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Abstract: This paper proposes a physics-informed neural network (PINN) for predicting the early-age
time-dependent behaviors of prestressed concrete beams. The PINN utilizes deep neural networks
to learn the time-dependent coupling among the effective prestress force and the several factors
that affect the time-dependent behavior of the beam, such as concrete creep and shrinkage, tendon
relaxation, and changes in concrete elastic modulus. Unlike traditional numerical algorithms such as
the finite difference method, the PINN directly solves the integro-differential equation without the
need for discretization, offering an efficient and accurate solution. Considering the trade-off between
solution accuracy and the computing cost, optimal hyperparameter combinations are determined for
the PINN. The proposed PINN is verified through the comparison to the numerical results from the
finite difference method for two representative cross sections of PSC beams.

Keywords: physics-informed neural network (PINN); prestressed concrete (PSC) beam; optimal
hyperparameter combination; concrete creep; concrete shrinkage; tendon relaxation; early-age
time-dependent behaviors; prestress loss

1. Introduction

Most machine learning-based approaches for predicting the mechanical behaviors of
structural systems require a huge amount of high-quality data for supervised learning. In
many real-world engineering problems, such vast amounts of data are often unattainable
on site, and limitations in data accessibility pose challenges for machine learning based
on field data. To overcome these limitations, the physics-informed neural network (PINN)
has gained attention for its capability of incorporating fundamental physical (or mechani-
cal) knowledge, presented in the form of differential or integral equations, into machine
learning [1–8].

The PINN addresses data limitation challenges by excelling in solving problems
with uncertain or missing information [9] and holds the potential to significantly reduce
computational costs [10]. Additionally, the PINN can be applied to problems in arbitrary do-
mains and can scale to high-dimensional systems. In numerous scientific and engineering
fields, the PINN is gaining increasing popularity today including material [11–13], nonlin-
ear diffusivity [14], fluid mechanics [15–18], bioengineering [19], solid mechanics [20,21],
geophysics [22], thermophysics [23], machine fault diagnosis [24], and scientific compu-
tations [25,26]. Furthermore, the PINN has been expanded to tackle integro-differential
equations (IDEs) [27], fractional differential equations (FDEs) [28], stochastic differential
equations (SDEs) [29–32], and shown to estimate the generalization error [33–35].

The PINN utilizes a feed-forward architecture combined with automated differen-
tiation in artificial neural networks to train models that satisfy the governing equations,
enabling the construction of physical prediction models with far fewer field data than
traditional data-driven neural network techniques [36]. The PINN estimates the parameters
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that make up the neural network by optimizing an objective function composed of errors
related to the governing equations and boundary (or initial) conditions. In this process,
it is necessary to calculate the derivative values for the unknowns included in the gov-
erning equations or boundary conditions, and the PINN adopts automatic differentiation
techniques instead of numerical differentiation [37]. This advantage allows for the direct
handling of any form of differential operators for unknowns included in the governing
equations. By using PINNs, it is possible to address the missing data and measurement
errors in actual physics that could not be resolved with conventional approaches.

PINNs demonstrate constraints when handling issues that evolve sharp gradients
or involve interconnected PDEs [38]. As a consequence, traditional PINNs have been
improved by employing domain decomposition methods [39–42]. A generalized space-
time domain decomposition framework for PINNs (XPINN) was proposed to solve any
differential equations on arbitrary complex geometry domains [39,40]. The XPINN easily
lends itself to space-time parallelization, thereby reducing training costs more effectively.
Augmented PINN (APINN) was proposed to further improve the XPINN as well as vanilla
PINNs by adopting soft and trainable domain decomposition and flexible parameter
sharing [41]. The domain decomposition methods can reduce the complexity of PINNs by
dividing the problem into smaller, more manageable subproblems. They also can improve
the stability of PINNs by reducing the risk of overfitting since the subproblems are more
independent, which can help to prevent the model from learning spurious correlations.

The incorporation of adaptive activation functions into traditional PINNs has emerged
as a compelling alternative [43–46]. Adaptive activation functions can help PINNs to
converge more quickly and reliably because they can adapt to the specific problem at
hand, which can help to avoid getting stuck in local minima. They also can help PINNs to
generalize better to unseen data since they can learn to represent the underlying physical
laws more accurately improving the robustness of the model. Lastly, they can be less
sensitive to hyperparameters than conventional activation functions. This is because they
can adapt to the specific problem at hand, which can help to improve the stability of the
training process.

In the civil engineering industry, prestressed concrete (PSC) beams are increasingly
used in construction due to their advantages over reinforced concrete (RC) beams in
controlling cracking and minimizing long-term deflections [47]. To design safe and reliable
PSC beams, however, it is crucial to properly predict prestress losses, particularly in high-
strength concrete, at an early age [48–50]. There have been numerous attempts to investigate
the time-dependent behavior of PSC structures, including the effects of concrete creep and
shrinkage, tendon relaxation, and changes in the concrete elastic modulus [51–56]. Most
of these studies employ numerical models such as finite element and finite difference
methods to predict the long-term behavior of prestressed concrete structures [57–60]. They
are computationally intensive and require significant computational resources.

This paper presents a PINN-based approach for predicting the early-age time-dependent
behaviors of a PSC beam considering interaction among concrete creep and shrinkage,
tendon relaxation, and the changes of concrete elastic modulus. We introduce a novel closed-
form integro-differential governing equation, formulated in terms of effective prestress
force, to predict the early-age time-dependent behaviors of PSC beams. Contrary to the
traditional finite element method, the PINN directly solves the integro-differential equation
without requiring discretization. There exists a trade-off between solution accuracy and
the computing time when solving the integro-differential governing equation through
PINN. Balancing the importance of the solution accuracy and the computing cost, optimal
hyperparameter combinations are determined for the PINN.

