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Abstract: This paper proposes a novel torque measurement and control technique for cycling-
assisted electric bikes (E-bikes) considering various external load conditions. For assisted E-bikes,
the electromagnetic torque from the permanent magnet (PM) motor can be controlled to reduce
the pedaling torque generated by the human rider. However, the overall cycling torque is affected
by external loads, including the cyclist’s weight, wind resistance, rolling resistance, and the road
slope. With knowledge of these external loads, the motor torque can be adaptively controlled for
these riding conditions. In this paper, key E-bike riding parameters are analyzed to find a suitable
assisted motor torque. Four different motor torque control methods are proposed to improve the
E-bike’s dynamic response with minimal variation in acceleration. It is concluded that the wheel
acceleration is important to determine the E-bike’s synergetic torque performance. A comprehensive
E-bike simulation environment is developed with MATLAB/Simulink to evaluate these adaptive
torque control methods. In this paper, an integrated E-bike sensor hardware system is built to verify
the proposed adaptive torque control.

Keywords: electric-assisted bicycle; permanent magnet motor; two-wheeler simulation; E-bike
pedaling power; E-bike cycling quality

1. Introduction

E-bikes have become popular for commuters due to the progress in AC motors and
battery modules. By adding high-torque-density PM motors and lithium-ion batteries,
E-bikes can provide more cycling power under the same weight. In general, electric
bikes are categorized into two different systems. These are throttle-manipulated E-bikes
and cycling-assisted E-bikes [1]. Considering throttle E-bikes, the motor torque output is
controlled by the throttle on the handlebar. Because the throttle is directly manipulated
by cyclists, safety issues can occur once the motor torque is sufficiently high. By contrast,
cycling-assisted E-bikes automatically provide the motor torque, and the output value is
dependent on the human pedaling torque. Compared to throttle E-bikes, cycling-assisted
E-bikes have the advantage of safe riding behavior. By properly designing the motor
torque, the human pedaling torque can be greatly reduced, especially under climbing and
acceleration conditions.

It is not an easy task to determine suitable motor-assisted torques among all the
different load conditions. In [2], a constant torque control strategy is proposed for E-bikes.
Considering different road conditions, three to five different motor torque levels can be
manually selected. In addition to being able to manually control the motor torque level,
an electric bicycle can apply asymmetric assistance to the crank. The provision of motor
torque at a specific crank angle has been proposed, which can aid patients with lower limb
asymmetric function, such as post-stroke patients, so that the pedaling torque of the target
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leg is reduced [3]. However, this fixed torque control might not be suitable for the cyclist,
considering pedaling torque variation.

In [4–7], an instantaneous pedaling torque waveform is analyzed. According to
the circular motion theory, the cyclist’s pedaling torque should be a rectified sinusoidal
waveform dependent on the bike pedal’s crank position. Under this effect, the motor
torque can be designed as a rectified sinusoidal waveform similar to the pedaling torque.
Compared to constant torque control, a smaller PM motor can be used to provide the same
assisted performance. The pedaling torque might not fully contribute to the E-bike’s wheel
torque. As reported in [8–14], an effective pedaling torque can be different depending on
different crank positions.

It has been noted that cycling quality is different with respect to the different physio-
logical factors of cyclists. The sources in [15–21] detail that cycling quality can be affected
by various factors. These include the cyclist’s sex, purpose, cadence, speed, acceleration,
vibration, experience, as well as the weather. Considering these factors, two platforms for
riding performance have been derived. One is a performance index called the rating of
perceived exertion (RPE), which was developed to command a suitable torque output [22],
and the other makes additional use of the rider’s ability level, the E-bike’s characteristics
(power, battery, weight), and the route profile (gradient and distance) to determine the
output torque of the assist motor. What is unique is that the latter is built as a social
platform. If the rider sets the motor’s output torque lower than the algorithm recommends,
the rider will be able to earn more rewards [23].

Instead of a motor torque for pedaling torque reduction, a motor-assisted torque
can also be implemented to achieve better physiological functions for the cyclist. In [24],
the motor torque was manipulated with respect to the cyclist’s heart rate for a better
physiological effect. However, this assisted method requires a high controller computation
burden. In addition, because the E-bike frame weight is expected to be low, the cyclist’s
weight and pedaling behavior might greatly affect the motor-assisted torque. In [25], the
overall cycling mechanical powers were compared with two different cyclists of different
weights: 95 kg and 50 kg. The resulting power consumption between the two cyclists
differed by more than 50%. In [26], a comprehensive monitoring system was developed.
This system integrates environmental factors [27,28], the cyclist’s heart rate [29,30] and
respiratory rate [31], power consumption [32] and electromyogram [33,34] information,
and journey time. Collecting data from the cloud can give the rider a reference indicator
to determine the motor power of the journey in order to retain a longer battery life. The
authors of [35] discuss the external load caused by the cyclist under climbing conditions.
A suitable cycling performance was determined with the knowledge of various climbing-
related load conditions. Instead of providing assisted torque, the recharge control can also
be used to store the cyclist’s pedal power for better battery usage [36,37]. During low cyclist
cadence, the stored mechanical power is returned for assisted torque to improve the cyclist’s
blood oxygen and physiological stability. It is noteworthy that the feedback-based motor
control can be implemented for assisted E-bike applications. The authors of [38] developed
an improved feedback controller based on differential equations. In addition, a predictive
feedback controller can be designed according to time-varying load conditions [39].

From a review of the existing references, key findings are summarized in Table 1.
The sources in [1,2,24,38,39] aim to design suitable torque controllers for assisted E-bikes;
however, no further analysis of the influence of the cyclist’s pedaling torque was addressed.
By contrast, [4–14] investigate the cyclist’s pedaling dynamic with no motor-assisted torque
assumed. Moreover, [15–23,25–35] focus on E-bike cycling performance with respect to
human behaviors, including heartbeat, gender, and weight. The authors of [40,41] further
evaluate recharge control for assisted motor output. Although several torque control
methods have been proposed for E-bikes, a comprehensive analysis of different control
methods is required with respect to various cycling load conditions.
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Table 1. Key findings of existing references.

Category References

Torque control for assisted E-bike [1,2,24,38,39]

Instantaneous pedaling torque waveform [4–7]

Pedaling torque component analysis [8–14]

Factors affecting riding [15–23,25–35]

Recharge control for assisted E-bike [36,37]

To overcome these limitations on existing E-bike assisted torque control, this paper’s
motivation is to find the best-suited assisted torque considering external loads. It is shown
that the overall cycling torque is affected by external loads, including the cyclist’s weight,
wind resistance, rolling resistance, and the road slope. Under these effects, the motor torque
should be controlled with respect to these riding conditions. Four torque control methods
are compared considering the dynamic effect on cycling torque and wheel acceleration. It
is concluded that the wheel acceleration is important to determine the overall synergetic
torque performance. The acceleration variation can be reduced by regulating the motor
torque with the opposite phase as the human pedaling torque. All these torque control
methods are evaluated with an E-bike simulation based on MATLAB/Simulink. An
experimental bench is built to verify these methods.

2. E-Bike Pedaling Dynamic

This section discusses a dynamic model for an assisted E-bike. The pedaling behavior
of cyclists is first discussed. After that, external disturbances’ torque loads are considered
for the development of a dynamic E-bike model.

2.1. Cyclist Pedaling Behavior

Figure 1a shows cyclist pedaling behavior during bike riding. Ideally, the cyclist’s legs
should be perpendicular to the horizontal ground. Under this effect, both of the cyclist’s
feet are aligned with the pedal’s central axis. In this case, only the pedaling vertical force
Fpy is generated. However, if the cyclist’s foot is not aligned with the pedal, the pedaling
horizontal force Fpx might result in the degradation of the overall cycling performance, e.g.,
a reduction in pedaling torque and vibration.
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Figure 1. Relationship between crank position and pedaling torque: (a) pedaling torque component F୮୷/F୮୶ and crank position; (b) pedaling torque with respect to the crank position (no horizontal 
pedal force is assumed for simplicity). 
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Figure 1. Relationship between crank position and pedaling torque: (a) pedaling torque component
Fpy/Fpx and crank position; (b) pedaling torque with respect to the crank position (no horizontal
pedal force is assumed for simplicity).

