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Abstract: Affected by the hardware conditions and environment of imaging, images generally have
serious noise. The presence of noise diminishes the image quality and compromises its effectiveness
in real-world applications. Therefore, in real-world applications, reducing image noise and improving
image quality are essential. Although current denoising algorithms can somewhat reduce noise,
the process of noise removal may result in the loss of intricate details and adversely impact the
overall image quality. Hence, to enhance the effectiveness of image denoising while preserving the
intricate details of the image, this article presents a multi-scale feature learning convolutional neural
network denoising algorithm (MSFLNet), which consists of three feature learning (FL) modules, a
reconstruction generation module (RG), and a residual connection. The three FL modules help the
algorithm learn the feature information of the image and improve the efficiency of denoising. The
residual connection moves the shallow information that the model has learned to the deep layer, and
RG helps the algorithm in image reconstruction and creation. Finally, our research indicates that our
denoising method is effective.

Keywords: multi-scale feature learning; denoising algorithm; convolutional neural network

1. Introduction

Because of the impact of hardware devices and their surrounding conditions, noise
will inevitably be generated during image transmission, which could potentially degrade
the image quality. Denoising of images is a low-level vision task and an essential step for
high-level vision tasks. Denoising of images holds a crucial significance in the domains of
satellite remote sensing, medicine, military, and internet technology[1,2]. Mathematically,
an image denoising model can be expressed as y = x + n, where y represents the original
image, x corresponds to a noise-free clean image, and n represents the noise component.

Algorithms for image denoising can be broadly classified into three categories: filter-
based approaches, learning-based techniques, and model-based methods. The filter-based
approach employs a few manually created filters to eliminate image noise. The adaptive
Wiener filter [3], the bilateral filter, the Gaussian filter, and the median filter [4] are some
of the more well-known filter-based algorithms. Nevertheless, these algorithms require
manual parameter tuning, and there is a risk of losing image details during the denoising
process [5–9].

For model-based techniques, the distribution of the images and noise must be mod-
eled. The technique is then optimized while attempting to generate a clear image using the
distribution of the model as a prior. As a result, the model-based algorithm’s first phase
entails capturing the noise characteristics that are built into the image and then using what
is already known about the image to remove the noise in an efficient manner. The non-local
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mean (NLM) algorithm utilizes a weighted average of blocks that share similarities with
each other in order to eliminate noise [10]. The BM3D algorithm realizes image denois-
ing by enhancing sparsity [8]. Different from the general low-rank clustering algorithm,
WNNM [11] utilizes distinct weights for singular values to maximize the utilization of
prior knowledge. This approach involves leveraging prior information to determine the
kernel norm employed in the process of image denoising. Finally, the effect of denoising
is obtained. However, the shortcomings of these algorithms are also obvious. The level
of noise must be identified in advance, and the denoising process in the testing phase is
time-consuming due to the algorithm’s intricate optimization problems. This complexity
leads to a prolonged duration for achieving optimal denoising results. In an effort to en-
hance the denoising capabilities, the CSF algorithm uses the statistical characteristics of the
model based on random fields and the optimization ability of the expanded semi-quadratic
algorithm to reduce the noise [12]. By performing a predetermined number of gradient
descent iterations, the TNRD algorithm [13] can progressively update the denoised image,
iteratively reduce noise and enhance image quality. While both CSF and TNRD algorithms
exhibit their own unique strengths, they are essentially limited to fixed priors, and these
algorithms are specific to specific noise, so their processing on blind noise is not ideal.

Thanks to AlexNet [14], ResNet [15], and other models, the denoising algorithm based
on learning is very effective in processing images, and the image denoising algorithm
based on convolutional neural network (CNN) has demonstrated remarkable performance
and achieved significant advancements in the field [16–21]. For instance, a feed-forward
denoising convolutional neural network (DnCNN [22]), which combines the principles of
residual learning and batch normalization, designs an end-to-end network. The algorithm
learns the noise of noisy pictures and then effectively improves the effect of denoising.
Zhang et al. introduce an innovative denoising algorithm that is characterized by its speed
and flexibility (FFDNet) [23]. Tian et al. propose an algorithm that uses residual learning
and BN to solve model training difficulties (ECNDNet [24]). In order to extract more image
information, the algorithm uses dilated convolution to extract context information. Tian et
al. propose an algorithm that increases the influence of shallow features on deep features
and propose four modules (ADNet [25]). Tian et al. propose an algorithm (BRDNet [26])
that combines two networks to increase the network width. Kligvasser et al. propose
a denoising algorithm (xUnit [27]) using a new activation function, which reduces the
parameters of the model as much as possible while ensuring the effect of the algorithm
remains unchanged. Although these denoising techniques have successfully reduced
noise, it is important to acknowledge that their feature extraction methods rely on fixed-
scale approaches. This limitation restricts their ability to fully extract and utilize the rich
information present in the image. Gou et al. introduce a noteworthy improvement in the
field of image denoising with their proposed multi-scale adaptive network (MSANet [28]),
which considers both the characteristics of the scale and the complementarity across scales
and integrates them into the multi-scale design, which effectively improves the denoising
performance of the image. However, the algorithm still does not take into account the loss
of image details.