The paper is organized as follows. Section 2.1 presents eight dimensionless governing
equations for the time-dependent behaviors of a PSC beam. Section 2.2 describes the deriva-
tion of the closed-form integro-differential equation in terms of dimensionless effective
prestress force. Section 2.3 presents determining optimal hyperparameter combinations
for the PINN to solve the integro-differential equation. Section 3.1 presents the results
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of optimal hyperparameter combinations for the PINN and a comparison with the finite
difference method for PSC beams with rectangular and I-shaped cross sections. Finally,
Section 4 summarizes the findings and their implications for the proposed PINN approach.

2. Materials and Methods
2.1. Governing Equations
2.1.1. Problem Definition and Assumptions

Figure 1 presents a simplified PSC beam model to analyze the early-age time-dependent
behaviors of a precast prestressed concrete beam. The period of interest for the anal-
ysis spans approximately one year beginning from the initial prestress transfer to the
installation of the beam at the intended target construction site. The assumptions for the
time-dependent analysis of this study can be described as follows:

(i) Multiple tendons of the PSC beam can be substituted with a single equivalent
tendon as shown in Figure 1a;

(ii) The tendon is perfectly bonded with concrete; thus, section analysis for equilibrium
between the tendon and the concrete is possible;

(iii) The beam model follows the Euler–Bernoulli beam theory;
(vi) The time-dependent behaviors of concrete include the change of elastic modulus,

creep, and shrinkage;
(v) The creep of concrete follows the standard linear model of viscoelasticity;
(vi) The relaxation of the tendon is assumed to be intrinsic;
(vii) The shrinkage of concrete occurs uniformly throughout the gross section

of concrete;
(viii) The net strain of concrete consists of elastic strain, creep strain, and

shrinkage strain;
(ix) The self-weight of the PSC beam is introduced at the moment of initial

prestress transfer.
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section 𝐴𝐴ᇱ in Figure 1 is omitted in all field variables hereafter. 
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(i) Axial-bending stress equation of concrete 

N.A. Prestressed beam
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Figure 1. Simplified beam model for a PSC beam: (a) PSC beam model with a single equivalent
tendon; (b) cross section at AA′.

2.1.2. Governing Equations for Time-Dependent Behaviors of a PSC Beam

In the simplified model for a PSC beam in Figure 1, a time-dependent analysis should
be conducted at each section of interest to satisfy the equilibrium between the concrete and
the tendon. For the simplicity of description, the spatial variable x corresponding to section
AA′ in Figure 1 is omitted in all field variables hereafter.

The governing equations for time-dependent behaviors can be expressed as follows:
(i) Axial-bending stress equation of concrete

σ(y, t) = −P(t)
(

1
Ac
− e

Ic
y
)
− Md

Ic
y (1)

where t and Md denote the time beginning from the initial prestress transfer and the
bending moment induced by the self-weight of the beam, respectively.
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(ii) Constitutive equation of elastic strain of concrete [61]

εel(y, t) =
σ(y, t)
Ec(t)

= Φel(t)
σ(y, t)

Ec0

= −Φel(t)P(t)
(

1
Ec0 Ac

− e
Ec0 Ic

y
)
−Φel(t)

Md
Ec0 Ic

y
(2)

where Ec0 is the elastic modulus of concrete at t = 0 and Φel(t) =
Ec0

Ec(t)
.

(iii) Constitutive equation of creep strain of concrete [62]

εcr(y, t) =
∫ t

0

Φ̃cr(t, τ)

Eci

∂σ(y, τ)

∂τ
dτ +

Φ̃cr(t, 0)
Eci

σ(y, 0) (3)

where Eci is the elastic modulus of concrete at the age of 28 days while Φ̃cr(t, τ) is the creep
coefficient at time t for the unit strain of which the corresponding stress is Eci applied at
time τ.

(iv) Net strain of concrete

εnet(y, t) = εel(y, t) + εcr(y, t) + εsh(t). (4)

(v) Constitutive equation of elastic strain of the tendon

εp_el(t) =
P(t)

Ep Ap
+ εp_d(t) (5)

where εp_d(t) = Φel(t)
Md

Ec0 Ic
e representing the elastic strain of concrete at the location of the

tendon due to the self-weight of the beam at time t.
(vi) Constitutive equation of relaxed strain of the tendon

εp_re(t) = Φre(t, 0)εp_el(0). (6)

(vii) Net strain of the tendon

εp(t) = εp_el(t) + εp_re(t). (7)

(viii) Compatibility between the concrete and tendon at y = −e

∂εp(t)
∂t

=
∂εnet(−e, t)

∂t
. (8)

2.1.3. Dimensionless Governing Equations

For the simplicity of formulation in Section 2.2, governing equations from Equation (1)
to Equation (8) in Section 2.1.2 are rewritten by introducing dimensionless variables normal-
ized by respective mechanical quantities. Force, strain, and stress variables are normalized
by Pi,

Pi
Ep Ap

and Ec0

(
Pi

Ep Ap

)
, respectively. The normalized variables will be denoted by using

otherwise mentioned hereafter. For example, substituting σ(y, t) = Ec0

(
Pi

Ep Ap

)
σ̂(y, t)

and P(t) = PiP̂(t) into Equation (1) results in:
(i) Dimensionless axial-bending stress equation of concrete

σ̂(y, t) = −γ(y)P̂(t)− σ̂p_d
y
e

(9)

where γ(y) = n(0)Ap (
1

Ac
− e

Ic
y ) and σ̂p_d = (Md

Ic
e )/ ( Ec0Pi

Ep Ap
) implying the normalized

stress at the location of the tendon due to the self-weight of the beam.
In a similar fashion, Equations (2)–(8) can be rewritten as follows:
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(ii) Dimensionless constitutive equation of elastic strain of concrete

ε̂el(y, t) = −Φel(t)γ(y)P̂(t)− ε̂p_d(t)
y
e

(10)

where ε̂p_d(t) = εp_d(t)/
(

Pi
Ep Ap

)
.

