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Abstract: Insert gradient coils with similar imaging body shapes typically have smaller dimensions
and higher spatial efficiency. This often allows the gradient coils the achievement of stronger and
faster gradient fields. Thus, improving existing methods to make them applicable to the design of MRI
gradient coils on complex surfaces has also become a challenge. This article proposes an algorithm
that smooths the implicitly expressed stream function based on the intrinsic surface Laplace–Beltrami
operator. This algorithm can be used to simplify the design procedure of MRI gradient coils on
non-developable surfaces. The following steps are performed by the proposed algorithm: an initial
design of the stream function configuration, extraction of the surface mesh, discretization of the
surface smoothing operator, and a smoothing of the contour lines. To evaluate the quality of the
smoothed streamline configuration, several technical parameter metrics—including magnetic field
accuracy, coil power consumption, theoretical minimum wire spacing, and the maximum curvature
of the contour lines—were evaluated. The proposed method was successfully validated in a design
gradient coil on both developable and non-developable surfaces. All examples evolved from an
initial value with a locally non-smooth and complex topological configuration to a smooth result
while maintaining high magnetic field accuracy.

Keywords: MRI gradient coils; non-developable surface; stream function smoothing method; implicit
function diffusion equation

1. Introduction

MRI is widely used in medical imaging for its high accuracy and due to the fact that
it utilizes non-ionizing radiation. One of MRI’s basic components, gradient coils, encode
the spatial information of a signal during imaging. This process provides localization
information of the MR images. The earliest coils to provide gradient magnetic fields had a
simple structure and were developed by Maxwell and Golay, e.g., Maxwell coil pairs and
Golay coils [1,2]. Medical imaging has grown in sophistication since its first introduction;
similarly, the design method of gradient coils has become more and more complex, which
means the number of contours has also increased. One of the most widely used methods
through which to determine optimal coil loop contours for a specific current-carrying
surface is the stream function method (SFM) [3–5].

The SFM transforms the coil design problem into the calculation of the contour lines
of a scalar stream function (SF), which is defined on a certain current-carrying surface
geometry. The SFM uses the function values related to the SF to represent the current density
of the design surface. After discretizing the process, a minimum least squares problem is
applied, and the coil structural design problem is transformed into a numerical problem
represented by a matrix equation. The SFM was initially only applicable to geometric
surfaces such as planes, cylindrical surfaces, and super-elliptical cylindrical surfaces [6,7],
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which are developable surfaces (a developable surface is a surface that can be flattened onto
a plane without stretching or distorting). In recent years, however, with the expansion of
MRI applications, traditional integrated body MRI systems no longer meet the demand for
high-precision localized MRI imaging in clinical and research settings. Thus, insert gradient
coils were developed to generate stronger and faster gradient fields. The gradient slew rate
is directly proportional to the inverse of the coil radius’ fifth power [2,8]. Thus, in order
to further reduce the coil size and increase spatial efficiency, conformal surfaces are used
as the current-carrying surfaces for the gradient coils. In MRI, a conformal surface refers
to a surface that has the same shape as the imaging object. These surfaces are typically
non-developable. Subsequently, Ren [9] extended the SFM’s application range to non-
developable surfaces such as spherical surfaces and human head surfaces by applying
external tangential gradient operators and Delaunay meshes.

However, in practical optimization processes, the SFM faces an unavoidable issue. The
matrix used for solving the optimization has a large condition number, which makes the
problem ill-conditioned. In order to calculate the solution of the ill-conditioned equation
group smoothly, a regularization term [10,11] needs to be introduced to the matrix. Al-
though the introduction of the regularization term can improve the ill-conditioned equation
group so that it may be solved easily, it also introduces new problems: the selection of
the optimal regularization coefficient. A regularization coefficient that is too large reduces
the main objective value of the coil optimization function and decrease magnetic field
accuracy, but too small of a regularization coefficient results in non-smooth contour lines
and generates reverse loops. Due to the non-smoothness of contour lines often occurring
only in localized regions of the design domain, we also term this occurrence as “local
oscillation of the contour line”. These non-smooth contour lines and reverse loops increase
the thermal effects of the coil, and also increase the cost of coil post-processing, which we
hope to avoid as much as possible. During the manufacturing process of the coil, an initial
configuration with poor smoothness can also lead to an increase in the final magnetic field
error. Therefore, balancing magnetic field accuracy and coil smoothness has always been a
research point for gradient coil design [12].

