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Abstract: Image stitching is of great importance for multiple fields such as moving object detection
and tracking, ground reconnaissance and augmented reality. To ameliorate the stitching effect and
alleviate the mismatch rate, an effective image stitching algorithm based on color difference and an
improved KAZE with a fast guided filter is proposed. Firstly, the fast guided filter is introduced to
reduce the mismatch rate before feature matching. Secondly, the KAZE algorithm based on improved
random sample consensus is used for feature matching. Then, the color difference and brightness
difference of the overlapping area are calculated to make an overall adjustment to the original images
so as to improve the nonuniformity of the splicing result. Finally, the warped images with color
difference compensation are fused to obtain the stitched image. The proposed method is evaluated by
both visual effect mapping and quantitative values. In addition, the proposed algorithm is compared
with other current popular stitching algorithms. The results show that the proposed algorithm is
superior to other algorithms in terms of the quantity of feature point pairs, the matching accuracy,
the root mean square error and the mean absolute error.
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1. Introduction

Currently, image stitching is still a topical research issue and is widely used in com-
puter vision, unmanned aerial vehicle (UAV) reconnaissance and other fields [1,2]. Image
stitching consists of synthesizing different types of images captured by different imaging
devices at different shooting positions into an image with a larger field of vision [3,4]. On
the one hand, image stitching can synthesize panoramic and ultra-wide-view images, so
that ordinary cameras can achieve grand scene shooting. On the other hand, image stitching
can synthesize fragmented images into a complete image. The stitching technology can
be applied to combine medical images, scientific microscope fragments or local images
from seabed exploration into a complete image. In addition, image mosaic is also a basic
technology in scene rendering methods, which uses panoramic images instead of 3D scenes
to model and draw. However, image stitching still encounters many challenges at present,
such as parallax caused by viewpoint change, ghosting, distortion, detail distortion and
image unevenness [5–7].

Up to now, many image stitching methods have been proposed by researchers.
Li et al. [8] proposed a model of appearance and motion variation based on the tradi-
tional speeded up robust features (SURF) algorithm, which mainly contains Hessian matrix
construction, Hessian matrix determinant approximation calculations and non-maximal
suppression determination feature points in its key steps. In order to improve the matching
accuracy and robustness, Liu et al. [9] introduced an improved random sample consensus
(RANSAC) feature image matching method based on SURF. First of all, the SURF method
is used to detect and extract image features, and the fast library of the approximate nearest
neighbor-based matcher method is used to perform initial matching on image feature points.
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The RANSAC algorithm is improved to increase the probability of correct matching points.
In 2017, Guan et al. [10] presented an interest point detector and binary feature descriptor
for spherical images. Inspired by the Binary Robust Invariant Scalable Keypoints (BRISKs),
they adapted the method to operate on spherical images. All of the processing is intrinsic
to the sphere and avoids the distortion inherent in storing and indexing spherical images
in a 2D representation. Liu et al. [11] developed the BRISK_D algorithm, which effectively
combines features from the Accelerated Segment Test (FAST) and BRISK methods. The
keypoints are detected by the FAST algorithm and the location of the keypoint is refined
in scale and space. The scale factor of the keypoint is directly computed with the depth
information of the image. Zhang et al. [12] proposed a screening method based on binary
mutual information for the mismatch problem. The feature points extracted by the ORB
algorithm are distributed in a color change area. Then, the new feature points are obtained
by internal points. In this way, feature points can be eliminated and the best transformation
matrix can be obtained by using an iterative method. In 2020, Ordóñez et al. [13] introduced
a registration method for hyperspectral remote sensing images based on MSER, which
effectively utilized the information contained in different spectral bands. Elgamal et al. [14]
proposed an improved Harris hawks optimization by utilizing elite opposite-based learning
and proposing a new search mechanism. This method can avoid falling into local optimum,
improve the calculation accuracy and accelerate the convergence speed. Debnath et al. [15]
utilized Min Eigen feature extraction based on the Shi-Tomasi corner detection method
which detects interest points to identify image forgery.