(iii) Dimensionless constitutive equation of creep strain of concrete

ε̂cr(y, t) =
∫ t

0
Φcr(t, τ)

∂σ̂(y, τ)

∂τ
dτ + Φcr(t, 0)σ̂(y, 0) (11)

where Φcr(t, τ) = Ec0
Eci

Φ̃cr(t, τ) implying the creep coefficient at time t for the unit strain of
which the corresponding stress is Ec0 applied at time τ.

(iv) Dimensionless net strain of concrete

ε̂net(y, t) = ε̂el(y, t) + ε̂cr(y, t) + ε̂sh(t). (12)

(v) Dimensionless constitutive equation of elastic strain of the tendon

ε̂p_el(t) = P̂(t) + ε̂p_d(t). (13)

(vi) Dimensionless constitutive equation of relaxed strain of the tendon

ε̂pre
(t) = Φre(t, 0)ε̂pel

(0). (14)

(vii) Dimensionless net strain of the tendon

ε̂p(t) = ε̂p_el(t) + ε̂p_re(t). (15)

(viii) Dimensionless compatibility between the concrete and tendon at y = −e

∂ε̂p(t)
∂t

=
∂ε̂net(−e, t)

∂t
. (16)

Because there are eight unknown dimensionless variables σ̂(y, t), P̂(t), ε̂el(y, t), ε̂cr(y, t),
ε̂net(y, t), ε̂p_el(t), ε̂p_re(t) and ε̂p(t) in eight governing equations from Equation (9) to
Equation (16), a single-closed form governing equation with respect to P̂(t) is derived in
Section 2.2.

2.2. Formulation

2.2.1. Deriving Integro-Differential Equation for P̂(t)
Integrating Equation (16) with respect to t results in

ε̂p(t) = ε̂net(−e, t) + C1 (17)

where C1 can be determined by using two initial conditions, ε̂p(0) = ε̂p_el(0) and
ε̂net(−e, 0) = ε̂el(−e, 0), as follows:

C1 = ε̂p(0)− ε̂net(−e, 0) = ε̂p_el(0)− ε̂el(−e, 0) (18)

Substituting Equations (10) and (13) at y = −e and t = 0 into Equation (18) yields

C1 = P̂(0) + ε̂p_d(0)−
{
−Φel(0)γ(−e)P̂(0)− ε̂p_d(0)

−e
e

}
= 1 + Γ (19)

where P̂(0) = 1, Φel(0) = 1 and Γ = γ(−e).



Sensors 2023, 23, 6649 6 of 21

Substituting Equation (13) into Equation (15) produces

P̂(t) = ε̂p(t)− ε̂p_re(t)− ε̂p_d(t) (20)

Substituting Equation (17) with Equation (18) into Equation (20) results in

P̂(t) = ε̂net(−e, t) + 1 + Γ− ε̂p_re(t)− ε̂p_d(t). (21)

Substituting Equation (12) into Equation (21) produces

P̂(t) = ε̂el(−e, t) + ε̂cr(−e, t) + ε̂sh(t) + 1 + Γ− ε̂p_re(t)− ε̂p_d(t) (22)

ε̂el(−e, t) in Equation (22) can be expressed as follows by using Equation (10) at
y = −e:

ε̂el(−e, t) = −Φel(t)γ(−e)P̂(t) + ε̂p_d(t) = −ΓΦel(t)P̂(t) + ε̂p_d(t). (23)

Introducing a prestress transfer coefficient ϕ(t) = 1
1+ΓΦel(t)

at time t, Equation (23) is
rewritten as

ε̂el(−e, t) = −{ 1
ϕ(t)

− 1}P̂(t) + ε̂p_d(t) (24)

Substituting Equation (24) into Equation (22) results in the following equation:

P̂(t) =
ϕ(t)
ϕ(0)

+ ϕ(t)
{

ε̂cr(−e, t)− ε̂p_re(t) + ε̂sh(t)
}

(25)

where ϕ(0) = 1
1+Γ .

ε̂cr(−e, t) in Equation (25) can be expressed as follows by substituting Equation (9)
into Equation (11) at y = −e

ε̂cr(−e, t) = −Γ
{∫ t

0
Φcr(t, τ)

∂P̂(τ)
∂τ

dτ + Φcr(t, 0)
}
+ Φcr(t, 0)σ̂p_d. (26)

Substituting Equation (13) into Equation (14), ε̂p_re(t) in Equation (25) can be expressed
as follows:

ε̂p_re(t) = Φre(t, 0) + Φre(t, 0)ε̂p_d(0). (27)

Substituting Equations (26) and (27) into Equation (25) produces an integro-differential
equation for P̂(t) as follows:

P̂(t) =
ϕ(t)
ϕ(0)

+ϕ(t)[− Γ
{∫ t

0
Φcr(t, τ)

∂P̂(τ)
∂τ

dτ + Φcr(t, 0)
}

+Φcr(t, 0)σ̂p_d −Φre(t, 0)−Φre(t, 0)ε̂p_d(0) + ε̂sh(t)
]
.