The previous solution of this type of problem was to sample enough regularization
parameters for optimization, and then obtain the Pareto curve for the optimization main
objective versus the regularization term [6]. After gradual iterative calculations, the regu-
larization parameter selected is near the inflection point of the curve. Finally, a smoother
result can be obtained within the magnetic field accuracy design range. However, this
method is more cumbersome due to its computational cost. The data composition and
post-iteration of the L-curve require a great deal of repeated calculations and manual
adjustments. Therefore, this article is committed to exploring another method, whereby the
idea of smoothing to transform the problem of parameter value regularization into a more
direct SF smoothing problem is used. This method obtains a coil structure that meets the
design goal and does not have non-smooth contours or reverse loops in a more convenient
and direct way. Thus, coil designers can quickly obtain an initial solution that has local
oscillations in the preliminary design, and one can then improve these local oscillations
via smoothing.

While solving partial differential equations on the surface, the finite element method
is widely used to discretize the surface geometry. The finite element method typically
considers a single discrete triangle mesh as a plane, ignoring the geometric characteristics
of the entire surface. For a design domain of a flat or developable surface, this problem can
be ignored. However, in an undevelopable surface design domain, considering discrete
triangles as planar surfaces results in loss of curvature and results in other undevelopable
characteristics. One of the reasons why the Delaunay mesh is widely used for surface
discretization is that it can make the normal vectors of mesh nodes converge to the initial
surface, which leads to an external coil design scheme [9]. However, the external method
does not consider node curvature information and is heavily dependent on the accuracy of
discrete surface normal vectors. It is not suitable for the SF smoothing discussed in this



Sensors 2023, 23, 7912 3 of 18

article. Therefore, we introduce the Laplace–Beltrami operator ∆Γ, and provide an intrinsic
solution to a surface Laplace problem.

To improve the efficiency of coil design, we simplify the complexity of post-processing
and reduce the accuracy loss caused by complex post-processing; this is necessary to
smooth the SF contour lines. To achieve this goal, this article proposes an algorithm based
on intrinsic operators so as to design and smooth SFs for any continuous surface.

2. Methods

In this section, we develop a general method for smoothing functions on surfaces,
which are represented by triangular meshes. The proposed algorithm consists of several
steps: optimization of the SF, extraction of the surface mesh information, a smoothing of
the operator structuring, a smoothing process and loop parameter calculation, and finally
an evaluation of the smoothing effectiveness based on the curvature change in the contour
lines of the SF. Figure 1 illustrates the process of these steps.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 19 
 

 

accuracy of discrete surface normal vectors. It is not suitable for the SF smoothing dis-
cussed in this article. Therefore, we introduce the Laplace–Beltrami operator ∆Γ, and pro-
vide an intrinsic solution to a surface Laplace problem. 

To improve the efficiency of coil design, we simplify the complexity of post-pro-
cessing and reduce the accuracy loss caused by complex post-processing; this is necessary 
to smooth the SF contour lines. To achieve this goal, this article proposes an algorithm 
based on intrinsic operators so as to design and smooth SFs for any continuous surface. 

2. Methods 
In this section, we develop a general method for smoothing functions on surfaces, 

which are represented by triangular meshes. The proposed algorithm consists of several 
steps: optimization of the SF, extraction of the surface mesh information, a smoothing of 
the operator structuring, a smoothing process and loop parameter calculation, and finally 
an evaluation of the smoothing effectiveness based on the curvature change in the contour 
lines of the SF. Figure 1 illustrates the process of these steps. 