With the continuous development of machine learning, many scholars have applied
it to the field of image stitching. However, learning-based image stitching solutions are
rarely studied due to the lack of labeled data, making the supervised methods unreliable.
To address this limitation, Lang Nie et al. [16] proposed an unsupervised deep image
stitching framework consisting of two stages: unsupervised coarse image alignment and
unsupervised image reconstruction. The stitching effect of this method is more obvious
for images with few features or low resolution. However, stitching algorithms based on
machine learning require extensive training, have a high resource consumption and are
highly time consuming.

Alcantarilla et al. [17] introduced the KAZE feature in 2012. Their results revealed
that it performs better than other feature-based detection methods in terms of detection
and description. Pourfard et al. [18] proposed an improved version of the KAZE algorithm
with the accelerated robust feature (SURF) descriptor for SAR image registration. Discrete
random second-order nonlinear partial differential equations (PDEs) are used to model the
edge structure of SAR images. The KAZE algorithm uses nonlinear diffusion filtering to
build up the scale levels of the SIFT descriptor. It preserves edges while smoothing the
image and reduces speckle noise.

For the purpose of alleviating the sensitivity of KAZE and improving the stitching
effect, we proposed image stitching based on color difference and KAZE with a fast guided
filter as an efficient stitching method. The contributions of this paper are as follows: firstly,
we introduce a fast guided filter into the KAZE algorithm to effectively reduce the mismatch
information and improve the matching efficiency. Secondly, we use the improved RANSAC
algorithm to increase the probability of correct matching points sampled and effectively
eliminate the wrong matching point pairs. Thirdly, we introduce color difference and
brightness difference to compensate for the whole image when fusing and stitching images.
This method cannot just only effectively eliminate seams, but also results in perfectly
uniform color and luminance.

The remainder of the paper is organized as follows. Section 2 depicts the fast guided
filter and Additive Operator Splitting (AOS) algorithm briefly. Section 3 details the pro-
posed method in this paper. Section 4 presents the experimental results and assessments.
Finally, the conclusions and outstanding issues are listed in Section 5.
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2. Related Work

In this section, we introduce the fast guided filter, nonlinear diffusion and the AOS
algorithm briefly.

2.1. Fast Guided Filter

A guided filter is an adaptive weight filter which can restore the boundaries while
smoothing images via a guide map [19]. Assume that the input image, the output image
and the guidance map are expressed as p, q and I, respectively. A guided filter driven by a
local linear model can be defined as shown in Equation (1):

qi = akIi + bk, ∀i ∈ ωk, (1)

where i is the index of pixels and ω expresses the selected local square window. ak and
bk are two constants in the window ω. Aiming at minimizing the reconstruction error
between the input image and the output result, optimal values of ak and bk can be acquired
by Equations (2) and (3).

ak =

1
|ω|∑i∈ωk

Iipi − µkpk

σ2
k + ε

, (2)

bk = pk − akµk, (3)

where µk and σk are the mean and variance of the guided image I in the window k,
respectively, and ε is a regularization parameter controlling the degree of smoothness.
The values of ak and bk will determine the weight of gradient information and smoothing
information. It is obvious that bk is approximately equal to the mean value of the pixel
points when the value of a is small.

To reduce the time complexity, He et al. [20] proposed a fast guided filter on this basis.
The filtering output is computed by Equation (4):

qi
′ = aiIi + bi, (4)

where ai and bi are the averages of a and b, respectively, on the same centered window,
which can be calculated by Equations (2) and (3), respectively. Firstly, the input image
and the guided image are downsampled by scale s. Secondly, the output image q′ can be
calculated by Equation (4). Finally, q′ is upsampled s times to obtain an output image with
the same size as the original image. The time complexity of the method becomes O(N/s2).

In this paper, a fast guided filter is applied to preprocessing before feature matching.
The fast guided filter not only removes mismatch point pairs effectively, but also protects
the texture information of the image preferably. The specific method is shown in Section 3.

