figure 3).

Table 4. Descriptive statistics of Alpha waves from all channels (µV).

Alpha
8–12 Hz Mean Min Max Q1 Q3 SD

Fz 8.77 6.31 14.34 6.87 9.31 2.77
F3 7.81 5.45 11.56 6.77 7.58 1.89
F4 10.13 5.58 35.37 6.11 10.12 7.33

p = 0.27 ES = 0.08

Cz 10.30 5.58 18.58 7.53 10.70 4.17
C3 11.02 5.34 19.79 8.34 16.71 4.42
C4 10.64 7.01 19.88 7.14 16.18 4.40

p = 0.71 ES = 0.03

Pz 8.26 4.69 12.07 6.18 9.94 2.32
P3 9.22 4.68 13.09 7.68 11.69 2.62
P4 8.43 4.60 11.98 7.08 9.94 2.33

p = 0.21 ES = 0.08
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Figure 3. Mean values for Alpha against reference standard.

In Table 5, statistical characteristics of the SMR amplitude parameters are presented.
The highest amplitude value was observed in F4, while the lowest, in C4. The largest
dispersion degree of values from the mean was noted for the lateral frontal electrodes (F3;
F4). The value of F4 exceeded the reference standard (Figure 4).

In the Beta frequency range, the highest activity was observed in the right frontal lobe
(F4), while the lowest was in its central part (Fz). The standard deviation values show that
the greatest variability in activity was noted in the case of F4 amplitude. Values for F3, F4,
and P3 exceeded the reference norms (Table 6, Figure 5).

Table 5. Descriptive statistics of SMR waves from all channels (µV).

SMR
12–15 Hz Mean Min Max Q1 Q3 SD

Fz 4.69 3.74 6.14 4.00 5.08 0.81
F3 4.86 0.87 3.67 6.11 3.83 5.31
F4 6.31 4.37 3.12 15.64 3.58 5.25

p = 0.60 ES = 0.03

Cz 4.77 3.02 7.02 3.68 5.39 1.11
C3 4.63 4.21 7.58 4.27 4.59 0.76
C4 3.74 3.21 5.41 3.45 3.92 0.49

p = 0.002 ES = 0.29

Pz 5.14 3.47 7.38 4.18 5.76 1.28
P3 5.25 3.47 8.80 4.39 5.80 1.45
P4 5.18 3.18 9.18 3.58 5.66 1.76

p = 0.97 ES = 0.001
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Table 6. Descriptive statistics for Beta waves from all channels (µV).

Beta
15–20 Hz Mean Min Max Q1 Q3 SD

Fz 5.33 4.50 6.59 5.03 5.63 0.67
F3 6.48 4.98 9.77 5.60 6.77 1.61
F4 8.05 4.09 19.30 5.58 6.69 5.25

p = 0.02 ES = 0.20

Cz 5.76 4.81 7.59 5.20 6.19 0.94
C3 6.04 4.80 7.83 5.38 6.93 1.06
C4 5.44 4.21 6.88 4.82 6.27 0.92

p < 0.001 ES = 0.61

Pz 5.59 4.21 7.51 4.44 6.35 1.06
P3 6.49 4.91 7.96 5.89 7.44 1.04
P4 5.66 4.43 7.51 4.44 6.35 1.11

p = 0.01 ES = 0.22
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In Table 7, the characteristics of Beta2 waves are presented. The highest activity was
observed in the frontal lobes of both the left and right hemispheres, while the lowest was
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noted in the central frontal lobe. The values for all electrodes exceeded the reference range
(Figure 6).

Table 7. Descriptive statistics for Beta2 waves across all channels (µV).

Beta2
20–35 Hz Mean Min Max Q1 Q3 SD

Fz 6.70 5.66 7.96 6.16 7.31 0.77
F3 8.39 6.06 14.67 7.31 9.41 2.01
F4 9.40 5.21 15.27 7.08 11.17 2.70

p < 0.001 ES = 0.43

Cz 6.97 5.18 9.25 6.25 7.49 0.86
C3 7.40 6.14 9.82 6.40 7.64 1.00
C4 7.63 6.38 9.28 6.69 7.89 0.86

p = 0.04 ES = 0.17

Pz 7.35 6.18 9.28 6.69 7.81 0.83
P3 8.21 6.79 9.29 7.46 8.79 0.80
P4 8.21 5.85 9.56 7.15 8.79 0.94

p = 0.002 ES = 0.31
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4. Discussion

QEEG (Quantitative Electroencephalography) with eyes closed is a type of neuroimag-
ing technique used to measure and analyse electrical activity of the brain. When a person
closes their eyes during a QEEG recording, it can show the brain’s resting-state activity,
also known as the alpha rhythm.