2.2. Pedal Crank Angle Effort

Figure 1a also illustrates the relationship between the pedaling force Fpy/Fpx and
the crank angle position. In general, the cyclist’s pedaling force can be categorized into
four different regions depending on the crank position. In Figure 1a, the bike is assumed to
move forward to the right-hand side. In this case, the pedaling force in the first and second
quarters are contributed by the cyclist’s right foot.
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In Figure 1b, the first quarter is defined for a pedal position between 0–90◦. Ideally, at
a 0◦ crank position, the vertical force Fpy cannot contribute to the pedaling torque Tpdl. As a
result, the overall Tpdl should be zero at 0◦, as seen in Figure 1b. By contrast, at 90◦, a peak
Tpdl should appear, because Fpy is perpendicular to the crank. Similar cyclist pedaling
behavior can be found in the second quarter.

Instead of the right foot reflecting the pedaling torque in the first and second quarters,
the pedaling torque is generated by the left foot during the third and fourth quarters.
Considering the third quarter for a crank position between 180–270◦ in Figure 1a, the corre-
sponding pedaling torque Tpdl is illustrated in Figure 1b. A similar pedaling torque Tpdl
can be analyzed in the fourth quarter. It is seen that the pedaling torque Tpdl is equivalent
to a sinusoidal waveform after the rectifier. The torque equation is formulated by:

Tpdl =
∣∣∣Fpy × Rcrank × sin θcrank

∣∣∣ (1)

where Rcrank and θcrank are, respectively, the crank rotating radius and position. For the
torque equation in (1), an ideal circular motion must be assumed, in which no horizontal
force Fpx is generated by the cyclist. However, depending on different cyclist behaviors,
Fpx might occur considering the external loads during cycling, resulting in a reduction in
riding efficiency.

2.3. Parameters of Analyzed E-Bike

For assisted E-bikes, the total synergetic cycling torque consists of the cyclist’s pedaling
torque and the motor-assisted torque. Table 2 lists the key parameters for the analyzed
E-bike. In this table, the assisted motor is assumed to be installed in the rear wheel. This
in-wheel motor can directly drive the wheel, avoiding torque loss due to the transmission
and gear.

Table 2. Assisted E-bike model parameters.

Parameter Value

Mass of E-bike (Me) 25 kg

Mass of cyclist (Mc) 70 or 50 kg

Wheel inertia (Jw) 5.8 or 4.6 kg/m2

Bike wheel radius (Rw) 0.35 m

Gravitational constant (g) 9.81 m/s2

Density of air (ρ) 1.2258 kg/m3

Aerodynamic drag coefficient (Cd) [40] 0.4

Frontal area (A) 0.645 m2

Maximum cadence per minute 30 cpm

Transmission gear ratio (Kgear) 44/14

Tire pressure (PT) 32 psi

3. E-Bike Dynamics

This section analyzes the wheel angular speedωw and acceleration αw of the E-bike
considering different torque control methods with external loads. An analytical E-bike
model in Figure 2 is developed to investigate the ωw and αw performance of the E-bike
under these external loads. These external loads include the wheel friction torque Troll, the
windage torque Twind, and the climbing-reflected torque Tslope. It can be shown that:

Tdis = Troll + Twind + Tslope (2)
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where Tdis is the summation of all external loads. In addition, the road slope angle θslope,
the angular speed and accelerationωw and αw, the tire pressure PT, the bike wheel radius
R, the wind speed Vwind, the E-bike mass Me, the cyclist mass Mc, the gravitational constant
g, the density of air ρ, the aerodynamic drag coefficient Cd, and the frontal area A are all
parameters used for the calculation of external loads. The maximum climbing angle of the
E-bike can also be obtained under a specific value for Tpdl and TM.
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3.1. Synergetic Torque

In this paper, a two-degree-of-freedom E-bike model is realized, in which the E-
bike is assumed to move forward or backward with different climbing angles. Figure 3
illustrates the corresponding E-bike free-body diagram considering these forces and torques
in Figure 2. Considering the rigid body assumption in Figure 3, the synergetic torque Ttotal
combines the cyclist pedaling torque Tpdl and the motor-assisted torque TM. It can be
calculated by:

Ttotal= Tpdl ×Kgear + TM (3)

Ttotal is assumed to drive the rear wheel. It is noted that the pedaling torque generated
by the cyclist is assumed to be a rectified sinusoidal torque, illustrated in Figure 1b. Under
this effect, the synergetic Ttotal can be either the constant torque or the sinusoidal torque,
depending on the manipulation of the motor torque TM.

3.2. Wheel Friction Torque

This section discusses the wheel friction-reflected torque load. Considering the wheel
friction, rolling without slipping is typically assumed for the wheel’s rotation. In general,
the wheel friction might result in the friction-reflected torque Troll on the overall cycling
torque output. This is given by:

Troll = mg× cos θslope ×Kroll × Rw (4)
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where mg is the equivalent mass including the cyclist and E-bike, and θslope is the road
slope angle in Figure 3. In addition, R is the E-bike rolling radius in Table 2. Kroll is the
resistance coefficient affected by the road’s surface shape, the tire’s structure, material, and
pressure, as well as the wheel speed.
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In addition, the rolling resistance coefficient Kroll is strongly influenced by tire pressure.
The tire deformation is visible with considerable rolling resistance when the tire pressure is
low [41,42]. In general, the resistance coefficient is calculated by:

Kroll = 0.0085 + (
0.261

PT
) + (

2.306× 10−5 × (ωw × Rw)
2

PT
) (5)

whereωw is the wheel angular speed, and PT is the tire pressure.
Figure 4 illustrates Troll versus the wheel speed. In this simulation, a constant accelera-

tion of 1.334 rad/s2 is assumed, in which the wheel speed is increased from 0 to 20 rad/s
within 15 s. Two cyclists, weighing 70 kg and 50 kg, are compared. Although the friction
torque Troll is slightly increased as the wheel speed increases, the influence of the cyclist’s
weight is more visible than the wheel speed. Based on Figure 4, it can be concluded that
Troll is mainly dominated by the cyclist’s weight. Thus, the motor-assisted torque TM can
be manipulated depending on the current cyclist’s weight.

3.3. Windage Torque

This section explains the windage-reflected torque. Instead of the wheel friction torque,
the airflow can cause aerodynamic resistance on both cyclists and E-bikes. On this basis,
the airflow results in the windage torque Twind, which is shown to be:

Vbike = ωw × Rw

If Vbike −Vwind> 0

Twind= 0.5× ρ×A×Cd × (Vbike −Vwind)
2 × Rw

else if Vbike −Vwind < 0

Twind= −0.5× ρ×A×Cd × (Vbike −Vwind)
2 × Rw

(6)



Sensors 2023, 23, 4657 7 of 29

where Vbike is calculated by the wheel angular speed, and Vwind is the corresponding
wind speed depending on the airflow condition. In addition, ρ is the air density, Cd is the
aerodynamic drag coefficient, and A is the frontal area of airflow. For the analyzed E-bike
in this paper, these three parameters are listed in Table 2.
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Figure 4. Analysis of wheel friction torque in E-bike.

Figure 5 depicts the windage torque as the E-bike’s speed increases. In this calculation,
a constant 1.334 rad/s2 acceleration is assumed. Within 15 s, the wheel angular speed is
increased from 0 to 20 rad/s. In the case of no wind, the windage torque is equivalent
to a quadratic function proportional to v2

bike. Even at zero wheel speed Vbike = 0, there is
a windage Twind for the headwind with Vwind = 10 km/h. However, Twind is only 2 Nm
based on the calculated parameters in Table 2. The influence of the windage Twind is
relatively less than the friction torque analyzed in Figure 4.
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where Vbike is calculated by the wheel angular speed, and Vwind is the corresponding wind 
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In the case of a tailwind with Vwind = −10 km/h, the airflow can be used to generate
an assisted torque. However, as shown in (5), once Vbike exceeds Vwind, the assisted
torque is converted to resistive torque. Nevertheless, the Twind is sufficiently low during
tailwind conditions.