2.2. Nonlinear Diffusion and the AOS Algorithm

The nonlinear diffusion method describes the luminance of an image with the increase
in scale as the divergence of a flow function that controls the diffusion process [21]. This
method is normally described by nonlinear partial differential equations (PDEs) owing to
the nonlinear properties of the differential equations involved in diffusing the luminance
of the image to the nonlinear scale space [22]. The classical nonlinear diffusion formula can
be described by Equation (5):

∂L
∂t

= div(c(x, y, t) · ∇L), (5)

where div and ∇ represent the divergence and gradient operations, respectively.
Li et al. [23] introduced nonlinear diffusion filtering and its implementation in detail.

Nonlinear diffusion is a good smoothing method, which can reduce noise while maintaining
the peak shape. In order to reduce the calculation loss at the local edges, more smooth
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regions are selected instead of boundaries. The conduction function can be defined by
Equation (6):

c(x, y, t) = g( |∇Lσ(x, y, t) |), (6)

where ∇Lσ indicates the gradient of the Gaussian smoothing version of the original image.
Since we chose to smooth both sides of the edge, the conduction function can be defined as
follows:

g =

{
1

1− exp(− 3.315
(|∇Lσ|/k) 2 )

, |∇Lσ|2 = 0
, |∇Lσ|2 > 0

, (7)

However, there are no analytical solutions for the PDEs involved in nonlinear diffusion
filtering. The AOS algorithm uses numerical methods to approximate differential equa-
tions [24]. The diffusion equation is a semi-implicit scheme. In vector matrix representation,
the discretization of Equation (5) can be expressed by Equation (8):

Li+1 − Li

τ
=

m

∑
i = 1

Al(L
i)Li+1, (8)

where Al is a matrix that encodes the image transmission of each dimension. The solution
of Li+1 can be obtained in the following way:

Li+1 = (I− τ
m

∑
i = 1

AlL
i)−1Li, (9)

The AOS algorithm is absolutely stable for any step size. Furthermore, it also creates a
discrete nonlinear diffusion scale space for any large time step. The semi-implicit method
greatly improves the convergence performance by reducing mask synthesis to successive
one-dimensional updates represented by tridiagonal linear equations [25].

3. Methods

This section presents our proposed stitching method completely. Aiming at the
problems of inaccurate matching and obvious splicing seams in stitched images, we propose
an efficacious stitching method based on color difference and an improved KAZE with a fast
guided filter. Figure 1 describes the overall process of the proposed method. Allowing for
the phenomenon that feature points detected by KAZE are commonly large and intensive,
we introduce a fast guide filter which uses one image as a guide map to filter the other image.
This method can efficiently diminish the mismatching point pairs with preservation of
original visual features. During feature matching, the KAZE algorithm based on RANSAC
is utilized to match the feature points which further eliminates the mismatched points.
Since the color and luminance of the images may be different, there are several clear seams
in the stitching result. In order to improve the splicing effect, we produce a compensation
method based on color and brightness to calculate the color difference in the overlapping
area. Then, the obtained local color and luminance compensation values are applied to the
overall image to be spliced. In addition, our proposed method can realize the stitching of
multiple images. In order to avoid excessive variation, we use the middle image as the
reference image to warp the images.

3.1. Fast Guided Filtering

The first image is imported as a guide map to repair the texture information in the
other image. The purpose of introducing fast guided filtering is to decline the mismatch rate
of the KAZE algorithm. Here, we select a window size of 8 pixels and set the regularization
parameter that controls the smoothness level to 0.01. The sampling ratio is set to four pixels
in the fast guided filter. Figure 2 shows the results of fast guided filtering.
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Figure 2. (a) is the original image; (b) is the guide image; (c) is the binary image without filtering;
(d) is the filtered binary image.

Figure 2a,b contains input images, where (a) is the original image and (b) is the guide
image. The fast guided filter filters redundant information by analyzing common textures
and spatial features in both the original image and guide image. Additionally, then the fast
guided filter can restore the boundaries while smoothing the original image by the guide
map. This method greatly reduces the number of feature matching pairs, which results in a
lower mismatch rate. After guided filtering, a lot of invalid information in the image can be
filtered out, which widely improves the iterative efficiency during matching. At the same
time, it can also reduce the mismatch rate to a certain extent.