Initial stream function 
optimization 

with any small regular 
parameter

Computational Mesh 
Smoothing Operator

Perform function 
smoothing on surface

Smoothing step size 
control based on 

objective function

Evaluate smooth 
results through coil 

parameters

Selecting the optimal 
confuguration of 
stream function

0.20

0.15

0

0.05

0.10

−0.05

−0.10

−0.15

−0.20

0
−0.05

0.05

0.05

−0.05
0

α
β

i

j
Γ(u,v)

u
v

 
Figure 1. Flowchart describing the various steps of SF smoothing on a surface. 

2.1. Previous Work 
The SFM is one of the most widely used methods in gradient coil design, and its 

current-carrying surface is mainly a developable surface. Applying the SFM to undevel-
opable surfaces via the extrinsic method has also been discussed in detail in Ren’s paper 
[13]. This work was aimed at coil designs on undevelopable surfaces via the intrinsic 
method, but it is also compatible with developable surfaces. The SFM on non-developable 
surfaces is an important prerequisite for the implementation of this work. Therefore, we 
provide here a brief explanation of the SFM, as well as the issues related to this article. 

The SFM simplifies the complex calculations in direct problems by converting the 
current density vector into a scalar SF. The conversion relationship is represented by the 
following formula: 

Figure 1. Flowchart describing the various steps of SF smoothing on a surface.

2.1. Previous Work

The SFM is one of the most widely used methods in gradient coil design, and its
current-carrying surface is mainly a developable surface. Applying the SFM to unde-
velopable surfaces via the extrinsic method has also been discussed in detail in Ren’s
paper [13]. This work was aimed at coil designs on undevelopable surfaces via the intrinsic
method, but it is also compatible with developable surfaces. The SFM on non-developable
surfaces is an important prerequisite for the implementation of this work. Therefore, we
provide here a brief explanation of the SFM, as well as the issues related to this article.

The SFM simplifies the complex calculations in direct problems by converting the
current density vector into a scalar SF. The conversion relationship is represented by the
following formula:

j = ∇ΓΨ× n, (1)
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where j represents the surface current density; ∇Γ is the tangential gradient operator on
the current-carrying surface; Ψ is a scalar stream function that is defined on the surface;
and n represents the unit normal vector of the surface.

The core of the SFM is to find a suitable scalar function Ψ, such that that the corre-
sponding surface current density structure can produce a magnetic field that meets design
requirements. This can be expressed as an optimization function:

min : f =
∥∥Bz − BTarget

∥∥2
+ λF1. (2)

Equation (2) shows a standard optimization problem, where
∥∥Bz − BTarget

∥∥2 is the
main objective and F1 is a regularization term used to solve ill-posed problems [10,14]. And
Bz is a function of Ψ, representing the actual magnetic field generated by the coils in the
imaging region; BTarget is a set of constants representing the target gradient magnetic field
within the imaging region; F1 represents the auxiliary objective; and λ is the regularization
parameter, which is a key factor determining the smoothness of the coil.

We discretize the current-carrying surface in Equation (2) and choose the coil power
consumption as the auxiliary objective. Thus, Bz = BjiΨ and F1 = 1

2 ‖CHeatΨ‖2, where
Bji is the sensitivity matrix of magnetic field Bz with respect to Ψ, and CHeat is the power
consumption matrix, which uses coil energy consumption as the auxiliary objective. The
discrete expression of the above equation is as follows:

min : f =
∥∥BjiΨ− BTarget

∥∥2
+ λ‖CHeatΨ‖2. (3)

We can obtain the solution of Equation (3) by setting the first-order derivative ∂ f
∂Ψ of

the SF to zero. In this step, the choice of the optimal regularization parameter plays a crucial
role in determining the weight balance between the two optimization objectives. Solutions
obtained with smaller values of λ may achieve lower main objective values, but they may
also result in coil structures with a poor smoothness. On the other hand, larger values of λ
tend to make the coils smoother but introduce more errors in magnetic field linearity:

El =
max

∣∣Bz − BTarget
∣∣

max
∣∣BTarget

∣∣ × 100%. (4)

Therefore, in each instance of SFM, we need to balance the solution by adjusting the
value of λ so as to balance magnetic field accuracy and coil power consumption. Thus, a
smooth coil configuration can be obtained.