3.4. Climbing-Reflected Torque

It is noted that an additional torque load is present in E-bikes during trekking condi-
tions. As seen from the force diagram in Figure 3, the weight of the E-bike and cyclist lead
to the climbing-reflected torque Tslope once the slope angle θslope 6= 0. Depending on the
slope angle, the Tslope can be shown to be:

Tslope= mg× sin θslope × Rw (7)
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Figure 6 investigates different values of the Tslope with respect to the slope angle.
Different from Troll in (4) and Twind in (6), the climbing torque Tslope is only dependent on
the slope angle and cyclist weight. Comparing two different cyclists of 70 kg and 50 kg
on the same bike, the heavier cyclist results in a higher Tslope. However, compared to the
Troll simulation in Figure 4, Tslope is mainly affected by the slope angle θslope instead of the
cyclist’s weight. As a result, the motor-assisted torque should be manipulated with respect
to the slope angle θslope for different E-bike trekking conditions.
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3.5. E-Bike Dynamic Model

After obtaining three external torque loads analyzed in Figure 3, the actual wheel
driving torque Tdrv, the wheel angular acceleration αw, and the speedωw of the E-bike can
be respectively modeled by (8) and (9):

Tdrv = Ttotal − Tdis (8)

αw =
Tdrv
Jw

andωw =
t

∑
t=0
αw(t)dt +ωw(0) (9)

where Jw is the corresponding wheel inertia. Considering the E-bike with different cyclist
weights, Jw can be modeled by:

Jw =
1
2
× (M e+Mc

)
× Rw

2 (10)

In (10), Me and Mc are, respectively, the weight of the E-bike and the cyclist.
For the analyzed E-bike system, the external torque loads (4)~(7) are all modeled

as torque disturbances Tdis. It is noted that the torque control for this E-bike system is
equivalent to an open-loop control system in this paper. As seen in Figure 7, the total
torque input Ttotal consists of the cyclist pedaling torque Tpdl and the motor torque TM. In
this paper, the motor torque magnitude is manually adjusted. When the external load is
increased, the cyclist is expected to generate more pedaling torque as well. In this case,
the overall control stability of the assisted E-bike system is only dependent on the motor
torque regulation.

Figure 7 also illustrates the corresponding torque regulation. Based on the electromag-
netic energy conversion, the motor torque can be modeled by (11) in the S-domain:

TM(s)
TM
∗(s)

=
iq(s)
iq∗(s)

=

Kpqs+Kiq
s

1
Ls+R

1 +
Kpqs+Kiq

s
1

Ls+R

(11)
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where id, iq are the stator current of the d- and q-axis. Vd, Vq are the stator voltage of the d-
and q-axis, Kpd and Kpq are the corresponding proportional gains, and Kid and Kiq are the
corresponding integral gains.
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The motor torque control is achieved based on the current field-oriented control [43].
The d-axis current id is controlled to be zero, and the torque TM is directly proportional
to the q-axis current iq. Regarding the torque controller design, pole/zero cancellation
technology is used. PI controller gains are designed to be equal to:

Kpd = Kpq = L̂

Kid = Kiq = R̂
(12)

where L̂ and R̂ are, respectively, the estimated motor inductance and resistance parameters.
Assuming ideal parameter estimation, the resulting transfer function can be modified by:

TM(s)
TM
∗(s)

=
Wb

s + Wb

∣∣∣∣ Kp= L̂
Ki= R̂

(13)
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Based on this controller design, the motor torque control can be stably maintained
under external loads. In the future, a feedback-based, motor-assisted torque regulation
similar to the unmanned helicopter in [44] will be investigated. Since the external friction
and windage torque load are time-variant, the feedback linearization approach can be
a potential solution.

4. Proposed E-Bike Torque Control

This section shows the simulation results for different torque control methods con-
sidering prior external loads including the wheel friction torque, windage torque, and
climbing-reflected torque. Three key cycling performance indices are used to evaluate
different motor torque controllers. These indices are the total torque output Ttotal, wheel
acceleration αw, and speedωw.

Key simulation parameters are listed in Table 2. The E-bike transmission gear ratio is 44
to 14 teeth, resulting in a gear ratio of 3:14. In the following simulation, MATLAB/Simulink
was used to establish a simulation model in which the ideal cyclist pedaling torque Tpdl in
Figure 1b is used. Figure 7 illustrates the control process of the E-bike model. Four motor
torque-assisted methods are implemented. These four assisted methods are individually
added to the original pedaling torque under the E-bike model in (3). After obtaining the
total synergetic torque Ttotal, the actual torque can be obtained under the influence of
three external load torques. The actual wheel driving torque Tdrv, angular acceleration
αw, and speedωw are obtained from Equations (8)–(10). It is noted that the E-bike cycling
performance can be evaluated based on the E-bike wheel speed ωw and acceleration
αw conditions.

4.1. No Motor-Assisted Torque (NMT)

Normal E-bike cycling without the motor-assisted torque is first analyzed. Figure 8
shows the corresponding pedaling torque based on the torque equation in (1). In this
simulation, the average pedaling torque is set at 30 Nm, with a cadence per minute of
30 cpm. The average pedaling torque transmitted to the wheel is 24.60 Nm.
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Figure 8. Simulation of pedaling torque versus time under 30 cpm cadence.

The simulation conditions include no wind, with a 0% slope and 70 kg cyclist weight.
For the wheel acceleration αw simulation in Figure 9a, the αw wheel acceleration waveform
is the same as the pedaling torque Tpdl, since αw is directly proportional to Tpdl. Consid-
ering the wheel inertia Jw = 5.80 kg/m2 with Mc = 70 kg, the average αw is 0.48 rad/s2

with a peak-to-peak acceleration ripple of 2.38 rad/s2. By contrast, a wheel speed ωw
simulation based on (8) is also analyzed in Figure 9b. The average speed is 7.69 rad/s,
with a 0.28 rad/s peak-to-peak speed ripple. The corresponding αw and ωw waveforms
in Figure 9 can be used as a benchmark to compare the different torque control methods
listed below.
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4.2. Constant Motor-Assisted Torque (CT)

In this section, a torque control method with a constant motor torque (CT) is applied.
Figure 10 compares TM, Tpdl, and Ttotal under the same 30 cpm cadence. The motor-rated
torque is 45 Nm. Considering the average pedaling torque after the transmission, the ratio
between TM and Tpdl is TM = 1.83 Tpdl. To easily compare different torque waveforms,
a zoom-in figure is also added in Figure 10 in this simulation.
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Figure 11a shows the αw for E-bike torque control with the CT method. Due to the
additional constant TM, the average αw is increased from 0.48 to 1.90 rad/s2. For the speed
simulation in Figure 11b, the average ωw is increased due to the additional Ttotal. It is
noteworthy that the ωw ripple is increased to 0.60 rad/s compared to NMT due to the
higher average αw based on (8). By applying the CT method, it is concluded that both the
average αw andωw can be increased for a better E-bike trekking performance. However,
the visible ripple inωw might degrade the cyclist’s riding experience.
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4.3. Same Phase as Pedaling Torque (SPPT)

Instead of the CT method, this section proposes a dynamic torque control method.
Under these conditions, the motor torque is manipulated by the same phase as the pedaling
torque (SPPT). Based on this proposed SPPT control method, the motor torque TM_SPPT is
manipulated by:

TM_SPPT = TM_rated ×
(

Tpdl

Tpdl_peak

)
(14)

where Tpdl and Tpdl_peak are, respectively, the instantaneous and peak value of the pedaling
torque, depending on the pedaling torque sensor performance. Further, TM_rated is the
rated motor torque.