The findings of our own study allow us to indicate that the average values for the
Delta and Theta frequencies did not exceed the accepted reference norm. Delta waves
are associated with regenerative processes and deep sleep, which are crucial for high-
performance athletes [39–41]. Therefore, appropriate values of Delta waves may indicate
the proper regeneration processes necessary in sports [42]. On the other hand, the regularity
of Theta waves may indicate good concentration, which is essential for preparing for a
fight, especially within a psychological context [43]. These results highlight the importance
of monitoring brain activity using QEEG in sports performance evaluations. It can provide
valuable insights into the athlete’s cognitive and psychological states, which are crucial
factors in high-performance sports [44]. Further research can expand on the significance
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of QEEG in sports and the potential benefits of using this technology to improve athletes’
performance and well-being.

In the present study, high values were recorded for Alpha waves in CZ, C3, and C4
leads, which exceeded the reference norm. The results of the present study suggest that
high values were recorded for Alpha waves in certain leads, indicating a state of relaxation
with closed eyes. This is in line with previous research in which it has been shown that
the amplitude of Alpha waves usually increases during relaxation, which is characterised
by a decrease in visual activity and a greater focus on one’s own thoughts [45,46]. Alpha
waves appear in the temporal region on the right side of the brain. Their level increases not
only during creative tasks but also in a relaxed state. They stimulate dreams and promote
inspiration. Sharpened alpha waves in the occipital region indicate deep relaxation. Alpha
waves are also present in the frontal lobe. When they are present and repetitive, they
can cause anxiety, indicating that the patient is under tension, perhaps before facing a
challenge. Too low levels of alpha waves can cause sleep problems, generate fear, and
anxiety. Conversely, when alpha waves are too high, we have difficulties concentrating
and feel a lack of energy. Numerous studies report that alpha rhythm largely depends on
age and gender [45]. However, it is important to consider that individual differences may
affect the results, such as age, gender, health status, medication, stress, and fatigue [47–49].
During sports competition or training, athletes are exposed to a high level of stress and
physical exertion, leading to muscle tension and emotional tension. When an athlete closes
his/her eyes, it can help relax and reduce muscle tension, which can lead to an increase
of Alpha waves in the brain. This can be beneficial for athletes, as relaxation and reduced
muscle tension can lead to better performance and improved overall well-being [50]. Higher
levels of the alpha band improve heart rate variability, which is associated with lower levels
of anxiety and stress [51]. It is worth noting that Alpha wave activity can also vary
depending on the athlete’s level of experience. In a study on experienced karate athletes,
lower levels of Alpha wave activity were associated with greater efficiency in processing
sensory information. This suggests that experienced athletes may have developed a more
efficient neural network for processing sensory information, leading to a different pattern
of brain activity during competition or training [52].

In the analysis carried out in the current study, an increase above the reference norm in
the sensomotoric SMR waves in electrode f4 has been shown. Sensomotoric rhythm (SMR)
is a type of brainwave that occurs within the frequency range of 12–15 Hz. It is primarily
found in the sensory and motor areas of the brain and is associated with the activation of the
motor cortex. SMR waves are used in biofeedback training as a measure of relaxation and
concentration levels, and athletes can use biofeedback training to improve their physical
and mental performance. The biofeedback training process involves the athlete learning to
control their physiological responses, such as heart rate, breathing, and brainwave activity,
achieving a desired state of relaxation or concentration [53,54]. Therefore, increased SMR
may indicate that the athletes were in a state of full relaxation.