3.2. KAZE Algorithm Based on RANSAC

Both the SIFT algorithm and the SURF algorithm detect feature points in a linear scale
space, which can notably cause blurred boundaries and loss of detail. The KAZE algorithm
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detects feature points in the nonlinear scale space by constructing the nonlinear scale space,
which retains more image detail. In the KAZE algorithm, AOS technology and variable
transfer diffusion are used to establish a nonlinear scale space for the input images. Then,
the 2D features of interest that exhibit the maximum value of scale-normalized determinant
detection of Hessian response are detected by the nonlinear scale space. Finally, the scale
and rotation invariance scriptors considering the first-order image derivatives are obtained
through calculating the principal direction of the key point.

We introduce the RANSAC algorithm on the basis of the traditional KAZE algorithm,
which can further eliminate mismatched point pairs. The flow of the KAZE algorithm
based on RANSAC is shown in Figure 3.
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3.2.1. Construction of Nonlinear Scale Space

The KAZE algorithm constructs a nonlinear scale space through nonlinear diffusion
filtering and the AOS algorithm [26]. The scale of KAZE features increases logarithmically.
Each level of the KAZE algorithm adopts the same resolution as the original image. Accord-
ing to the principle of the difference of Gaussian (DoG) pyramid model [27], each group
needs S + 2 layers of images to detect the extreme points of S scales. Then, the parameter
of scale space, θ, can be described as follows:

θ(o, s) = θ02o+ s
S , o ∈ [0, 1, . . . , O− 1], s ∈ [0, 1, . . . , S + 2], (10)

where θ0 is the baseline scale, o is the index of the group octave and S represents the
index of the intra-group layer. The scale parameters of key points are calculated according
to the group of key points and the number of layers in the group in combination with
Equation (10).

The scale parameters of each layer in the group for constructing the Gaussian pyramid
are calculated according to the following formulas:

θ(s) =

√
(rsθ0)

2 − (rs−1θ0)
2, (11)

r = 2
1
S , (12)

From the above formulas, the scale parameters of the same layer in different groups
are the same. The scale calculation formula of a layer of images in the group is shown in
Equation (13).

θ(s) = θ02
s
S , s ∈ [0, 1, . . . , S + 2], (13)

To ensure the continuity of the scale space, the first image of a group is obtained by
sampling the penultimate layer of the previous group. We assume that the initial scale of
the first group is θ. Then, the scale parameters of each layer in the first group are θ, rθ, r2θ

and so on. The scale of the penultimate layer can be defined as follows:

rsθ = 2θ, (14)

Since the nonlinear diffusion filter model is based on time, it is necessary to convert
the scale parameters into evolution time. We suppose that the standard deviation used in
Gaussian scale space is σ. Then, the convolution of the Gaussian is equivalent to filtering
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the image with a duration of t = σ2/2. According to a set of evolution time, all images in
the nonlinear scale space can be obtained by the AOS algorithm as follows:

Li+1 = [I− (ti+1 − ti)
m

∑
i = 1

Ai(Li)]−1Li, (15)

3.2.2. Detection and Location of Feature Points

The feature points are obtained by seeking the local maximum points of the Hessian
determinant normalized by different scales. For multi-scale feature detection, we normalize
the set of differential operators for scale:

LHessian = θ2(LxxLyy − L2
xy), (16)

where Lxx and Lyy are the second-order horizontal derivative and vertical derivative,
respectively, and Lxy expresses the second-order cross derivative. For the filtered image set
in a nonlinear scale space, we analyze the response of the detector at different scale levels
θi. The maximum values of scale and spatial position are searched in all filtered images
except i = 0 and i = N. Then, we check the response in a 3× 3 pixels window to quickly
find the maximum value.

As shown in Figure 4, each feature point is compared with 26 pixel points from the
same layer and two adjacent layers. All pixels are traversed in this way until the maximum
point is found. The derivative is calculated by the Taylor expression.