Figure 12 demonstrates TM_SPPT, Tpdl, and Ttotal under the same 30 cpm cadence. Com-
paring TM_SPPT with the CT in Figure 10, it is seen that the average TM_SPPT can be smaller,
leading to better battery usage. However, Figure 13a demonstrates the corresponding αw
resulting from the SPPT method. Compared to αw based on the CT method in Figure 11a,
the average αw is reduced from 1.90 to 1.48 rad/s2, but with the ripple increased from 2.41
to 5.09 rad/s2. For theωw speed waveform in Figure 13b, a similar decline in performance
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is also observed. A detailed performance comparison between the CT and SPPT methods
will be explained in Section 4.6.
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4.4. Delay Phase as Pedaling Torque (DPPT)

This section proposes another dynamic torque control method. On this basis, the ripple
on the total torque can be reduced by manipulating the motor torque with a 90◦ delay
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phase as the pedaling torque (DPPT). Under this effect, the DPPT motor torque TM_DPPT is
formulated by:

TM_DPPT = TM_rated ×
(

Tpdl_d

Tpdl_peak

)
(15)

where Tpdl_d is a 90◦ delay torque with respect to the measured instantaneous Tpdl. For
real-time implementation, Tpdl_d can be obtained by:

Tpdl_d(90 ≤ θcrank ≤ 180) = Tpdl(0 ≤ θcrank ≤ 90)

Tpdl_d(180 ≤ θcrank ≤ 270) = Tpdl(90 ≤ θcrank ≤ 180)

Tpdl_d(270 ≤ θcrank ≤ 360) = Tpdl(90 ≤ θcrank ≤ 180)

Tpdl_d(0 ≤ θcrank ≤ 90) = Tpdl(270 ≤ θcrank ≤ 360)

(16)

It is noted that Tpdl_d can only be obtained after a 90◦ delay of θcrank. Due to this
limitation, the E-bike might not be able to provide the motor-assisted torque during the
initial startup. Nevertheless, the motor torque control can be operated after one-fourth of
the pedaling cycle.

Figure 14 compares TM_DPPT, Tpdl, and Ttotal under the same cadence and slope
situation. Since the motor torque magnitude is the same as the SPPT method, the average
total torque should be the same. More importantly, because of the lower torque ripple
for Ttotal in Figure 14, peak-to-peak ripples are decreased for αw in Figure 15a andωw in
Figure 15b. It is expected that a relatively comfortable cyclist performance is achieved.
However, in Figure 15, a certain amount of Ttotal ripple is still observed, because Tpdl
cannot be equal to the motor TM_DPPT. The Ttotal ripple should be increased due to the
increase in Tpdl under the same rated motor torque TM_rated. A detailed comparison of the
performance with the SPPT method will also be explained in Section 4.6.
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4.5. Compensation for the Gap in the Pedaling Torque (CGPT)

This section proposes a feedback-based dynamic torque control to improve the torque
ripple on the prior DPPT method. In this case, the motor torque aims to compensate for
the gap in the pedaling torque (CGPT). The corresponding CGPT motor torque TM_CGPT is
derived from:

TM_CGPT = TM_rated ×
(Tref−Tpdl

Tpdl_peak

)
if TM_CGPT < 0, TM_CGPT = 0

else TM_CGPT= TM_CGPT

(17)
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where Tref is a synergy torque reference. It can be determined by the previously mentioned
external load conditions. Based on the definition in (13), the manipulated motor torque
TM_CGPT is disabled when Tpdl is higher than Tref. By contrast, Ttotal can be the same as Tref
once Tpdl < Tref. Figure 16 shows the torque waveform using this CGPT method. Compared
to the prior torque control methods, the primary advantage is the lowest torque ripple.
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Figure 17a shows the corresponding acceleration based on the CGPT method under
the same simulation conditions. The αw ripple is only 0.84 rad/s2, which is also smaller
than 1.15 rad/s2, resulting from the prior DPPT control method. A smaller ωw ripple
performance can be observed in Figure 17b. However, since TM_CGPT is generated only
at a low Tpdl, a drawback is the reduced average speed in Figure 17b. Comparing CT
control with the highest averageωw for trekking, CGPT control is well suited for commuter
applications to maximize the E-bike’s battery usage.
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4.6. Performance Comparison

Table 3 compares different torque control methods with the same cycling time. These
include NMT, CT, SPPT, DPPT, and CGPT. The total synergetic torque, angular acceleration,
and speed with corresponding ripples are all compared. In this comparison, the cycling
time is the same as 30 s, leading to the difference in the αw andωw response. By contrast,
Table 4 compares these torque control methods to reach the same final speed. In Table 4,
the cycling time can be different depending on different torque methods. The key findings
can be summarized as follows:

(1) CT: The CT control method results in the highest αw andωw due to the highest motor
torque output. However, the ripples in αw are also the highest. This method is well
suited for trekking applications under visible external loads.

(2) SPPT and DPPT: The highest αw ripple is the result of the SPPT method. When the αw
ripple is much higher than in the NMT case, the cyclist may have an uncomfortable
experience. By contrast, for the DPPT method, a smaller αw ripple is achieved under
the same motor torque. Compared to SPPT control, the DPPT method can provide a
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comparable cycling experience as the original NMT. The DPPT method is well suited
for standard E-bike torque management for different load conditions.

(3) CGPT: Because the CGPT method generates the lowest motor torque, the resulting αw
ripple can be smaller than the original NMT condition. However, the lowest motor
output might degrade the E-bike’s acceleration performance. As seen in Table 4, CGPT
requires 18.72 s to reach a 15 rad/s final speed. By contrast, for CT control, only 4.72 s
is spent. It is concluded that the CGPT is well suited for commuting cyclists. This
control results in the best battery usage at the smallest αw ripple. It is especially well
suited for cyclists under a heavy daily urban traffic burden.

Table 3. Comparison of different assisted methods with the same cycling time.

Assisted Method NMT CT SPPT DPPT CGPTParameter

Average pedaling torque (Nm) 30 30 30 30 30

Average motor torque (Nm) N/A 45 27.91 27.91 5.37

Max motor torque (Nm) N/A 45 45 45 25

Speed ripple (rad/s) 0.28 0.60 0.55 0.15 0.10

Average speed (rad/s) 7.69 36.44 26.89 26.89 11.82

Acceleration ripple (rad/s2) 2.38 2.41 5.09 1.15 0.84

Average acceleration (rad/s2) 0.48 1.90 1.48 1.48 0.72

Cycling time (s) 30 30 30 30 30

Table 4. Comparison of different assisted methods to reach the same final speed.

Assisted Method NMT CT SPPT DPPT CGPTParameter

Average motor torque (Nm) N/A 45 27.91 27.91 5.37

Max motor torque (Nm) N/A 45 45 45 25

Final speed (rad/s) 15.00 15.00 15.00 15.00 15.00

Average acceleration (rad/s2) 0.48 3.18 2.19 2.19 0.80

Required time s) 31.32 4.72 6.86 6.86 18.72

5. Experiment

This section describes the experimental verification. Figure 18 shows a photograph
of the E-bike experimental test setup. The experiment is performed based on a 250 W
300 rpm permanent magnet (PM) AC motor. Field-oriented control (FOC) through the Hall
sensor position feedback is implemented. As seen in Figure 18, the PM motor is attached
to the rear wheel of the E-bike. Detailed PM motor specifications are listed in Table 5. It
should be noted that the experimental test setup for the E-bike is currently under laboratory
verification. At this time, power supply hardware is used for the E-bike’s power source to
provide a reliable DC voltage. The E-bike analyzed is based on a standard assisted E-bike
with 250 W electrical power. Considering the actual E-bike product in the future, a Li-ion
battery with 7 Amp hours can be selected to provide a comparable DC voltage.