(28)

2.2.2. Forward Finite Difference Equation

The numerical solution of Equation (28) for the dimensionless effective prestress
force P̂(t) can be calculated by the finite difference method. First, the integral part in

Equation (28) is rewritten in terms of ∂P̂(t)
∂t as

∫ t

0
ΓΦcr(t, τ)

∂P̂(τ̂)
∂τ

dτ =
n−1

∑
i=1

∫ ti+1

ti

ΓΦcr(t, τ)
∂P̂(τ)

∂τ
dτ (29)

where t1 = 0 and tn = t.



Sensors 2023, 23, 6649 7 of 21

Letting constant time increment ∆t = ti+1 − ti =
t

n−1 for all i, the finite integrals from
ti to ti+1 in Equation (29) can be approximated through the trapezoidal rule as follows:

∫ ti+1

ti

ΓΦcr(tn, τ)
∂P̂(τ)

∂τ
dτ ≈ 1

2

{
χn,i

∂P̂(τ)
∂τ

∣∣∣∣
τ=ti

+ χn,i+1
∂P̂(τ)

∂τ

∣∣∣∣
τ=ti+1

}
∆t (30)

where χn,i = ΓΦcr(tn, ti).

The derivative ∂P̂(τ)
∂τ in Equation (30) can be approximated through forward finite

differences as
∂P̂(τ)

∂τ

∣∣∣∣
τ=ti

≈ P̂(ti+1)− P̂(ti)

∆t
. (31)

Substituting Equation (31) into Equation (30) produces∫ ti+1
ti

ΓΦcr(tn, τ)
∂P̂(τ)

∂τ dτ

≈ 1
2
[
χn,i+1P̂(ti+2) + {χn,i − χn,i+1}P̂(ti+1)− χn,i P̂(ti)

]
.

(32)

Substituting Equation (29) incorporated with Equation (32) into Equation (28) yields
the finite difference equation of Equation (28)

P̂(tn) =
ϕ(tn)

ϕ(t1)
+ϕ(tn)

[
Φcr(tn, t1)

{
σ̂p_d − Γ

}
−Φre(tn, t1)

{
1 + ε̂p_d(t1)

}
+ε̂sh (tn)]− ϕ(tn)

n−1

∑
i=1

ψn,i

(33)

where ψn,i =
1
2
[
χn,i+1P̂(ti+2) +

{
χn,i − χn,i+1

}
P̂(ti+1)− χn,i P̂(ti)

]
.

The numerical procedures to solve Equation (33) for P̂(tn) is provided in
Appendix A.

2.3. PINN for Solving the Integro-Differential Governing Equation
2.3.1. Approximate Integro-Differential Equation of Equation (28) for Using the PINN

The advantage of the PINN over conventional numerical methods lies in solving
partial differential equations in strong forms without discretization through automatic dif-
ferentiation. When the governing equation is expressed as an integro-differential equation
like Equation (28), the PINN can be employed to solve it through automatic differentia-
tion for integer-order derivatives and approximate integral operators based on Gaussian
quadrature [37].

Substituting Ẑ(t) = P̂(t)
ϕ(t) into Equation (28) results in the integro-differential equation

in terms of Ẑ(t) as follows:

Ẑ(t) =
1

ϕ(0)
+[−Γ{

∫ t

0
Φcr(t, τ)

{
ϕ(τ)

∂Ẑ(τ)
∂τ

+ Ẑ(τ)
∂ϕ(τ)

∂τ

}
dτ

+Φcr(t, 0)}+Φcr(t, 0)σ̂p_d −Φre(t, 0)

−Φre(t, 0)ε̂p_d(0) + ε̂sh(t)].

(34)

The right-hand side of Equation (34) can be rearranged by separating the integral term
from the non-integral terms as follows:
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Ẑ(t)

= −Γ
∫ t

0
Φcr(t, τ)

{
ϕ(τ)

∂Ẑ(τ)
∂τ

+ Ẑ(τ)
∂ϕ(τ)

∂τ

}
dτ︸ ︷︷ ︸

RHS1

+

[
1

ϕ(0)
− ΓΦcr(t, 0) + Φcr(t, 0)σ̂p_d −Φre(t, 0)−Φre(t, 0)ε̂p_d(0) + ε̂sh(t)

]
︸ ︷︷ ︸

RHS2

(35)

where the integral term and non-integral terms are denoted as RHS1 and RHS2, respectively.
Then, RHS1 is approximated through the Gauss quadrature:

RHS1 = −Γ
∫ t

0 Φcr(t, τ)
{

ϕ(τ)
∂Ẑ(τ)

∂τ + Ẑ(τ) ∂ϕ(τ)
∂τ

}
dτ

≈ −Γ
ngq

∑
i=1

wiΦcr(t, τi(t)){ϕ(τ)
∂Ẑ(τ)

∂τ

+Ẑ(τ) ∂ϕ(τ)
∂τ }

∣∣∣
τ=τi(t)

(36)

where ngq, wi, and τi(t) represent the number of Gauss quadrature points, weight factors,
and Gauss points associated with the integral interval from 0 to t, respectively. Note that

automatic differentiation is used to analytically derive ∂P̂(τ)
∂τ

∣∣∣
τ=τi(t)

at each Gauss point.