L(x) = L + (
∂L
∂x

)Tx +
xT

2
(

∂2L
∂2x

)x, (17)
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We take the derivative of the above equation and make it equal to zero. Then, the
solution can be obtained by the following.

x̂ = (
∂2L
∂x2 )

−1 ∂L
∂x

, (18)

L(X̂) = L +
1
2
(

∂L
∂x

)TX̂, (19)

One of the feature points that meets L(X̂) ≥ T is selected as the key point.

3.2.3. Determination of Main Direction

Assuming that the scale parameter of the characteristic point is θi, the search radius
is set to 6θi. We make six 60 degree sector regions in this radius and count the sum of
Haar wavelet features in each sector region. The direction with the largest sum of wavelet
features is the main direction.



Sensors 2023, 23, 4583 8 of 17

3.2.4. Generation of Feature Descriptors

For feature points whose scale parameter is θi, we take a window of 24θi × 24θi in
the gradient image centered on the feature point. Then, the window is divided into 4 × 4
sub-regions with a size of 9θi × 9θi. Adjacent sub-areas have an overlapping zone with a
width of 2θi. In the process of calculating the sub-region description vector, a Gaussian
kernel with a weight of θ1 = 2.5θi is used for each sub-region to obtain the description
vector as Equation (20):

dv = (∑ Lx, ∑ Ly, ∑|Lx|, ∑
∣∣Ly
∣∣), (20)

After that, the vector dv of each sub-region is weighted by another 4 × 4 Gaussian
window where θ2 = 1.5θi. Finally, a 64-dimensional description vector is attained through
normalization processing.

3.2.5. Eliminate Mismatched Point Pairs

In the case of information loss caused by image blur, noise interference and compres-
sion reconstruction, the robustness of KAZE feature point detection is significantly better
than other features. In addition, the nonlinear scale space does not cause boundary blurring
and detail loss compared to the linear scale space. However, the matching of KAZE features
is sensitive to the setting of parameters, which can easily prompt mismatching. Aiming
at the problem of excessive concentration and mismatch of feature points, the RANSAC
method is introduced to effectively eliminate mismatched points. Firstly, KAZE feature
matching is performed on the previous input image and the filtered image. Additionally,
then RANSAC algorithm is applied to eliminate the mismatched point pairs.

The RANSAC algorithm is used to find an optimal homography matrix. The standard-
ized matrix satisfies Equation (21).

s

x′

y′

1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

x
y
1

, (21)

To calculate the homography matrix, we randomly extract four samples from the
matching dataset which are not collinear. Then, the model is utilized for all datasets to
calculate the number of points and the projection error. If the model is optimal, the loss
function is the smallest. The loss function can be calculated by Equation (22).

n

∑
i = 1

x′i
h11xi + h12yi + h13

h31xi + h32yi + h33
+ (y′i

h21xi + h22yi + h23

h31xi + h32yi + h33
)2, (22)

The process of the RANSAC algorithm is shown in Algorithm 1.

Algorithm 1: The process of RANSAC

Input: The feature point pair S of the image to be spliced and the maximum iteration number k.
Output: Remove the feature point pair D of mismatched point pairs.
1: S->D.
2: Repeat:
3: Randomly extract four sample data from all feature point pairs detected, which cannot be
collinear.
4: Use Equations (21) and (22) to calculate the transformation matrix H, and record it as model M.
5: Calculate the projection error between all data in the dataset and model M. If the error is less
than the threshold, add the interior point set I.
6: If the number of elements of the current interior point set I is greater than the optimal interior
point set I_ Best, update I_ Best = I, update the number of iterations at the same time
k =

log(1−p)
log(1−ωm)

.
7: Until iterations are greater than the iteration number k.
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The iteration number k is constantly updated rather than fixed when it is not greater
than the maximum iteration number. The formula for calculation of the iteration number is
as follows:

k =
log(1− p)

log(1−ωm)
, (23)

where p expresses the confidence level,ω is the proportion of the interior point and m is
the minimum number of samples required to calculate the model.