Figure 19 illustrates the hardware setup and signal process for the E-bike torque
control experiment. All four different motor torque control methods are implemented
on a 32-bit microcontroller, TI-TMS320F28069. The interrupt service routine is designed
at 10 kHz, which is synchronous with the sampling frequency. In addition, the motor
drive inverter is selected with the TI-DRV8301 evaluation kit. On this basis, the E-bike
motor can be controlled through a six-switch pulse-width modulation inverter, as shown
in Figure 20. Figure 21 illustrates a photograph of the test motor drive inverter, the TI-
DRV8301 evaluation kit. This inverter kit can be easily integrated with the TI-TMS320F28069
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microcontroller used as a motor drive system. In this case, the motor-assisted torque can be
manipulated based on the desired torque command mentioned in Figure 7.
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For the PM motor control, three-phase pulse width modulation voltages are manip-
ulated by the controller for the motor to generate the desired torque output. Because the
FOC requires the instantaneous position for sinusoidal voltage control, zero-order hold
(ZOH) position interpolation [45–48] is used to improve the Hall-based position-sensing
resolution. As seen in (18), the position interpolation is performed every 60◦:

θ̂k(t) = θk−1 + ω̂k−1(tk − tk−1)
θk−1 ≤ θ̂k(t) ≤ θk−1 +

π
3

(18)

where θ̂k and θk−1 are, respectively, the estimated current motor position and the last
position measured by Hall sensors. Further, ω̂k−1 is the estimated speed based on prior
Hall sensor position information, and tk and tk−1 are, respectively, the current and last time
interval. The estimated speed ω̂k−1 can be obtained by:

ω̂k−1 =
π/3

∆tk−1
=

π/3
tk−1 − tk−2

(19)

In (19), ω̂k−1 is calculated based on the two prior time steps, tk−1 and tk−2. It is
noted that the position interpolation is under the average speed assumption in (19) without
instantaneous motor acceleration and deceleration. For E-bike applications, this assumption
is still valid during normal cycling conditions.

Regarding the pedaling torque and crank cadence measurement, both the torque
sensor and crank position sensor are installed inside the bracket bottom. Considering
E-bike operation under different external loads, a wheel-resistive load in Figure 18 is
added on the rear wheel for the load simulation. In the experiment, the pedaling torque
sensor can transmit a voltage reference of between 0.7–3.3 v to the microcontroller. This
voltage reference is proportional to a pedaling torque of 0–80 Nm. The experimental
verification compares the cycling performance among normal NMT and the four torque
control methods. However, for actual riding conditions, it is not possible for a cyclist to
maintain the same pedaling torque under different load and assisted torque conditions.
Under this effect, the test cyclist in these experiments was asked to maintain a wheel speed
ωw of 15.88 rad/s (20 km/h). If ωw can be maintained at a more stable speed without
variation, the motor torque is assumed to assist the cyclist.
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5.1. NMT and CT Experiment

This section compares the time-domain waveforms of the pedaling torque, motor
torque, and total synergy torque between normal NMT and the CT motor control. Since
there is no assisted torque under the NMT method, the test cyclist was responsible for dif-
ferent E-bike load conditions. Figures 22 and 23, respectively, show the pedaling torque, αw,
andωw waveforms under normal NMT. In this case, the corresponding pedaling torque con-
dition can be used as a benchmark to compare the four different torque control methods.
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In this experiment, a wheel resistive load was added to simulate E-bike cycling with
wheel friction torque. Under a certain wheel friction load, the pedaling torque mea-
sured from the torque sensor contains a 29.81 Nm average torque with 59.92% pedaling
torque variation. For all experiments in this paper, the pedaling torque variation Tpdl_r is
defined by:

Tpdl_r =
Tpdl_max − Tpdl_avg

Tpdl_avg
(20)

where Tpdl_max and Tpdl_avg are, respectively, the maximum and average value of the
measured pedaling torque Tpdl.

By contrast, considering the CT control method, Figure 24 demonstrates the time-
domain waveforms of Tpdl, the motor torque TM, and the total torque Ttotal. Figure 25
shows the time-domain waveforms of αw and ωw. In this control, the motor torque is
controlled to maintain a 45 Nm rated torque. With additional assisted torque, the resulting
average pedaling Tpdl is reduced to 13.05 Nm. However, similar to the prior simulation, the
pedaling variation Tpdl_r is increased to 63.86% due to the limitation on the constant motor
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torque regulation. The key differences in the performance of the torque are summarized
in Section 5.4.
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5.2. SPPT and DPPT Experiment

Figures 26 and 27 depict the measurements of torque and bike dynamics, respectively,
obtained under the SPPT condition. Similarly, Figures 28 and 29 illustrate the corresponding
measurements of torque and bike dynamics collected under the DPPT condition.
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In addition, Figures 26 and 28 compare the waveforms of the pedaling Tpdl, motor TM,
and total Ttotal under the dynamic SPPT and DPPT control methods, respectively. Since
the motor torque TM is dynamically controlled under the SPPT and DPPT methods, TM is
calculated proportionally to the measured pedaling torque Tpdl for the SPPT method in
(14) and the DPPT method in (15).

It is noted that for the DPPT method, the time-domain waveform of the motor torque
TM is delayed by 90◦ with respect to the measured pedaling Tpdl. Considering the same E-
bike external load, the cyclist that is reflected by pedaling Tpdl is almost the same. However,
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under the same average assisted torque TM, the total torque variation through DPPT is
smaller than the variation reflected by SPPT, as listed in Table 6. Similar to the simulation
comparison, it is expected that the variation in both αw andωw are smaller, as shown in
Figures 27 and 29. A detailed comparison of αw andωw will be explained in Section 5.5.

5.3. Proposed CGPT Experiment

Time-domain torque waveforms through the proposed CGPT control are shown in
Figure 30. In addition, the time-domain αw andωw waveforms are included in Figure 31.
As seen in Section 4.5, the CGPT-assisted torque is determined based on (17). For the actual
experiment, Tref is determined at 25 Nm, which is the average pedaling torque Tpdl on the
rear wheel under normal NMT. When the pedaling torque transmission to the rear wheel is
smaller than 25 Nm, TM should be enabled similarly to the DPPT control condition. Based
on the simulation, it is expected that the average and maximum motor TM are the lowest
among the four torque control methods. This leads to better E-bike battery usage.
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5.4. E-Bike Torque Performance Comparison

Table 6 summarizes the waveform conditions among the pedaling, motor, and total
torque. For normal NMT, the average pedaling torque is 29.81 Nm, with 59.92% torque
variation. By adding one of the four torque controls, the cyclist pedaling torque can be
effectively decreased for better riding performance.
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Table 6. Motor torque comparison under different torque control methods.

Assisted Method NMT CT SPPT DPPT CGPTParameter

Average pedaling torque (Nm) 29.81 13.05 20.83 21.05 25.63

Average motor torque (Nm) NA 45 12.01 11.93 8.24

Max pedaling torque (Nm) 74.37 36.11 48.09 48.13 62.67

Max motor torque (Nm) NA 45 27.05 27.07 25

Pedaling torque variation (Nm) 44.56 23.06 27.26 27.08 37.04

Variation ratio (Nm/%) 59.92% 63.86% 56.69% 56.26% 59.10%

Average total torque (Nm) 29.81 58.05 32.84 32.98 33.87

Max total torque (Nm) 74.37 81.11 75.14 75.20 87.67

For the CT-assisted control method, the minimal average pedaling torque of 13.05 Nm
is the result of the cyclist maintaining the wheel speedωw at 15.88 rad/s (20 km/h).

The difference between SPPT and DPPT is the torque waveform’s initial phase. Under
this effect, there is no visible difference in the cyclist’s reflected pedaling torque. However,
the variation in αw and ωw might be different due to different peak total torques with
these two control methods. By contrast, for the proposed CGPT control method, the motor
torque is efficiently manipulated. However, the required pedaling torque is the highest
among these four assisted control methods. This is because, similar to the DPPT method, a
smooth condition for the αw andωw of the E-bike is expected.

5.5. E-Bike Speed and Acceleration Comparison

This section compares the performance of the E-bike acceleration αw and speedωw
in Table 7 under the different proposed torque controls. It is noted that the average value
and ripple of αw andωw are both dependent on the total torque Ttotal in Table 6. Since the
CT-assisted control results in the highest variation in Ttotal, the highest ripples of both αw
and ωw are shown in Table 7. This experimental result is consistent with the simulation
in Table 3.

Table 7. E-bike speed and acceleration comparison under different torque control methods.