Substituting Equation (36) into Equation (35) yields the approximate integro-differential
equation that is solved through the PINN. Once Ẑ(t) is obtained by the PINN, P̂(t) can be
calculated by multiplying ϕ(t) to Ẑ(t).

2.3.2. Optimal Hyperparameter Combinations for the PINN to Solve Equation (34)

The basic architecture of the PINN is illustrated in Figure 2. By incorporating prior
knowledge directly into the domain of structured artificial neural networks with network
structures, layer activation functions, and optimization functions, the PINN can be trained.
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Figure 2. The basic architecture of the PINN.

The PINN architecture shown in Figure 2 has three primary hyperparameters: the
number of nodes (NN), the number of hidden layers (NHL) and the number of domains
(ND). Here, NN and NHL account for the model complexity which enables capturing
complicated physical behaviors embedded in the governing equation while ND accounts
for the amount of prior information provided by the governing equation. Therefore,
these three primary hyperparameters determine the model fidelity of the PINN. As these
hyperparameters increase, the model fidelity of the PINN improves meaning that the
PINN predicts the solution of the governing equation more accurately and consistently. In
contrast, the computing cost is likely to decrease as the hyperparameters decrease. In this
regard, considering the trade-off between the accuracy error and computing cost, optimal
hyperparameter combinations for the PINN should be determined. Figure 3 illustrates a
schematic of determining optimal hyperparameter combinations considering this trade-off.
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The accuracy error monotonically decreases with the primary hyperparameters while the
computing cost monotonically increases. By introducing a weight factor α that balances the
importance of the solution accuracy and the computing cost, optimal hyperparameters can
be determined so that the trade-off curve πT is minimized.
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3. Results and Discussion
3.1. Numerical Verification
3.1.1. Rectangular Cross Section

Figure 4 presents a 40 m long simply-supported PSC beam with a rectangular cross-
section (width 0.6 m × height 1.2 m). The specification of the PSC beam is provided in
Table 1. Wet curing is conducted until ts = 3 days, after which shrinkage begins. The
relative humidity of ambient environment RH = 70%. The PSC beam is post-tensioned
to the initial prestressing force such that the initial prestressing ratio fpi/ fpy = 0.7. It
is assumed that the losses of prestressing force due to friction and anchorage draw-in
have been taken into account in the initial prestressing ratio. The profile of the tendon
is straight with a constant eccentricity ratio e/h = 0.3. The time-dependent properties
of concrete are calculated by using CEB-FIP Model Code 1990 [63]. The relaxation of the
tendon is calculated by modifying the intrinsic stress relaxation function proposed by [64]
for low-relaxation steel.
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Table 1. Specification of the PSC beam in Figure 4.

Material Properties Specification

Eci 33,600 MPa
Ep 200 GPa
Ac 0.72 m2

Ic 0.0864 m4

Ap/Ac 1%
e/h 0.3
fck 32 MPa
fcu 36 MPa
fpy 1580 MPa

fpi/ fpy 0.7
wc 25 kN/m3

The forward finite difference method elaborated in Section 2.2.2 and Appendix A
is adopted to obtain reference solutions of Equation (34). The analysis period is from
d0 = 28 days on which the initial prestress transfer is carried out to 365 days, i.e., 0 ≤ t ≤ 337.
Time increment ∆t is 0.01685 day in the finite difference equation. The middle of the PSC
beam is a section of interest for time-dependent analysis.

Table 2 presents hyperparameter combinations for varying NN, NHL and ND which
are three primary hyperparameters described in Section 2.3.2. ND is also known as the
number of residual points. The residual points are randomly selected at the beginning of
training and remain static during the training process. Once the residual points are selected,
the deep neural networks are optimized to satisfy the physics imposed by the integro-
differential governing equation at the selected residual points. A total of 144 combinations
of primary hyperparameters are considered. The ‘elu’ activation function is adopted for
the activation function and the Adam optimizer followed by L-BFGS is employed for
optimization. Equation (36) is accurately approximated using 40 Gauss quadrature points.
All computing simulations were conducted on a workstation equipped with an Intel Core i9-
10900X CPU and an NVIDIA Quadro RTX 6000 GPU, running a Windows 10 Pro operating
system. The DeepXDE [37] was adopted to implement the PINNs with hyperparameter
combinations for solving Equation (34) in Table 2.

Table 2. Hyperparameter combinations of the PINN for solving Equation (34).

Hyperparameter Combinations

NN 16, 32, 64, 128
NNL 5, 6, 7, 8
ND 2, 4, 8, 16, 32, 64, 128, 256, 512

Activation function elu
Optimizer Adam + L-BFGS

Learning rate 0.001
Maximum iteration 10,000 for Adam optimizer

Number of Gauss quadrature points 40

For each hyperparameter combination outlined in Table 2, accuracy errors are calcu-
lated through 30 times Monte-Carlo simulations to confirm the consistency of the predicted
solutions. Here, the accuracy error is defined as the relative root mean square error between
the predicted solution and the reference solution calculated from Equation (33). Figure 5
presents a box plot that exhibits the 16 mean values of the 30 accuracy errors, each corre-
sponding to 1 of the 16 hyperparameter combinations per number of domains. The symbols
‘×’ and ‘o’ represent the mean values and the outliers of 16 mean values of the 30 accuracy
errors, respectively. The median values in the box plot align closely with the mean values
despite some outliers.
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Figure 5. Accuracy error of PINN for solving Equation (34). ‘×’ and ‘o’ represent mean values and
outliers, respectively.