Building upon the aforementioned challenges, this paper introduces an innovative
denoising algorithm based on the FL module and RG module. The algorithm improves
the overall denoising process by transferring shallow information to the deeper layers
of the network. The FL module can fully utilize the Res2Net module to extract image
features [29], the information of the image is extracted from the perspectives of different
dimensions, and detailed information is preserved. The residual connection transfers the
shallow information to the deep network, helps the algorithm combine global and local
information, improves the effect of an algorithm, and reduces the complexity of a model.

The main contributions of this paper are as follows:
(1) This algorithm uses the Res2Net network structure to design the FL module and

the RG module. The FL module fully extracts image information from different scales, uses
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RG to reconstruct a clean image, improves the denoising performance of the algorithm,
and ensures that detailed information in the image is preserved without being lost.

(2) This paper incorporates residual connections, enabling the transfer of information
from shallow layers to deep layers. This combination of global and local features enhances
the noise reduction efficiency of the algorithm. Additionally, this approach helps reduce
the complexity of the model, making it more computationally efficient.

(3) This paper presents experimental results on datasets to validate the proposed
approach for image denoising. The results demonstrate that MSFLNet achieves good
performance in terms of denoising quality, as evidenced by excellent values of peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM).

The remaining parts of this article are as follows. Section 2 discusses the relevant
existing work related to the proposed method. Section 3 details the proposed method.
It presents the algorithm, network architecture, and techniques used in the study. In
Section 4, this article introduces a large number of experimental results generated using
the proposed method. This paper concludes with Section 5, which summarizes the key
findings, contributions, and implications of the research.

2. Related Work
2.1. Residual Connection

As the number of network layers increases, the algorithm’s effectiveness can indeed
be improved to a certain extent, but one problem that can arise with deeper networks is the
gradient explosion. To overcome the challenge and improve the algorithm’s performance,
the residual block that ResNet proposes combines the input of the original image with the
output of several layers and feeds it to the following layer. The incorporation of residual
connections plays a vital role in enabling the transfer of information from the shallow layer
to the deep network within the algorithm, which can help the algorithm combine local and
global. It can also solve a series of problems arising from the increase in the number of
network layers.

2.2. Res2Net

Multi-scale feature learning methods differ from fixed-scale extraction methods. The
multi-scale module excels at extracting image information from diverse dimensions, im-
proving the efficiency of image denoising. Based on this, Res2Net proposes a multi-scale
module built inside the residual block to form receptive fields of different sizes and obtain
different fine-grained features. As shown in Figure 1, after the image information passes
through the 1 × 1 convolutional layer, the image’s feature information is segmented into s
subsets, where s is the number of subsets into which the feature information is divided. The
segmented image information is represented by xi, where every part is the same size. But
the number of channels is 1/s of the input feature map of the previous layer, where each
part has a corresponding 3 × 3 convolution, hi(xi) represents the 3 × 3 convolution, and
yi represents the output of multi-scale feature learning methods. Each part is fused with
each other after passing through different convolutional layers, and finally, the network
will learn image information from different scale dimensions. As shown in Formula (1),
the information of the image is represented by xi. Further information is learned and
represented by yi after Res2Net extracts the image information xi.

yi =


xi
hi(xi)
hi(xi + yi−1)

i = 1
i = 2

2 < i ≤ s
(1)
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Figure 1. Res2Net module. Res2Net proposes a multi-scale module built inside residual blocks to
form receptive fields of different sizes and obtain different fine-grained features.