Assisted Method NMT CT SPPT DPPT CGPTParameter

Speed ripple (rad/s) 3.43 4.56 3.32 0.94 1.76

Average speed (rad/s) 16.84 15.56 16.85 16.59 16.14

Acceleration ripple (rad/s2) 1.97 3.37 2.96 1.56 2.12

Average acceleration (rad/s2) 0.16 1.20 0.16 0.16 0.07

Cycling time (s) 30 30 30 30 30

Although the pedaling torque condition is similar with the SPPT and DPPT methods,
the variation in the total synergy torque might be different. Under this effect, the ripples of
αw andωw for the DPPT control are smaller than those with SPPT control. Finally, for the
proposed CGPT method, the corresponding αw andωw ripple is slightly higher than those
with the DPPT methos. However, compared to CT and SPPT controls, the CGPT method
still results in a better αw andωw ripple performance for E-bike torque-assisted control.

5.6. Simulation and Experiment Comparison

This section compares the results obtained by both the simulation and the experiment.
Table 8 shows the corresponding comparison of the simulation and the experiment under
different assisted torque control methods. The key findings are summarized as follows.
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First, the pedaling torque performance is compared. For the E-bike simulation, an
ideal pedaling torque is assumed. Under this effect, there is no difference in the average
and maximum pedaling torque among these four torque control methods. By contrast,
for the experiment, the pedaling torque is directly provided by a test cyclist. Because this
cyclist must maintain an overall cycling time at 30 s, the average and maximum pedaling
torque are both highest under NMT control, whereas they are the smallest with CT control.
From the prior conclusion in Table 6, the largest motor torque is manipulated for CT control,
resulting in the lowest pedaling torque for a cyclist.

Table 8. Comparison between simulation and experiment under different torque control methods.

Parameter
Assisted Method NMT CT SPPT

(sim.) (exp.) (sim.) (exp.) (sim.) (exp.)
Average pedaling torque (Nm) 30 29.81 30 13.05 30 20.83

Max pedaling torque (Nm) 48.78 74.37 48.78 36.11 48.78 48.09
Average motor torque (Nm) N/A N/A 45 45 27.91 12.01

Max motor torque (Nm) N/A N/A 45 45 45 27.05
Speed ripple (rad/s) 0.28 3.43 0.60 4.56 0.55 3.32

Acceleration ripple (rad/s2) 2.38 1.97 2.41 3.37 5.09 2.96
Average speed (rad/s) 7.69 16.84 36.44 15.56 26.89 16.85

Average acceleration (rad/s2) 0.48 0.16 1.90 1.20 1.48 0.16
Cycling time (s) 30 30 30 30 30 30

Parameter
Assisted Method DPPT CGPT

(sim.) (exp.) (sim.) (exp.)
Average pedaling torque (Nm) 30 21.05 30 25.63

Max pedaling torque (Nm) 48.78 48.13 48.78 62.67
Average motor torque (Nm) 27.91 11.93 5.37 8.24

Max motor torque (Nm) 45 27.07 25 25
Speed ripple (rad/s) 0.15 0.94 0.10 1.76

Acceleration ripple (rad/s2) 1.15 1.56 0.84 2.12
Average speed (rad/s) 26.89 16.59 11.82 16.14

Average acceleration (rad/s2) 1.48 0.16 0.72 0.07
Cycling time (s) 30 30 30 30

For the wheel speed and acceleration ripple comparison in Table 8, both speed and
acceleration ripples can degrade the E-bike’s cycling performance. Comparing the results
between the simulation and the experiment, speed/acceleration ripples are highest for
the CT control method. By contrast, these ripples can be reduced based on the implemen-
tation of either DPPT or CGPT control. The proposed simulation is consistent with the
experimental results.

For the average speed and acceleration comparison in Table 8, there is a difference
between the simulation and the experiment. For the simulation, the average speed and
acceleration are directly proportional to the average torque. By contrast, for the experiment,
the average speed is almost the same under the limitation of maintaining the same cycling
time. However, the average acceleration is also the highest for the CT control method, with
the highest average torque.

6. Conclusions

This paper proposes a novel torque control method for assisted E-bikes considering
external load conditions. For assisted E-bikes, it is shown that the overall pedaling torque
can be affected by different load conditions. These include the cyclist’s weight, wind
resistance, rolling resistance, and the road slope. Among them, the external loads caused by
the road gradient and wind resistance are greater than those caused by the cyclist’s weight
and the rolling resistance.

Figure 32 illustrates a graphical conclusion of the proposed E-bike torque control.
Key E-bike cycling parameters were first identified. Four different torque control meth-
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ods were developed to improve the E-bike’s dynamic response with minimal pedaling
torque variation and acceleration/speed ripple. After the simulation verification from
MATLAB/Simulink, an integrated E-bike sensor hardware was built to evaluate the pro-
posed torque control. Finally, the proposed assisted torque control was verified through
an experimental E-bike test bench.
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The experimental results conclude that the CT method achieves the smallest average
pedaling torque. However, it results in the highest speed ripple and acceleration ripple.
These ripples degrade the E-bike’s cycling performance. It is concluded that the CT control
method is well suited for professional cyclists with special road conditions.

On the other hand, the proposed CGPT control resulted in the lowest motor torque
output. It is especially well suited for commuting cyclists with minimal battery power
consumption. By contrast, the DPPT control method can provide a comparable cycling
experience to the original NMT method in terms of the wheel acceleration ripple and
speed ripple. The DPPT method is well suited for standard E-bike torque management for
different load conditions.

Author Contributions: Methodology, P.-J.H. and S.-C.Y.; software and hardware implementation,
C.-P.Y. and Y.-J.L.; formal analysis, Y.-J.L.; writing—original draft preparation, W.-D.C. and P.-H.C.;
writing—review and editing, W.-D.C., P.-H.C. and S.-C.Y.; supervision, S.-C.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the financial and equipment support by the National
Taiwan University, Taiwan, R.O.C. under the Grant 09HT512031.

Institutional Review Board Statement: Not applicable.

Informed Con sent Statement: Not applicable.



Sensors 2023, 23, 4657 27 of 29

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

θcrank Crank rotating angle
Fpx Pedaling horizontal force
Fpy Pedaling vertical force
Tpdl Pedaling torque
TM Motor-assisted torque
Ttotal Total synergetic torque
Troll Friction-reflected torque
Twind Windage torque
Tslope Climbing-reflected torque
Tdis External disturbance torque
Tdrv Actual wheel driving torque
Tpdl_r Pedaling torque variation
Tpdl_max Maximum measured pedaling torque
Tpdl_avg Average measured pedaling torque
Rcrank Crank rotating radius
Me Mass of E-bike
Mc Mass of cyclist
Jw Wheel inertia
Rw Bike wheel radius
g Gravitational constant
ρ Air density
Cd Aerodynamic drag coefficient
A Frontal area
Kgear Transmission gear ratio
PT Tire pressure
ωw Wheel angular speed
αw Wheel angular acceleration
Kroll Wheel resistance coefficient
Vwind Wind speed
Vbike Bike wheel speed
θslope Slope angle
id Direct-axis (d-axis) motor current
iq Quadrature-axis (q-axis) motor current
Vd Direct-axis (d-axis) motor voltage
Vq Quadrature-axis (q-axis) motor voltage
Kpd Direct-axis (d-axis) proportional controller gain
Kpq Quadrature-axis (q-axis) proportional controller gain
Kid Direct-axis (d-axis) integral controller gain
Kiq Quadrature-axis (q-axis) integral controller gain
L̂ Motor phase inductance
R̂ Motor phase resistance
θ̂k Estimated motor position
θk−1 Last position measured by Hall sensors
ω̂k−1 Estimated speed based on prior Hall sensor position

References
1. Lee, J.; Jiang, J.; Sun, Y. Design and simulation of control systems for electric-assist bikes. In Proceedings of the 2016 IEEE 11th

Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016; pp. 1736–1740.
2. Hunt, K.J.; Stone, B.; Negard, N.O.; Schauer, T.; Fraser, M.H.; Cathcart, A.J.; Ferrario, C.; Ward, S.A.; Grant, S. Control strategies

for integration of electric motor assist and functional electrical stimulation in paraplegic cycling: Utility for exercise testing and
mobile cycling. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 89–101. [CrossRef] [PubMed]

https://doi.org/10.1109/TNSRE.2003.819955
https://www.ncbi.nlm.nih.gov/pubmed/15068192


Sensors 2023, 23, 4657 28 of 29

3. Lozinski, J.; Heidary, S.H.; Brandon, S.C.E.; Komeili, A. An Adaptive Pedaling Assistive Device for Asymmetric Torque Assistant
in Cycling. Sensors 2023, 23, 2846. [CrossRef] [PubMed]

4. Zaghari, B.; Stuikys, A.; Weddell, A.S.; Beeby, S. Efficient Energy Conversion in Electrically Assisted Bicycles Using a Switched
Reluctance Machine Under Torque Control. IEEE Access 2020, 8, 202401–202411. [CrossRef]

5. Palmieri, G.; Tiboni, M.; Legnani, G. Analysis of the Upper Limitation of the Most Convenient Cadence Range in Cycling Using
an Equivalent Moment Based Cost Function. Mathematics 2020, 8, 1947. [CrossRef]

6. Balbinot, A.; Milani, C.; Nascimento, J.D.S.B. A New Crank Arm-Based Load Cell for the 3D Analysis of the Force Applied by
a Cyclist. Sensors 2014, 14, 22921–22939. [CrossRef]

7. Böhm, H.; Siebert, S.; Walsh, M. Effects of short-term training using SmartCranks on cycle work distribution and power output
during cycling. Eur. J. Appl. Physiol. 2008, 103, 225–232. [CrossRef]

8. Turpin, N.A.; Watier, B. Cycling Biomechanics and Its Relationship to Performance. Appl. Sci. 2020, 10, 4112. [CrossRef]
9. Caldwell, G.E.; Li, L.; McCole, S.D.; Hagberg, J.M. Pedal and Crank Kinetics in Uphill Cycling. J. Appl. Biomech. 1998, 14, 245–259.

[CrossRef]
10. Bini, R.; Hume, P.; Croft, J.; Kilding, A. Pedal force effectiveness in cycling: A review of constraints and training effects. J. Sci. Cycl.

2013, 2, 11–24.
11. Höchtl, F.; Böhm, H.; Senner, V. Prediction of energy efficient pedal forces in cycling using musculoskeletal simulation models.

Procedia Eng. 2010, 2, 3211–3215. [CrossRef]
12. Tang, Y.; Wang, D.; Wang, Y.; Yin, K.; Zhang, C.; Zou, L.; Liu, Y. Do Surface Slope and Posture Influence Lower Extremity Joint

Kinetics during Cycling? Int. J. Environ. Res. Public Health 2020, 17, 2846. [CrossRef] [PubMed]
13. Martín-Sosa, E.; Chaves, V.; Alvarado, I.; Mayo, J.; Ojeda, J. Design and Validation of a Device Attached to a Conventional Bicycle

to Measure the Three-Dimensional Forces Applied to a Pedal. Sensors 2021, 21, 4590. [CrossRef] [PubMed]
14. Mandriota, R.; Fabbri, S.; Nienhaus, M.; Grasso, E. Sensorless Pedalling Torque Estimation Based on Motor Load Torque

Observation for Electrically Assisted Bicycles. Actuators 2021, 10, 88. [CrossRef]
15. Avina-Bravo, E.G.; Cassirame, J.; Escriba, C.; Acco, P.; Fourniols, J.-Y.; Soto-Romero, G. Smart Electrically Assisted Bicycles as

Health Monitoring Systems: A Review. Sensors 2022, 22, 468. [CrossRef]
16. Evans, S.A.; James, D.A.; Rowlands, D.; Lee, J.B. Evaluation of Accelerometer-Derived Data in the Context of Cycling Cadence

and Saddle Height Changes in Triathlon. Sensors 2021, 21, 871. [CrossRef]
17. Murgano, E.; Caponetto, R.; Pappalardo, G.; Cafiso, S.D.; Severino, A. A Novel Acceleration Signal Processing Procedure for

Cycling Safety Assessment. Sensors 2021, 21, 4183. [CrossRef]
18. Hollaus, B.; Volmer, J.C.; Fleischmann, T. Cadence Detection in Road Cycling Using Saddle Tube Motion and Machine Learning.

Sensors 2022, 22, 6140. [CrossRef] [PubMed]
19. Pérez-Zuriaga, A.M.; Llopis-Castelló, D.; Just-Martínez, V.; Fonseca-Cabrera, A.S.; Alonso-Troyano, C.; García, A. Implementation

of a Low-Cost Data Acquisition System on an E-Scooter for Micromobility Research. Sensors 2022, 22, 8215. [CrossRef]
20. Bruno, S.; Vita, L.; Loprencipe, G. Development of a GIS-Based Methodology for the Management of Stone Pavements Using

Low-Cost Sensors. Sensors 2022, 22, 6560. [CrossRef]
21. Pan, L.; Xia, Y.; Xing, L.; Song, Z.; Xu, Y. Exploring Use Acceptance of Electric Bicycle-Sharing Systems: An Empirical Study Based

on PLS-SEM Analysis. Sensors 2022, 22, 7057. [CrossRef]
22. Stilo, L.; Lugo, H.; Velandia, D.S.; Conway, P.P.; West, A.A. Personalised Controller Strategies for Next Generation Intelligent

Adaptive Electric Bicycles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 7814–7825. [CrossRef]
23. De La Iglesia, D.H.; De Paz, J.F.; Villarrubia González, G.; Barriuso, A.L.; Bajo, J.; Corchado, J.M. Increasing the Intensity over Time

of an Electric-Assist Bike Based on the User and Route: The Bike Becomes the Gym. Sensors 2018, 18, 220. [CrossRef] [PubMed]
24. Meyer, D.; Körber, M.; Senner, V.; Tomizuka, M. Regulating the Heart Rate of Human–Electric Hybrid Vehicle Riders Under

Energy Consumption Constraints Using an Optimal Control Approach. IEEE Trans. Control. Syst. Technol. 2019, 27, 2125–2138.
[CrossRef]

25. Muetze, A.; Tan, Y.C. Electric bicycles—A performance evaluation. IEEE Ind. Appl. Mag. 2007, 13, 12–21. [CrossRef]
26. De La Iglesia, D.H.; Villarrubia, G.; De Paz, J.F.; Bajo, J. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes

Using a Swarm Intelligence Algorithm. Sensors 2017, 17, 2501. [CrossRef]
27. Allebosch, G.; Van den Bossche, S.; Veelaert, P.; Philips, W. Camera-Based System for Drafting Detection While Cycling. Sensors

2020, 20, 1241. [CrossRef] [PubMed]
28. Gómez-Suárez, J.; Arroyo, P.; Alfonso, R.; Suárez, J.I.; Pinilla-Gil, E.; Lozano, J. A Novel Bike-Mounted Sensing Device with Cloud

Connectivity for Dynamic Air-Quality Monitoring by Urban Cyclists. Sensors 2022, 22, 1272. [CrossRef]
29. Królak, A.; Wiktorski, T.; Bjørkavoll-Bergseth, M.F.; Ørn, S. Artifact Correction in Short-Term HRV during Strenuous Physical

Exercise. Sensors 2020, 20, 6372. [CrossRef]
30. Avina-Bravo, E.G.; Sodre Ferreira de Sousa, F.A.; Escriba, C.; Acco, P.; Giraud, F.; Fourniols, J.-Y.; Soto-Romero, G. Design and