Three implications can be drawn from Figure 5. Firstly, the most critical hyperpa-
rameter is ND; the accuracy error decreases rapidly with ND < 32 and then slows down
with ND ≥ 32. Secondly, when ND is small, the accuracy error deviates to some extent
with varying NN and NHL. As ND increases, however, the impact of NN and NHL on the
accuracy error decreases quickly. Thirdly, when ND is very small, the predicted solution
from PINN is likely to poorly fit the reference solution as shown in Figure 6. In contrast,
when ND ≥ 32, the predicted solutions agree with the reference solution very well, as
shown in Figure 7. The upper and lower bounds depicted in Figures 6 and 7, which are set
at a standard deviation away from the predicted solution, represent the solution precision
for 30 times trials during the Monte-Carlo simulation. As observed in Figure 6, the solution
precision is low when ND is small, regardless of large NN and NHL. Conversely, when
ND ≥ 32, the solution accuracy improves significantly for the identical NN and NHL, as
shown in Figure 7. The point-wise errors of the well-fitted results from PINN in Figure 7
are presented in Figure 8.
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Figure 6. Poorly fitted results from PINN for solving Equation (34) [NN = 128, NHL = 7, ND = 2].
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Figure 7. Well-fitted results from PINN for solving Equation (34) [NN = 128, NHL = 7, ND = 32].
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Figure 8. Point-wise errors of the well-fitted results from PINN in Figure 7.

Similar to Figure 5, Figure 9 illustrates a box plot that provides the mean values of
the 30 computing times, each corresponding to 1 of the 16 hyperparameter combinations
per number of domains. Similar to Figure 5, the median values in the box plot are almost
identical to the mean values, though some outliers are observed. The computing time
increases monotonically as ND increases. Up to ND = 64, the computation time remains
constant regardless of NN and NHL, while for ND ≥ 128, the computation time increases
with NN and NHL.

The optimal ND is determined by using the trade-off curve between accuracy error and
computing cost in Figure 3. The accuracy error πE and the computing cost πC in Figure 3
are calculated with respect to ND by using the associated mean values in Figures 5 and 9,
respectively. Note that the mean values in Figures 5 and 9 are normalized, respectively,
so that the maximum values of πE and πC become unit values. Figure 10 illustrates trade-
off curves to determine an optimal hyperparameter ND for three different weight factors
α = 0.5, 0.7 and 0.8. When α = 0.5, the solution accuracy and the computing cost are
equally important, while the solution accuracy is four times more important than the
computing cost when α = 0.8. Observing Figure 10, the optimal ND corresponds to 16, 32,
and 64 for α = 0.5, 0.7, and 0.8, respectively.
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Figure 10. Determining optimal ND through trade-off curves for different α as described in Figure 3.

Figure 11 presents the predicted solutions from Equation (34) for ND = 16, 32, and 64,
respectively, with NN = 64 and NHL = 8. Note that each predicted solution is the mean of
30 solutions from the Monte-Carlo simulation for each combination of ND, NN and NHL.
For comparison purposes, the predicted solution corresponding to ND = 512, NN = 128
and NHL = 8 is presented as standing for the most accurate solution available from the
PINN, while the numerical solution from the finite difference method is provided as the
reference solution. Overall, the three predicted solutions for ND = 16, 32, and 64 agree very
well with that for ND = 512, and the reference solution after 60 days, though there exist
slight differences from 28 days to 50 days. As ND increases, these differences vanish, as
shown at the right bottom in Figure 11. The corresponding point-wise errors from 28 days
to 50 days are presented in Figure 12.
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Figure 11. The predicted solutions using optimal ND for different α from Figure 10 with NN = 64
and NHL = 8.
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Figure 12. Point-wise errors of the predicted solutions from 28 days to 50 days as in Figure 11.

Based on the observation of Figures 10 and 11, the optimal combinations of the
primary hyperparameters in the PINNs are determined as ND = 32, NN = 64 and
NHL = 8. Note that the number of nodes (NN) and the number of hidden layers (NHL)
affect neither the accuracy error nor the computation time when ND = 32. Therefore, this
hyperparameter combination is adopted in PINNs to solve Equation (34) throughout the
numerical verification otherwise mentioned hereafter.

Figure 13a shows the comparison of the numerical results from the proposed PINN
to the forward finite difference method regarding the loss of prestress force in case all
time-dependent factors of the PSC beam are accounted for. The full coupling among the
elastic modulus, creep and shrinkage of concrete, and the relaxation of tendon affects loss
of prestress force with time. The loss of prestress force surges to 3.7% at 90 days and
approaches 5.8% at 365 days. Figure 13b compares the stresses at the top and the bottom
of the beam and at the tendon location. The final fractional magnitudes of the stresses at
the top and the bottom of the beam, and at the tendon location become 103%, 83.3%, and
69.8%, respectively, compared to those on 28 days. The point-wise errors of the numerical
results from the PINNs in Figure 13 are presented in Figure 14. The proposed method
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yields satisfactory results compared to the forward finite difference method. The absolute
difference at 365 days in loss of prestress force is 0.027%, while that in all stresses at the top
and the bottom of the beam and the tendon location is less than 0.20%.
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Figure 13. Comparison of numerical results from the PINNs (NN = 64, NHL = 8, ND = 32) to the
forward finite difference method: (a) loss of prestress force; (b) stress at the top and the bottom of the
beam and at the tendon location.
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Figure 14. Point-wise error of the numerical results from the PINNs in Figure 13: (a) loss of prestress
force; (b) stress at the top and the bottom of the beam and at the tendon location.