3. Network Structure

In this section, the algorithm will be introduced, which is composed of three FL
modules, one RG module, and a residual connection. The FL module makes full use of
the learning method of multi-scale features to obtain image information. The multi-scale
feature learning method extracts noise and details from different dimensions of the image.
The RG module utilizes the image information learned by the FL module to reconstruct
and generate clean images.

3.1. MSFLNet Module

The network structure of MSFLNet is visually represented in Figure 2. First, the
noise-containing picture is input to the Conv layer of the first layer, the information of the
image is initially extracted, and then all the information is passed to three FL modules
and one RG module. The FL module contains two multi-scale feature modules (Res2Net)
and three Conv+BN+ReLu (convolutional layer + batch normalization layer + activation
function). The model is too deep in the network training process, which may cause the
algorithm to produce a gradient explosion, and the gradient explosion will affect the
effect of the algorithm. Therefore, to address the issue of gradient explosion, expedite
network convergence, and facilitate easier training, the MSFLNet architecture incorporates
batch normalization (BN) layers. These BN layers normalize the data flowing through the
convolutional (Conv) layers. This normalization process ensures that the data are centered
and scaled, preventing the gradients from becoming excessively large or small during
training. By maintaining stable gradients, BN accelerates the convergence of the network
and aids in more efficient training of the algorithm. By incorporating ReLU activation,
MSFLNet can effectively capture and represent complex and non-linear relationships within
the data. This is achieved by enabling the network to learn and propagate both positive and
negative activations, allowing for richer feature representation and increased expressive
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power. The FL module fully utilizes multi-scale feature learning methods of Res2Net
to extract more feature information. But unlike the three FL modules, the RG module is
composed of two multi-scale feature modules (Res2Net), two Conv+BN+ReLu (convolution
layer + batch normalization layer + activation function), one Conv+BN, and one Conv, and
the RG module helps the algorithm to reconstruct and generate a clean image. By combining
the original information of the image with the information propagated through the second
FL module, the residual connection establishes a direct pathway for information transfer.

Figure 2. FL module. The FL module is composed of two multi-scale feature modules (Res2Net) and
three ResNetConv+BN+ReLu.

3.2. FL Module

In image denoising algorithms, the key challenge lies in effectively extracting the noise
from the image while preserving the essential information of the clean image. Therefore,
to ensure that an algorithm effectively removes noise from an image while retaining
the complete information from the original image, the algorithm designs an FL feature
extraction module. The FL module for extracting features is composed of two multi-
scale feature modules (Res2Net) and three Conv+BN+ReLu (convolution layer + batch
normalization + activation function) modules. Two multi-scale extraction modules are
connected together that can leverage the inherent characteristics of the multi-scale feature
learning methods, extract image information from different dimensions, and add three
ResNetConv+BN+ReLu after the two multi-scale feature learning methods, which can
improve the extraction ability of the FL module. In ResNetConv+BN+ReLu (convolution
layer + batch normalization + activation function), the function of the convolution layer is to
extract image feature information. BN can perform batch normalization operations on the
feature information extracted by the convolution layer, which can significantly expedite the
convergence of the network to mitigate the issue of gradient explosion. The ReLu activation
function can help the model provide non-linear capabilities and accelerate the training
of the network model. Therefore, adding three ResNetConv+BN+ReLu (convolutional
layer + batch normalization + activation function) methods after the two multi-scale feature
learning methods to form the FL module can effectively enhance the network’s feature
extraction capability. Assuming that the information of the first 3 × 3 convolutional layer of
the model is passed to the FL module, the first multi-scale module first extracts the image
information, as shown in Equation (2); X denotes the image information; while R1 signifies
the output of the first multi-scale module, namely:

R1 = R(Conv3×3(X)) (2)

Then, after the first multi-scale module learns the image information, it transfers the
information to the second multi-scale module. R2 is represented as the output of the second
multi-scale module, namely:

R2 = R(R1(X)) (3)
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After the second multi-scale module learns the image information, the information is
first passed to the first ResNetConv+BN+ReLu (convolution layer + batch normalization +
activation function). CBR is expressed as the output of ResNetConv+BN+ReLu, namely:

CBR = Relu(BN(Conv3×3(R2(R1(X))))) (4)

The information of the image is then transmitted to the second and third layers of
ResNetConv+BN+ReLu (convolution layer + batch normalization + activation function),
and finally, FL outputs information, represented by REC. CBR1, CBR2, and CBR3 repre-
sent the output of ResNetConv+BN+ReLu (convolution layer + batch standardization +
activation function) of the first, second, and third layers, respectively, namely:

REC = CBR3(CBR2(CBR1(R2(R1(X)))))) (5)

3.3. RG Module

After all the image information is learned by the network model, it needs to be
reconstructed to generate a clean image. Therefore, we designed an RG module for image
reconstruction, as shown in Figure 3, which consists of two multi-scale feature modules
(Res2Net), two ResNetConv+BN+ReLu (convolution layer + batch normalization layer +
activation function) modules, one Conv+BN module, and one Conv module. Two multi-
scale feature modules (Res2Net) can help the algorithm extract the image information
learned by the network and ultimately transfer all information to the last Conv layer to
generate a clean image.

Figure 3. RG module. RG module is composed of two multi-scale feature modules (Res2Net),
two ResNetConv+BN+ReLu (convolution layer + batch normalization layer + activation function)
modules, one Conv+BN module, and one Conv module.

After the last FL module learns the image information, it transfers all the information
to the RG module and reconstructs and generates a clean image, where R3 represents the
result of the first multi-scale feature module (Res2Net) in the RG module, R4 represents the
result of the second multi-scale feature module (Res2Net), and x is the result of the previous
module. CBR4 and CBR5 represent the output of ResNetConv+BN+ReLu (convolution
layer + batch standardization + activation function) of the first and second layers, respec-
tively. CB represents the output of Conv+BN (convolutional layer + batch normalization),
C2 represents the input of the last layer of Conv, and C3 represents the output of the RG
module, namely:

C2 = CB(CBR5(CBR4(R4(R3(x))))) (6)

C3 = Conv3×3(C2) (7)
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3.4. Loss Functions and Optimizers

The convolutional neural network utilizes the loss function to quantify the disparity
between the actual value and the predicted value. A smaller loss function indicates a
superior performance of the algorithm. The smooth curve of the mean squared error
(MSE) loss function facilitates network training. Hence, this algorithm adopts the MSE loss
function, which is also referred to as the L2 loss function. As shown in Equation (8), N
represents the total number of images in the training set, xi represents the image obtained
from training the neural network with noisy images, and yi represents the clean image
corresponding to the noisy images.

MSE =
1
N

N

∑
i=1

(xi − yi)
2 (8)

Throughout the model training process, the optimizer plays a crucial role in facilitating
parameter updates and guiding the model towards its optimal state. By combining the
strengths of AdaGrad (adaptive gradient) and RMSProp (root mean square prop), the
Adam optimizer leverages the advantages of both optimization algorithms. Taking into
account a comprehensive estimation of the first-order and second-order moments of the
gradient, the Adam optimizer calculates the update step size. The Adam optimizer is
simple to implement and takes up less memory. It is particularly well suited for models
with large-scale data and parameters. Hence, this article chooses Adam to help the model
train to the optimal solution.

4. Experimental Results and Analysis

In this section, we will introduce the experiments of the algorithm on several image
test sets, and conduct quantitative and qualitative analysis of the experimental settings and
experimental results.

4.1. Experimental Environment

In order to give full play to the effect of our model, the learning rate is initially set to
0.0001, which is reduced to the original 0.2 every 30 epochs. During the training process,
the batch size is set to 128, the patch is set to 40 × 40, and the Adam optimizer is selected.
The training of this algorithm is conducted within a deep learning environment based on
PyTorch 1.11.0 and Python 3.8 on an Ubuntu 20.04 system. The GPU is NVIDIA GeForce
RTX3080, and cuda11.3 and conda8.2.1 are used to accelerate the network training of the
GPU.

4.2. Training Dataset

The data sets used by the algorithm are Train400 [23], DIV2K [30], and SIDD. Train400
is 400 pictures in the Berkeley segmentation data set. The data set contains 400 clear
grayscale pictures of 180 × 180. The pictures are rich in content, including various types
of animals, landscapes, faces, and more. To improve the denoising performance of our
algorithm, 800 pictures in the DIV2K dataset are selected as part of the dataset. The DIV2K
dataset is a relatively common dataset in the field of super-resolution reconstruction. In
order to facilitate training, it is scaled to a 180 × 180 size picture, and the data set is
expanded by flipping the data set by 90°, 180°, 270°, and zooming. In order to train our
MSFLNet algorithm model, the model trains Gaussian noise with noise levels of 15, 25,
and 50, sets a patch size of 40 × 40, and finally, we generated 715,200 patches for image
noise training. For real noise denoising, The algorithm selects the SIDD dataset. SIDD is
a smartphone image denoising training set that includes paired clean and noisy images.
We chose 140 images and cut them to 1024 × 1024 in size. We expanded the dataset by
performing data augmentation on those images in order to increase the dataset.
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4.3. Test Dataset