The RANSAC algorithm performs precise matching of feature points through the
above iterative process, which effectively eliminates mismatched point pairs. The inner
point pairs obtained by the method are the most advantageous pairs. The matching
accuracy is the foundation for accurately evaluating warped equations. If there are many
mismatched pairs, it is easy for problems such as ghosting and distortion to occur in the
splicing result.

3.3. Color Difference Compensation

The luminance and color of the image to be stitched may be uneven, which can easily
result in obvious stitching seams in the stitching result. To improve this problem, we put
forward a color difference compensation method. The process is shown in Figure 5.
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We calculate the color difference and luminance difference of the overlapping area
of the two distorted images. Here, we chose the LAB color model. The average color
difference is calculated as follows:

Lavg =
1

n− 1

n

∑
i = 1

(Li1 − Li2), (24)

Aavg =
1

n− 1

n

∑
i = 1

(Ai1 −Ai2), (25)

Bavg =
1

n− 1

n

∑
i = 1

(Bi1 − Bi2), (26)

where Lavg represents the average brightness difference, Li1 is the brightness of the overlap-
ping area of the first image and Li2 is the brightness of the overlapping area of the second
image. Similarly, Aavg and Bavg are the average color difference, Ai1 and Bi1 are the colors
of the overlapping area of the first image and Ai2 and Bi2 are the colors of the overlapping
area of the second image. We chose the image with the higher brightness as the standard to
compensate for the global brightness and color of another image. Finally, the compensated
distorted image is fused to obtain the final mosaic image. Figure 6 shows the original
images and Figure 7 shows the comparison of color compensated and uncompensated
splicing results.
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Figure 7. (a) Mosaic image without color compensation. (b) Mosaic image with color compensation.

It can be seen from the figure that the stitching effect after color compensation is
smoother. Not only does the stitching result have no obvious seams, but also has an
improved uniformity.

4. Experiments

This section introduces some experiments to evaluate our proposed splicing method.
The images used in the experiment are mainly from the ground truth database of the Uni-
versity of Washington [28] and the USI-SIPI image database of the University of Southern
California [29]. The ground truth database of the University of Washington addresses
the need for experimental data to quantitatively evaluate emerging algorithms. The high-
quality and high-resolution color images in the database represent valuable extended
duration digitized footage to those interested in driving scenarios or ego-motion. The
images in the USI-SIPI image database of the University of Southern California have been
provided for research purposes. The USI-SIPI image database contains multiple types of
image sets, including texture images, aerial images, miscellaneous images and sequence
images. Most of the material was scanned many years ago in the research group from a
variety of sources.

At the same time, all test methods are run on a 2.60 GHz CPU with 16 GB RAM under
the same experimental settings in this paper. In order to better evaluate the algorithm, we
compared subjective images and quantitative evaluation. We compare the results with
several popular splicing methods.

4.1. Intuitive Effect

We took a group of images in the USI-SIPI image database of the University of Southern
California as an example to compare our method with SURF, BRISK, Harris, MinEigen,
MSER and ORB matching algorithms. The splicing effect is shown in Table 1.
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Table 1. Splicing effect.

Methods Match Figure Stitched Image

SURF
[9]
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Table 1. Cont.

Methods Match Figure Stitched Image

Our method
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The upper right corner of the stitched image in the table shows a magnification of the
area marked in blue. It is not difficult to see from the table that the proposed algorithm is
not only better than other algorithms regarding detail, but also more uniform in the color
and brightness of the mosaic image. As shown in the red marked area in the table, the
stitching method we proposed has no obvious stitching seams, while other algorithms have
several obvious stitching seams.

In addition, our method can be applied to multiple image stitching. We selected
multiple UAV images from the image library, and the splicing effect is shown in Figure 8.
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4.2. Quantitative Evaluation

In order to effectively evaluate the effectiveness of the algorithm, we quantitatively
evaluated the above algorithms from four aspects: the number of matching pairs, the
correct matching rate, the root mean square error (RMSE) and the mean absolute error
(MAE) [30–32].