3.1.2. Conventional PSC I-Beam Section

Figure 15 presents a 45 m long simply-supported PSC beam with an I-shaped cross
section. The specification of the PSC beam is provided in Table 3. All design parameters not
present in Table 3 are identical to those in Section 3.1.1 except for the tendon profile, which
is parabolic with a maximum eccentricity ratio e/h = 0.445 at the middle of the beam.
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Table 3. Specification of the PSC I-beam in Figure 15.

Material Properties Specification

Eci 35,385 MPa
Ep 200 GPa
Ac 1.084 m2

Ic 0.6454 m4

Ap/Ac 0.972%
e/h 0.445
fck 40 MPa
fcu 44 MPa
fpy 1580 MPa

fpi/ fpy 0.7
wc 25 kN/m3

The analysis of time-dependent behaviors of the PSC beam is conducted by using the
forward finite difference method in the same way described in Section 3.1.1 to obtain the
reference solution. The analysis period is from the d0 = 7 days on which the initial prestress
transfer is conducted to 365 days, i.e., 0 ≤ t ≤ 358. The time increment ∆t is 0.01685 days
in the finite difference equation. The middle of the PSC beam is a section of interest for
time-dependent analysis. The optimal combination of the primary hyperparameters in the
PINNs is identical to that used in Section 3.1.1: NN = 64, NHL = 8, ND = 32.

Figure 16a illustrates the comparison between the proposed PINNs and the forward
finite difference method for loss of prestress force considering all time-dependent factors
of the PSC beam. The complete interaction among the elastic modulus, concrete creep
and shrinkage, and tendon relaxation influences the prestress loss over time. The loss of
prestress force surges to 8.0% at 90 days and reaches 12% at 365 days. Figure 16b contrasts
the stress levels at the beam’s top, bottom, and tendon locations. The final fractional stress
magnitudes at these locations are 119%, 80.6%, and 80.0%, respectively, compared to those
on 28 days. The point-wise errors of the numerical results from the PINNs in Figure 16 are
presented in Figure 17. The proposed method yields satisfactory outcomes when compared
to the forward finite difference method. The absolute difference at 365 days in prestress
force loss is 0.042% while that in all stresses at the top and the bottom of the beam and the
tendon location remains below 0.0075%.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 22 
 

 

  
(a) (b) 

Figure 16. Comparison of numerical results from PINNs (𝑁 = 64, 𝑁ୌ = 8, 𝑁ୈ = 32) to the for-
ward finite difference method: (a) loss of prestress force; (b) stress at the top and the bottom of the 
beam and at the tendon location. 

  
(a) (b) 

Figure 17. Point-wise error of the numerical results from the PINNs in Figure 16: (a) loss of prestress 
force; (b) stress at the top and the bottom of the beam and at the tendon location. 

4. Conclusions 
In this study, a PINN approach was proposed to predict the early-age time-depend-

ent behaviors of the PSC beam. The original contributions of this study are presented be-
low: 
• The dimensionless integro-differential governing equation is derived for the PINN. 

The governing equation accounts for time-dependent coupling among the effective 
prestress force and several factors including concrete creep and shrinkage, tendon 
relaxation, and changes in concrete elastic modulus. 

• The fidelity of the PINN is determined by three primary hyperparameters: the num-
ber of nodes, the number of hidden layers, and the number of domains. Among these 
primary hyperparameters, the number of domains is the most critical factor for the 
accuracy and consistency of predicted solutions from the PINN. Optimal hyperpa-
rameter combinations for the PINN were determined by considering the trade-off 
between solution accuracy and computation time. 

• The numerical results from the PINN with an optimal hyperparameter combination 
yielded satisfactory results, with absolute differences at 365 days in loss of prestress 

10-5

10-4

10-3

10-2

10-1

100

0 90 180 270 360

Po
in

t-w
ise

 e
rro

r (
%

)

Time (day)

10-5

10-4

10-3

10-2

10-1

100

0 50 100 150 200 250 300 350

Top of the beam
At the tendon location
Bottom of the beam

Po
in

t-w
ise

 e
rro

r (
M

Pa
)

Time (day)

Figure 16. Comparison of numerical results from PINNs (NN = 64, NHL = 8, ND = 32) to the
forward finite difference method: (a) loss of prestress force; (b) stress at the top and the bottom of the
beam and at the tendon location.
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Figure 17. Point-wise error of the numerical results from the PINNs in Figure 16: (a) loss of prestress
force; (b) stress at the top and the bottom of the beam and at the tendon location.

4. Conclusions

In this study, a PINN approach was proposed to predict the early-age time-dependent
behaviors of the PSC beam. The original contributions of this study are presented below:

• The dimensionless integro-differential governing equation is derived for the PINN.
The governing equation accounts for time-dependent coupling among the effective
prestress force and several factors including concrete creep and shrinkage, tendon
relaxation, and changes in concrete elastic modulus.

• The fidelity of the PINN is determined by three primary hyperparameters: the number
of nodes, the number of hidden layers, and the number of domains. Among these
primary hyperparameters, the number of domains is the most critical factor for the
accuracy and consistency of predicted solutions from the PINN. Optimal hyperparam-
eter combinations for the PINN were determined by considering the trade-off between
solution accuracy and computation time.