To validate the efficacy of our algorithm in removing noise, BSD68 [23] and Set12 [23]
are selected. BSD68 contains 68 grayscale images with rich content, and Set12 is a dataset
with 12 grayscale images. We conduct experiments on two test sets at noise levels of 15,
25, and 50. For the experiment on real noise images, we selected images from the SIDD
dataset and PolyU dataset for the experiment. PolyU is a large-scale dataset containing
real-world noisy images. We selected 14 images from the SIDD dataset and cropped them
to 1024 × 1024 in size. Similarly, we selected 16 images from the PolyU dataset and cropped
them to 1024 × 1024 in size. The algorithm selects the TNO dataset to test the denoising
of infrared images. TNO is a dataset that integrates infrared and visible light images,
including infrared and visible light images in military, security, and other scenarios. This
algorithm cropped 19 images from the TNO dataset and tested the denoising of infrared
images on them.

4.4. Experimental Analysis

We use DnCNN, xUnit, ECNDNet, ADNet, MSANet, and this algorithm to test on
BSD68 and Set12. We first conduct experimental comparisons on the BSD68 test set. As
shown in Tables 1 and 2, our algorithm outperforms other algorithms in PSNR and SSIM
on the BSD68 test.

Table 1. The average value of PSNR of different algorithms on the BSD68 test set at noise levels of 15,
25, and 50.

Data Set Algorithm Sigma = 15 Sigma = 25 Sigma = 50

BSD68

DnCNN 31.584 29.058 26.003
xUnit 31.522 29.078 26.072

ECNDNet 31.549 29.024 25.996
ADNet 31.579 29.058 26.057

MSANet 31.592 29.079 26.061
MSFLNet 31.594 29.096 26.139

The bold one in the table is the best indicator.

Table 2. The average value of SSIM of different algorithms on the BSD68 test set at noise level 15, 25,
and 50.

Data Set Algorithm Sigma = 15 Sigma = 25 Sigma = 50

BSD68

DnCNN 0.9416 0.9028 0.8265
xUnit 0.9410 0.9035 0.8293

ECNDNet 0.9414 0.9023 0.8268
ADNet 0.9417 0.9027 0.8278

MSANet 0.9420 0.9033 0.8285
MSFLNet 0.9420 0.9042 0.8314

The bold one in the table is the best indicator.

As shown in Table 3, we experimented with the algorithm on the Set12 test set.
redAs shown in Table 4, our algorithm exhibits higher SSIM indicators compared to other
algorithms. We experimented with all the algorithms on each picture on Set12 and tested
their PSNR values. As shown in Table 3, our algorithm performs better in denoising
experiments with a noise level of 50, and also performs well in experiments with other
noise levels.
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Table 3. PSNR value and average value of each picture on Set12 for different algorithms.

Images C.man House Peppers Star. Mon. Air. Parrot Lena Barbara Boat Man Couple Average

Noise Level sigma
= 15

DnCNN 32.664 35.003 33.260 32.144 33.260 31.696 31.908 34.560 32.668 32.417 32.435 32.452 32.872

xUnit 32.524 34.894 33.165 32.009 33.108 31.634 31.869 34.467 32.422 32.359 32.389 32.361 32.767

ECNDNet 32.536 34.939 33.208 32.118 33.157 31.624 31.825 34.505 32435 32.401 32.408 32.393 32.796

ADNet 32.7813 35.192 33.466 32.100 33.247 31.790 31.979 34.698 32.841 32.597 32.473 32.578 32.979

MSANet 32.699 35.159 33.236 32.120 33.196 31.819 31.944 34.691 32.676 32.551 32.482 32.578 32.929

MSFLNet 32.777 35.137 33.408 32.223 33.311 31.832 32.011 34.638 32.765 32.497 32.497 32.560 32.972

Noise Level sigma
= 25

DnCNN 30.264 33.138 30.810 29.394 30.455 29.087 29.444 32.422 30.057 30.217 30.085 30.091 30.455

xUnit 30.259 33.127 30.832 29.427 30.456 29.093 29,459 32.468 30.061 30.231 30.101 30.137 30.471