Assuming that the total number of matches is N and the correct matching logarithm is
A, the correct matching rate can be defined as Equation (27).

Accurancy =
A
N
× 100%, (27)

We randomly selected eight groups (Table 2) of data from the two databases for feature
matching. The table shows the matching logarithms and the matching accuracy results of
several comparison algorithms.

Table 2. The results of a comparison of different algorithms.

Data Estimate SURF BRASK MSER MinEigen Harris ORB Proposed

Data1
Matching pairs 69 14 20 32 19 101 267

Accuracy 89.85% 100% 90.00% 96.87% 100% 99.01% 98.50%

Data2
Matching pairs 123 71 19 68 36 321 243

Accuracy 99.18% 98.59% 94.73%8 100% 100% 99.38% 99.59%

Data3
Matching pairs 205 109 51 125 87 771 606

Accuracy 98.54% 99.08% 96.08% 100% 97.70% 99.48% 100%

Data4
Matching pairs 474 231 135 232 157 2348 1280

Accuracy 99.36% 98.70% 95.56% 98.28% 98.73% 99.32% 99.38%

Data5
Matching pairs 61 38 7 39 22 167 148

Accuracy 90.16% 100% 71.43% 100% 95.45% 98.80% 100%

Data6
Matching pairs 39 15 10 29 19 133 154

Accuracy 92.31% 100% 100% 96.55% 100% 99.93% 99.35%

Data7
Matching pairs 564 266 79 398 233 3112 1242

Accuracy 97.69% 99.25% 96.20% 99.50% 98.71% 99.94% 100%

Data8
Matching pairs 154 44 25 104 54 440 212

Accuracy 94.81% 88.64% 76.00% 91.35% 92.59% 97.95% 98.11%

It can be seen from the above table that the extent of feature matching based on ORB is
the largest. Although the overall matching of the ORB is relatively stable, the matching rate
is lower than the proposed method in this paper. Other comparison algorithms detect fewer
feature points. Even though other algorithms have high matching rates for individual
data, their performance in terms of the number of feature points, matching accuracy and
stability is poor. The improved KAZE algorithm based on a fast guided filter is second
only to the ORB algorithm in the number of feature matching pairs. Our proposed method
further filters out the mismatched point pairs, thereby improving the matching efficiency
and matching stability.

In order to judge the stability of the matching algorithm more intuitively, we compared
the accuracy of several algorithms in a line chart (Figure 9).

The red color in the figure shows the matching accuracy of our proposed algorithm.
It is not difficult to see from the figure that the algorithm we proposed is not only more
accurate, but also more stable.
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For two images, I1 and I2, to be spliced, given N matching pairs (pi1 and pi2), where
i = 1, 2, N, the RMSE and the MAE are defined as follows:

RMSE(I, I′) =

√√√√ 1
N

N

∑
i = 1

(f(pi)− p′i)
2, (28)

MAE(I, I′) =
1
N

N

∑
i = 1

∣∣f(pi)− p′i
∣∣, (29)

Additionally, taking the selected eight groups (Table 3) of data as an example for
splicing, the table shows the comparison results of the RMSE and the MAE of several
different algorithms.

Table 3. The comparison results of the RMSE and the MAE of different algorithms.

Data Estimate SURF BRASK MSER MinEigen Harris ORB Proposed

Data1
RMSE 0.1037 0.1354 0.1301 0.1321 0.1309 0.1261 0.1237
MAE 0.0759 0.1157 0.1051 0.1060 0.1096 0.0935 0.0935

Data2
RMSE 0.0917 0.1367 0.0973 0.1173 0.1185 0.1099 0.0797
MAE 0.0671 0.0933 0.0819 0.0916 0.0846 0.0833 0.0649

Data3
RMSE 0.1285 0.1439 0.1386 0.1738 0.1727 0.1831 0.1283
MAE 0.0992 0.1155 0.1243 0.1370 0.1387 0.1505 0.0999