• The numerical results from the PINN with an optimal hyperparameter combination
yielded satisfactory results, with absolute differences at 365 days in loss of prestress
force being 0.027% and in all stresses at the top and bottom of the beam and the tendon
location being less than 0.2% for PSC beams with a rectangular and an I-shaped section.

• The proposed PINN approach can effectively predict time-dependent behaviors of
PSC beams, offering a promising alternative to conventional numerical methods. The
proposed PINN can address the limitations of conventional machine learning by
training deep neural networks that satisfy the governing equation associated with the
complicated time-dependent behaviors of the PSC beam.

Future work will pursue a PINN to solve inverse problems such as estimating time-
dependent material properties related to the concrete creep and shrinkage, and the re-
laxation of the tendon by using a limited amount of actual measurement data from the
PSC beam. It is necessary to implement a more advanced PINN to solve the proposed
integro-differential equation to improve the performance of the conventional PINN used in
the present study. Future work will explore the incorporation of optimal adaptive activation
functions [43–46], which could further improve its accuracy and convergence.
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Notations

t Time (day) beginning from the initial prestress transfer
d0 The age of concrete at t = 0
Ec(t) Elastic modulus of concrete at time t
Ec0 Elastic modulus of concrete at t = 0 (i.e., Ec(0))
Eci Elastic modulus of concrete at the age of 28 days (i.e., Ec(28− d0))

Ep Elastic modulus of the tendon
n(t) Modular ratio at time t (i.e., Ep/Ec(t))
Ap Gross section area of tendons
Ac Net section area of concrete of PSC beam
y Vertical coordinate with the origin at the centroid of the net concrete section of the beam
h Height of the PSC beam
e Vertical distance from the centroid of the net concrete section of the beam
fck Characteristic compressive strength of concrete
fcu Characteristic ultimate strength of concrete
fpy Yield stress of the tendon
fpi Initial stress of the tendon
wc Specific weight of concrete per unit volume
Pi Initial effective prestress force of tendon after elastic shortening of concrete at t = 0
P(t) Effective prestress force of tendon at time t
Md Bending moment induced by the self-weight of the beam
σ(y, t) Axial-bending stress at location y and time t
εel(y, t) Elastic strain of concrete at location y and time t
εcr(y, t) Creep strain of concrete at location y and time t
εsh(t) Shrinkage strain of concrete at time t.
εnet(y, t) Net strain of concrete at location y and time t
εp(t) Net strain of tendon at time t
εpel

(t) Elastic strain of tendon at time t
εpre

(t) Relaxed strain of tendon at time t

Φ̃cr(t, τ)
Creep coefficient at time t for the unit strain of which the corresponding stress is
Eci applied at time τ

Φcr(t, τ)
Creep coefficient at time t for unit strain of which the corresponding stress is
Ec0 applied at time τ (i.e., Ec0

Eci
Φ̃cr(t, τ))

Φre(t, τ) Relaxation function of the tendon at time t
Φel(t) The ratio of Ec0 to Ec(t) at time t (i.e., Ec0

Ec(t)
)

ϕ(t) Prestress transfer coefficient at time t, i.e., 1
1+n(t)Ap

(
1

Ac
+ e2

Ic

) or 1
1+ΓΦel(t)

γ(y) n(0)Ap

(
1

Ac
− e

Ic
y
)

Γ γ(−e) = n(0)Ap

(
1

Ac
+ e2

Ic

)
εp_d(t)

Elastic strain of concrete at the location of the tendon due to self-weight of the beam
at time t (i.e., Φel(t)

Ec0
σp_d(t) = Φel(t)

Md
Ec0 Ic

e)

Symbol for defining the associated dimensionless variables normalized by Pi,
Pi

Ep Ap
and

Ec0

(
Pi

Ep Ap

)
for forces, strains, and stresses, respectively.
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Appendix A. Numerical Procedures to Calculate P̂(tn) from the Finite Difference
Equation (33)

(1) For tn = t1 = 0, Equation (33) is expressed for P̂(t1) as follows:

P̂(t1) =
ϕ(t1)
ϕ(t1)

+ϕ(t1)[Φcr(t1, t1)︸ ︷︷ ︸
0

(
σ̂p_d − Γ

)
−Φre(t1, t1)︸ ︷︷ ︸

0

{
1 + ε̂p_d(t1)

}
+ε̂sh(t1)︸ ︷︷ ︸

0

] = 1
(A1)

Note that P̂(t1) in Equation (A1) is identical to the initial condition of the dimensionless
effective prestress force, i.e., P̂(0) = 1.

(2) For tn = t2 = ∆t, Equation (33) is written for P̂(t2) as

P̂(t2) =
ϕ(t2)

1+ 1
2 ϕ(t2)χ2,1

{
1

ϕ(t1)
+
[
φ2,1

(
σ̂p_d − Γ

)
− ρ2,1

{
1 + ε̂p_d(t1)

}
+ ε̂sh(t2)

]
+ 1

2χ2,1P̂(t1)
} (A2)

(3) tn ≥ t3 = 2∆t, Equation (33) is expressed for P̂(tn) as follows

P̂(tn)=
ϕ(tn)

1+ϕ(tn)χn,n−1

{
1

ϕ(t1)

+
[
φn,1

(
σ̂p_d − Γ

)
− ρn,1

{
1 + ε̂p_d(t1)

}
+ ε̂sh(tn)

]
− 1

2
[(
χn,n−2 − 2χn,n−1

)
P̂(tn−1)− χn,n−2P̂(tn−2)

]
−

n−3

∑
i=1

ψn,i

} (A3)
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