Budde et al., 2008 have proven that coordination training increases SMR waves, which
may improve attention and concentration function [55]. Coordination training involves
practicing movements that require the synchronisation of different body parts and can
improve a person’s ability to focus attention on specific tasks, such as performing a complex
kickboxing combination. Therefore, it is possible that the elevated SMR waves observed
in the kickboxing athletes in this study were due to the structure of their training, which
includes significant focus on coordination exercises combining foot techniques with hand
techniques [56].

In the Beta 1 frequency range, an observation was made that indicated an increase in
activity in the frontal leads F3 and F4. This finding could potentially suggest the presence
of excessive activity in the prefrontal cortex, a region of the brain that is associated with
executive functions, decision-making and emotion regulation. An overactive prefrontal
cortex has been linked to various negative psychological states, such as stress and anxiety,
which may manifest themselves in physical symptoms such as headaches, muscle tension
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and fatigue. Furthermore, such hyperactivity in the prefrontal cortex may lead to difficulties
in decision-making, as well as impairments in other cognitive processes such as working
memory and attention. Therefore, it is important to further investigate this finding and
explore potential interventions or strategies to help regulate prefrontal cortex activity and
alleviate related symptoms [57]. The increase of Beta 1 waves in the frontal lobe may be a
consequence of numerous blows received in the head area, which are specific to kickboxing
in the K-1 formula [58]. In scientific research, it has been confirmed that people who have
suffered a brain injury exhibit increased beta wave activity in the frontal lobe compared to
healthy individuals [59,60].

In the Beta2 frequency, all average values were outside the reference range for all leads.
This may suggest intense brain activity. Scientists have repeatedly verified elevated Beta2
waves in sports and have indicated that they may be related to sports performance [61]. The
fact that high values were recorded with closed eyes in all leads is intriguing. This study
indicates the need for further analysis and verification of brain changes among kickboxing
athletes, as well as a detailed examination as to whether the numerous blows received
during training and competition have negative impact on the athletes’ health.

The study conducted on kickboxing athletes competing in the K-1 formula revealed
elevated values in several brain waves when measured with closed eyes. The increased
Alpha waves observed in the athletes could be attributed to the relaxation and resting state
that occurs when the eyes are closed. However, the elevated values in SMR, Beta 1, and
Beta2 waves indicate that the athletes were in a focused and alert state, potentially due
to the anticipation and stress associated with competition. These findings suggest that
K-1 kickboxing may have impact on the brain state of athletes, particularly during the
competition period. The elevated SMR waves could indicate a state of focused attention
and readiness for action, as this frequency band is associated with motor planning and
execution. Meanwhile, the increased Beta 1 and Beta2 waves could indicate a state of
mild stress or anxiety, as these frequencies are associated with cognitive and emotional
processing, particularly related to decision-making and problem-solving. The study results
suggest that further research is needed to better understand the impact of K-1 kickboxing
on the brain state of athletes, particularly during the competition period.

Limitations of the Study

The main limitation of this study is the relatively small number of K-1 formula kick-
boxing athletes. Additionally, quantitative electroencephalography was performed with
only nine leads of the brain cortex. Expanding the study to a full-head QEEG measurement
would be worthwhile, although in this research, we selected the most important areas of
the brain cortex.

5. Conclusions

The conclusions of our research regarding kickboxers indicate that too high activity
of SMR, Beta 1 and Beta2 waves, as well as too high and long-lasting activity of Alpha
waves, can negatively affect the achievement of optimal sports performance. This is
also unfavourable for humans because functioning is carried out at the expense of other
more desirable brain functions. Excessive activity of these waves can lead to feelings
of excessive focus, stress, anxiety, difficulty concentrating, reduced motor reactions and
impaired alertness. Consequently, in sports, including kickboxing, too high activity of these
waves can have a negative impact on success in a competition.

Practical Implications

On the basis of our results, it may be concluded that in sports, including kickboxing, it
is important to monitor and control the brainwave activity of athletes. Due to this, excessive
focus, anxiety, stress, and difficulties with maintaining attention and concentration can be
prevented, which could otherwise have a potentially negative effect on the competition
results. The use of appropriate techniques and methods, such as meditation training,
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biofeedback, or neurofeedback, can help regulate brain wave activity and improve athletic
performance. Therefore, our findings may have practical applications in sports training
and preparation, including kickboxing, helping athletes achieve better performance and
success in competitions.
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