Data4
RMSE 0.0920 0.0946 0.0966 0.1616 0.1734 0.1417 0.0903
MAE 0.0592 0.0655 0.0597 0.1124 0.1194 0.0905 0.0545

Data5
RMSE 0.0776 0.0895 0.2573 0.0867 0.8250 0.1169 0.0760
MAE 0.0588 0.0650 0.1305 0.0708 0.0717 0.0769 0.0586

Data6
RMSE 0.0539 0.0713 0.0562 0.0599 0.0482 0.0691 0.0417
MAE 0.0398 0.0510 0.0467 0.0429 0.0394 0.0458 0.0302

Data7
RMSE 0.1074 0.1120 0.1386 0.1392 0.1222 0.1494 0.1038
MAE 0.0847 0.0888 0.1084 0.1040 0.0947 0.1075 0.0842

Data8
RMSE 0.0705 0.0719 0.0400 0.1139 0.1047 0.0994 0.0701
MAE 0.0494 0.0496 0.0345 0.0777 0.0812 0.0666 0.0447
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The table shows that the RMSE and the MAE values of our proposed method are
lower. The overall stitching effect is better than other stitching algorithms.

In addition, we also compared the processing time of the proposed algorithm with
other algorithms. The result shows that the processing time of the proposed algorithm is
similar to that of other algorithms. The comparison results of processing time are shown in
Table 4.

Table 4. The comparison results of processing time of different algorithms.

Data SURF BRASK MSER MinEigen Harris ORB Proposed

Data1 1.226 s 1.681 s 1.456 s 1.772 s 1.354 s 1.879 s 1.798 s

Data2 2.239 s 3.001 s 2.489 s 2.096 s 2.204 s 5.370 s 3.232 s

Data3 1.168 s 1.444 s 1.549 s 2.238 s 1.179 s 2.523 s 2.389 s

Data4 1.219 s 1.341 s 1.318 s 1.996 s 1.487 s 2.653 s 1.979 s

Data5 1.149 s 1.362 s 1.251 s 1.359 s 1.160 s 2.568 s 1.356 s

Data6 1.715 s 2.406 s 1.998 s 1.337 s 1.181 s 1.661 s 1.509 s

Data7 1.089 s 1.964 s 1.981 s 1.549 s 1.347 s 2.017 s 1.973 s

Data8 2.147 s 3.010 s 2.984 s 2.471 s 2.309 s 4.175 s 2.992 s

It is not difficult to draw the conclusion from Table 4 that the processing time of the
SURF algorithm is relatively low and the ORB algorithm is the most time consuming among
the studied algorithms. The proposed method has similar processing times compared to
other methods.

5. Conclusions

In this paper, we propose an improved image stitching algorithm based on color
difference and KAZE with a fast guided filter, which solves the problems of a high mismatch
rate in feature matching and obvious seams in the stitched image. In this paper, a fast guide
filter is introduced to reduce the mismatch rate before matching. The KAZE algorithm
based on RANSAC is used for feature matching of the image to be spliced, and the matrix
transformation of the image to be spliced is performed. Then, the color difference and
brightness difference of the overlapping area of the image to be spliced is calculated, and
overall adjustments of the image to be spliced are made so as to improve the nonuniformity
of the spliced image. Finally, the converted image is fused to obtain the stitched image.

Our proposed method was evaluated via the resulting visual image and quantitative
value of the images of the ground truth database and USI-SIPI image database and com-
pared with other popular algorithms. On the one hand, the stitching method we proposed
can achieve smoother and more detailed stitched images. On the other hand, the algorithm
proposed in this paper is superior to other algorithms in terms of matching accuracy, the
RMSE and the MAE.

The proposed stitching method in this paper can be used in many fields, such as
UAV panoramic stitching and virtual reality. However, the limitations of our proposed
method are as follows: firstly, the method proposed in this paper is prone to ghosting when
splicing moving objects in close proximity. Secondly, the proposed algorithm has a similar
processing time compared to other algorithms, but cannot achieve the effect of real-time
stitching. In the future, we will further improve the efficiency of image stitching.
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