ECNDNet 30.138 33.009 30.764 29.361 30.374 29.041 29.419 32.356 29.902 30.171 30.056 30.023 30.385

ADNet 30.397 33.373 31.077 29.339 30.429 29.143 29.543 32.624 30.316 30.388 30.114 30.253 30.583

MSANet 30.251 33.395 30.936 29.522 30.409 29.148 29.424 32.604 30.236 30.340 30.143 30.279 30.557

MSFLNet 30.428 33.296 30.989 29.428 30.522 29.183 29.606 32.538 30.161 30.265 30.130 30.250 30.567

Noise Level sigma
= 50

DnCNN 27.348 30.081 27.410 25.645 26.829 25.848 26.468 29.352 26.201 27.209 27.196 26.892 27.207

xUnit 27.362 30.171 27.438 25.716 26.906 25.859 26,396 29.479 26.298 27.268 27.233 27.001 27.261

ECNDNet 27.166 29.965 27.244 25.681 26.815 25,785 26.277 29.287 26.219 27.172 27.175 26.871 27.138

ADNet 27.410 30.417 27.603 25.685 26.888 25.866 26.642 29.606 26.563 27.391 27.237 27.088 27.366

MSANet 27.207 30.507 27.556 26.019 26.819 25,884 26,448 29.568 26.841 27.347 27.292 27.127 27.384

MSFLNet 27.505 30.509 27.629 25.85 27.023 25.960 26.716 29.643 26.809 27.38 27.284 27.165 27.456

The bold one in the table is the best indicator.

Table 4. The average value of PSNR and SSIM of different algorithms on the TNO test set at noise
levels of 15, 25, and 50.

Data Set Algorithm Sigma = 15 Sigma = 25 Sigma = 50

TNO

DnCNN 34.2508/0.9381 32.5658/0.9181 30.1155/0.8799
xUnit 34.2516/0.9387 32.5917/0.9194 30.2127/0.8835

ECNDNet 34.2549/0.9387 32.5721/0.9194 30.144/0.8832
ADNet 34.3319/0.9393 32.6105/0.9200 30.2417/0.8852

MSANet 34.2822/0.9389 32.5634/0.9189 30.0448/0.8795
MSFLNet 34.3009/0.9392 32.6394/0.9203 30.2829/0.8861

The bold one in the table is the best indicator.

We selected a picture in the BSD68 dataset and the Set12 dataset and provided a
comparison of the denoising results between our algorithm and other algorithms. As
shown in Figure 4 and Figure 5, the figure clearly demonstrates that our algorithm produces
denoised results that are notably clearer while effectively preserving the details of the image.
And the indicators of PSNR and SSIM are also higher.
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(a) Sigma = 15 (b) Original image (c) DnCNN (32.1443/0.9548)

(d) xUnit (32.0098/0.9539) (e) ECNDNet (32.1186/0.9548) (f) ADNet (32.1005/0.9544)

(g) MSANet (32.1206/0.9546) (h) MSFLNet (32.2230/0.9555)

Figure 4. Results of selecting an image from the Set12 test set and denoising it with different
algorithms when the noise level is 15.

For the experiment on infrared image denoising, we selected images from the TNO
dataset for the experiment. We selected 19 images from the dataset and cropped them to
256 × 256 in size. We tested the denoising of infrared images on the test set using DnCNN,
xUnit, ECNDNet, ADNet, MSANet, and our algorithm. As shown in Table 4, our algorithm
performs well on PSNR and SSIM.

In the TNO dataset, we selected an image, and provided a comparison of the denoising
results between our algorithm and other algorithms. As shown in Figure 6, the results show
that our algorithm achieves clearer denoising results and preserves the details of the image.
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(a) Sigma = 50 (b) Original image (c) DnCNN (29.8017/0.9107)

(d) xUnit (30.2233/0.9155) (e) ECNDNet (30.1803/0.9136) (f) ADNet (30.2865/0.9165)

(g) MSANet (30.3147/0.9168) (h) MSFLNet (30.3904/0.9185)

Figure 5. When the noise level is 50, the result of denoising an image selected from BSD68 with
different algorithms.

We tested the denoising of real noisy images on SIDD and PolyU using DnCNN, xUnit,
ECNDNet, ADNet, MSANet, and our algorithm. As shown in the Table 5 and Table 6, our
algorithm performs well on PSNR and SSIM.