Validity of a Smart Healthcare and Control System for Electric Bikes. Sensors 2023, 23, 4079. [CrossRef]
31. Shahbakhti, M.; Hakimi, N.; Horschig, J.M.; Floor-Westerdijk, M.; Claassen, J.; Colier, W.N.J.M. Estimation of Respiratory Rate

during Biking with a Single Sensor Functional Near-Infrared Spectroscopy (fNIRS) System. Sensors 2023, 23, 3632. [CrossRef]
32. Li, X.; Liu, Z.; Gao, X.; Zhang, J. Bicycling Phase Recognition for Lower Limb Amputees Using Support Vector Machine Optimized

by Particle Swarm Optimization. Sensors 2020, 20, 6533. [CrossRef] [PubMed]

https://doi.org/10.3390/s23052846
https://www.ncbi.nlm.nih.gov/pubmed/36905050
https://doi.org/10.1109/ACCESS.2020.3036373
https://doi.org/10.3390/math8111947
https://doi.org/10.3390/s141222921
https://doi.org/10.1007/s00421-008-0692-z
https://doi.org/10.3390/app10124112
https://doi.org/10.1123/jab.14.3.245
https://doi.org/10.1016/j.proeng.2010.04.134
https://doi.org/10.3390/ijerph17082846
https://www.ncbi.nlm.nih.gov/pubmed/32326216
https://doi.org/10.3390/s21134590
https://www.ncbi.nlm.nih.gov/pubmed/34283156
https://doi.org/10.3390/act10050088
https://doi.org/10.3390/s22020468
https://doi.org/10.3390/s21030871
https://doi.org/10.3390/s21124183
https://doi.org/10.3390/s22166140
https://www.ncbi.nlm.nih.gov/pubmed/36015900
https://doi.org/10.3390/s22218215
https://doi.org/10.3390/s22176560
https://doi.org/10.3390/s22187057
https://doi.org/10.1109/TITS.2020.3009400
https://doi.org/10.3390/s18010220
https://www.ncbi.nlm.nih.gov/pubmed/29342900
https://doi.org/10.1109/TCST.2018.2852743
https://doi.org/10.1109/MIA.2007.4283505
https://doi.org/10.3390/s17112501
https://doi.org/10.3390/s20051241
https://www.ncbi.nlm.nih.gov/pubmed/32106442
https://doi.org/10.3390/s22031272
https://doi.org/10.3390/s20216372
https://doi.org/10.3390/s23084079
https://doi.org/10.3390/s23073632
https://doi.org/10.3390/s20226533
https://www.ncbi.nlm.nih.gov/pubmed/33203169


Sensors 2023, 23, 4657 29 of 29

33. Liu, S.-H.; Lin, C.-B.; Chen, Y.; Chen, W.; Huang, T.-S.; Hsu, C.-Y. An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue
Conditions During Exercise. Sensors 2019, 19, 3108. [CrossRef] [PubMed]

34. Muyor, J.M.; Antequera-Vique, J.A.; Oliva-Lozano, J.M.; Arrabal-Campos, F.M. Evaluation of Dynamic Spinal Morphology
and Core Muscle Activation in Cyclists—A Comparison between Standing Posture and on the Bicycle. Sensors 2022, 22, 9346.
[CrossRef] [PubMed]

35. Fonda, B.; Sarabon, N. Biomechanics and Energetics of Uphill Cycling: A review. Kinesiology 2012, 44, 5–17.
36. Corno, M.; Berretta, D.; Spagnol, P.; Savaresi, S.M. Design, Control, and Validation of a Charge-Sustaining Parallel Hybrid Bicycle.

IEEE Trans. Control. Syst. Technol. 2016, 24, 817–829. [CrossRef]
37. Yang, Y.; Yeo, J.; Priya, S. Harvesting Energy from the Counterbalancing (Weaving) Movement in Bicycle Riding. Sensors 2012,

12, 10248–10258. [CrossRef]
38. Martirosyan, A.V.; Ilyushin, Y.V.; Afanaseva, O.V. Development of a Distributed Mathematical Model and Control System for

Reducing Pollution Risk in Mineral Water Aquifer Systems. Water 2022, 14, 151. [CrossRef]
39. Mohammadzaheri, M.; Chen, L. Intelligent Predictive Control of a Model Helicopter’s Yaw Angle. Asian J. Control. 2010,

12, 667–679. [CrossRef]
40. Chowdhury, H.; Alam, F.; Khan, I. An Experimental Study of Bicycle Aerodynamics. Int. J. Mech. Mater. Eng. 2011, 6, 269–274.
41. Engineering ToolBox. 2008. Rolling Resistance. Available online: https://www.engineeringtoolbox.com/rolling-friction-

resistance-d_1303.html (accessed on 24 March 2022).
42. Roveri, N.; Pepe, G.; Mezzani, F.; Carcaterra, A.; Culla, A.; Milana, S. OPTYRE—Real Time Estimation of Rolling Resistance for

Intelligent Tyres. Sensors 2019, 19, 5119. [CrossRef]
43. Bojoi, R.; Lazzari, M.; Profumo, F.; Tenconi, A. Digital field oriented control for dual three-phase induction motor drives. In

Proceedings of the Conference Record of the 2002 IEEE Industry Applications Conference, 37th IAS Annual Meeting, Pittsburgh,
PA, USA, 13–18 October 2002; Volume 2, pp. 818–825.

44. Mohammadzahri, M.; Khaleghifar, A.; Ghodsi, M.; Soltani, P.; AlSulti, S. A Discrete Approach to Feedback Linearization, Yaw
Control of an Unmanned Helicopter. Unmanned Syst. 2023, 11, 57–66. [CrossRef]

45. Morimoto, S.; Sanada, M.; Takeda, Y. Sinusoidal current drive system of permanent magnet synchronous motor with low
resolution position sensor. In Proceedings of the IAS ‘96. Conference Record of the 1996 IEEE Industry Applications Conference
Thirty-First IAS Annual Meeting, San Diego, CA, USA, 6–10 October 1996; Volume 1, pp. 9–14. [CrossRef]

46. Shen, J.X.; Zhu, Z.Q.; Howe, D. PM brushless drives with low-cost and low-resolution position sensors. In Proceedings of the 4th In-
ternational Power Electronics and Motion Control Conference, IPEMC, Xi’an, China, 14–16 August 2004; Volume 2, pp. 1033–1038.

47. Buja, G.; Bertoluzzo, M.; Keshri, R.K. Torque Ripple-Free Operation of PM BLDC Drives with Petal-Wave Current Supply.
IEEE Trans. Ind. Electron. 2015, 62, 4034–4043. [CrossRef]

48. Skóra, M. Operation of PM BLDC motor drives with faulty rotor position sensor. In Proceedings of the 2017 International
Symposium on Electrical Machines (SME), Naleczow, Poland, 18–21 June 2017; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s19143108
https://www.ncbi.nlm.nih.gov/pubmed/31337107
https://doi.org/10.3390/s22239346
https://www.ncbi.nlm.nih.gov/pubmed/36502048
https://doi.org/10.1109/TCST.2015.2473821
https://doi.org/10.3390/s120810248
https://doi.org/10.3390/w14020151
https://doi.org/10.1002/asjc.243
https://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html
https://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html
https://doi.org/10.3390/s19235119
https://doi.org/10.1142/S2301385023500012
https://doi.org/10.1109/IAS.1996.556990
https://doi.org/10.1109/TIE.2014.2385034

	Introduction 
	E-Bike Pedaling Dynamic 
	Cyclist Pedaling Behavior 
	Pedal Crank Angle Effort 
	Parameters of Analyzed E-Bike 

	E-Bike Dynamics 
	Synergetic Torque 
	Wheel Friction Torque 
	Windage Torque 
	Climbing-Reflected Torque 
	E-Bike Dynamic Model 

	Proposed E-Bike Torque Control 
	No Motor-Assisted Torque (NMT) 
	Constant Motor-Assisted Torque (CT) 
	Same Phase as Pedaling Torque (SPPT) 
	Delay Phase as Pedaling Torque (DPPT) 
	Compensation for the Gap in the Pedaling Torque (CGPT) 
	Performance Comparison 

	Experiment 
	NMT and CT Experiment 
	SPPT and DPPT Experiment 
	Proposed CGPT Experiment 
	E-Bike Torque Performance Comparison 
	E-Bike Speed and Acceleration Comparison 
	Simulation and Experiment Comparison 

	Conclusions 
	References