Table 5. The average value of PSNR and SSIM of different algorithms on the dataset on SIDD.

Data Set DnCNN xUnit ECNDNet ADNet MSANet MSFLNet

SIDD 37.66/0.939 34.77/0.886 28.85/0.668 36.44/0.910 38.557/0.956 38.634/0.953

The bold one in the table is the best indicator.
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(a) Noise image (b) Original image (c) DnCNN (35.4561/0.9742)

(d) xUnit (35.7992/0.9767) (e) ECNDNet (35.5049/0.9747) (f) ADNet (35.9205/0.9771)

(g) MSANet (35.2287/0.9663) (h) MSFLNet (36.1534/0.9784)

Figure 6. Results of selecting an image from the TNO test set and denoising it with different
algorithms.

Table 6. The average value of PSNR and SSIM of different algorithms on the dataset on PolyU.

Data Set DnCNN xUnit ECNDNet ADNet MSANet MSFLNet

PolyU 36.85/0.962 37.00/0.964 35.86/0.940 36.80/0.954 35.81/0.967 37.24/0.973

The bold one in the table is the best indicator.

We selected a picture in the SIDD dataset and listed the denoising results of our
algorithm and other algorithms. As can be seen from the Figure 7, the denoising results of
our algorithm are clearer, and the details of the picture are preserved.
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(a) Noise image (b) Original image (c) DnCNN (41.82/0.994)

(d) xUnit (39.88/0.991) (e) ECNDNet (36.04/0.976) (f) ADNet (41.79/0.993)

(g) MSANet (41.66/0.994) (h) MSFLNet (43.05/0.995)

Figure 7. Results of selecting an image from the SIDD test set and denoising it with different
algorithms.

4.5. Ablation Experiment

To verify the rationality of our algorithm, as shown in Table 7, we designed ablation
experiments. On real noise images, we performed denoising experiments using ‘baseline
model’, ‘RG+baseline’, ‘RG+baseline’, ‘RG+FL1’, ‘RG+FL2’, and ‘RG+FL’ (MSFLNet) in that
order. The ‘baseline model’ represents replacing the model proposed by the algorithm with
the same amount of convolutional layers. ‘RG+baseline’ and ‘FL+baseline’ denote the use
of the corresponding blocks on the basis of the ‘baseline model’. Using RG modules on the
base of the baseline module is indicated by the notation ’RG+baseline’. Meanwhile, using
FL modules on the base of the baseline module is indicated by the notation ’FL+baseline’.
On the basis of ’RG+baseline’, ’RG+FL1’ and ’RG+FL2’ indicate blocks employing one and
two FL modules, respectively.

Table 7. The average value of PSNR and SSIM of different modules on the dataset on SIDD.

Data Set Baseline
Model RG+Baseline FL+Baseline RG+FL1 RG+FL2 MSFLNet

SIDD 37.06/0.930 37.88/0.943 37.56/0.947 38.31/0.952 38.46/0.952 38.63/0.953

The bold one in the table is the best indicator.
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4.6. Ablation Experiment

The total number of model parameters (Parameters) and model computation (FLOPs)
can reflect the complexity of the model to a certain extent. If the total number of model
parameters and model computation are too large, the model is not suitable for practical
applications. Therefore, in order to verify the rationality of the model, as shown in Table 8,
we calculated the total number of model parameters and the amount of model calculations
for each algorithm. From the table, it can be seen that the total number of parameters
and calculation amount of our model are relatively reasonable. The model can effectively
remove image noise in practical applications.

Table 8. The total number of model parameters and model calculations for each algorithm.

Data Set DnCNN xUnit ECNDNet ADNet MSANet MSFLNet

FLOPs 7.1 G 4.1 G 6.6 G 6.7 G 27.1 G 7.3 G

Parameters 0.14 M 0.08 M 0.13 M 0.13 M 7.99 M 0.14 M

The bold one in the table is the best indicator.

5. Conclusions

In this paper, we introduce a denoising algorithm that is built upon the MSFLNet
network, which includes the three FL modules and the RG module we proposed. It uses the
multi-scale feature extraction ability to extract image information from different dimensions
and combines the image shallow information and deep information to help the network to
learn image information, significantly enhance the denoising effectiveness, and improve the
algorithm’s capability to preserve image details. The experiment proves the effectiveness
of the MSFLNet algorithm in image denoising.
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