In order to choose an appropriate regularization parameter, it is often necessary to
sample it multiple times and obtain an L-curve, which shows the relationship between
the main and auxiliary objectives for the different values of the regularization parameter.
In this way, we can select the λ value that satisfies the design objective from around the
inflection point of the L-curve. Although this method can achieve the purpose of coil
optimization design, it results in iteration calculations that uses multiples, which greatly
increases the time and labor cost of the coil design. In contrast, smoothing methods can
make the SF configuration evolve towards smoothness through linear calculations. Using
this method, it only takes a short time to evolve a poorly smooth initial SF configuration to
a smooth SF configuration.

2.2. Smooth Function on a Surface

The smoothness of the SF contour has always been an unavoidable research topic
in coil design. The Tikhonov regularization method is a solution to this topic [10,14,15].
Another method for smoothing SF contours is to use a smoothing operator, where the
simplest form is the filtering method, which averages the stream function values of each
node by applying certain weights [16,17]. The weights are usually assigned according to the
distance information between the node and its neighbors in a well-defined neighborhood.
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This method changes the interpolation of the equivalent points within the unit by filtering
the SF values of the nodes; thus, the SF contour within the design surface tends to be
smooth. Before conducting the work in this paper, we attempted to use distance weighting
for function filtering on non-developable surfaces, but we were unable to obtain a smooth
contour solution. This is because the filtering matrix composed of distance weighting
only includes the relative position information of the points on the surface and ignores the
curvature degree of the surface itself.

Therefore, a more general smoothing operator is preferred that could include the
geometric information of the current-carrying surface, such that the smoothing of the SF
within the surface can be conducted inside only a manifold. An important property of SF is
that it is embedded in the current-carrying surface. In the process of smoothing evolution,
the smoothing operator needs to preserve the embedding property and use the geometric
characteristics of the current-carrying surface to smooth the SF. In this way, the structure of
the SF contour lines along the surface scale can be simplified [18].

We let Γ be a two-dimensional manifold embedded in IR3; (u, v) ∈ Γ be the coordinates
in a two-dimensional manifold; and let Ψ(u, v) be the SF defined on the surface Γ [19]. We
then need to evolve the implicit function Ψ(u, v) such that its contour line, Ψ(u, v) = Ψi,
evolves toward a geodesic curve, where Ψi ∈ Ψ(ui, vi) is the SF value at a certain point
(ui, vi) on the surface. Such problems have been described when using the heat diffusion
equation that balances changes in the concentration in space [20]:

∂Ψ
∂t

= ∆Ψ, (5)

where t represents the time of diffusion. Essentially, this involves using a filtering method
with a second-order PDE. In the non-developable surface designed in this work, we need
to extend the Laplace operator onto two-dimensional manifolds, where the Laplacian
operator ∆ needs to be replaced by the Laplace–Beltrami operator ∆Γ [21]. Then, the
diffusion equation for functions on the surface Γ is

∂Ψ
∂t
− ∆ΓΨ = 0. (6)

Equation (6) needs to be discretized in the time domain as follows:

Ψn+1 −Ψn

τ
= ∆ΓΨn, (7)

where τ represents the time step. After a simple derivation, the following form can
be obtained:

Ψn+1 = (I + τ∆Γ)Ψn. (8)

Thus, we obtain the smoothing operator:

C = (I + τ∆Γ). (9)

This means that we only need to solve a linear equation to achieve the smoothing of
the surface functions. Here, I is the identity matrix, τ is the time step, and Ψn denotes the
function value on the two-dimensional manifold Γ at time t = nτ in the time domain. The
Laplace–Beltrami operator in the discretized surface representation can be calculated using
the following equation [21]:

∆Γ =
1

2A ∑
j∈Ni

(
cot αij + cot βij

)
, (10)

where αij and βij are the angles of the triangle formed by the vertices of the mesh edge ij
and A is the actual neighborhood area under the control of node i, as shown in Figure 2.
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For ease of illustration, a planar triangular mesh is shown in Figure 2. In practice, the L–B
operator is usually applied in two-dimensional manifolds, that is, ∑

j

(
αij + βij

)
≥ 2π for a

convex surface.
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To speed up the smoothing process, this work normalizes the operator by using
Desbrun’s method [17], which allows for the use of larger time steps in explicit integration
methods, as shown in Equation (10):

(∆ΓΨ)normalized =

∑
j∈Ni

(
cot αij + cot βij

)(
Ψi −Ψj

)
∑

j∈Ni

(
cot αij + cot βij

) . (11)

2.3. Smoothing Coefficients Based on the Objective Function Control

In the previous section, we normalized the time step for each iteration. However, in
practical applications, there is often an abrupt decrease in the accuracy of the magnetic
field during the initial stages of the smoothing iteration. Maintaining a constant smoothing
step size can easily lose the documented changes occurring during the iteration process,
resulting in a rapid loss of accuracy in the coil’s magnetic field. Therefore, the main objective
function of the coil design process in this work is introduced to assist in the selection of the
smoothing step size:

Fn
0 =

∥∥Bn
z − BTarget

∥∥2, (12)

where Fn
0 represents the main objective value for the nth iteration step. Before each iteration

in the program, an estimate of the smoothed main objective value Fn+1
0 is calculated. Then,

the program determines the value of the iteration step τ based on the size of the objective
value in reverse.

τ =

max
(

0.01, Fn
0

Fn+1
0

)
Fn+1

0 ≥ Fn
0

1 Fn+1
0 < Fn

0

. (13)

That is, the program adjusts the size of the time step τ for each iteration in real time
during the smoothing process. If the increase in the objective function is too large, a smaller
step size coefficient (no less than 0.01) is assigned. If the increase in the objective function is
relatively small, a larger step size coefficient (no greater than 1) is assigned to accelerate the
iteration. Certainly, the objective function may be decreased during the smoothing process.
In this case, we assign the maximum step size coefficient, which is 1.

2.4. Controlling the Spacing between Contour Lines Based on the Tangential Gradient

In most cases of gradient coil design and manufacturing, we want to maintain a large
number of wire turns to reduce the current value of the wires and maintain the stability of
the magnetic field formed by the coil. However, in the case of a high number of wire turns,
some areas will have wire layouts that are too dense. This can easily cause an increase
in the inductance of the coil. Due to the frequent switching of gradient coils during the
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operation of MRI equipment, coils generating the gradient magnetic fields should have low
inductance [22,23]. The method of reducing the density of the coil is an empirical way to
reduce inductance. As mentioned earlier, the contour lines in the SFM are the coil structure.
Therefore, reducing the sampling interval of the contour lines can easily reduce the density
of the coil. However, this will also decrease the coil density in already sparse areas. Of
course, we do not want to excessively sacrifice the accuracy and stability of the magnetic
field to reduce the inductance. Fortunately, during the diffusion process of the function, the
coil layout naturally evolves toward uniformity. All we need to do is monitor the changes
in wire spacing in real time during the design process. Thus, given the number of coil
turns, we can select a smooth result that satisfies the design conditions while maximizing
the wire spacing between the wires. This makes it an important indicator for assisting in
the selection of a smooth result. In this work, the gradient operator ∇ is used to perform
first-order gradient calculations on the SF. The theoretical minimum wire spacing that can
be achieved under the current result can be estimated by combining the numerical value of
the SF with the number of discrete wires as follows:

dmin =
(Ψmax −Ψmin)/NWires

|∇ΓΨ|max
, (14)

where the NWires is the number of discrete coil turns and ∇ΓΨ is the tangential gradient
vector of the SF along the surface. By using the tangential gradient operator, we can monitor
the changes in wire spacing during the smoothing process of the SF on any surface. This
allows us obtention of the optimal number of discrete coil turns that meet the design goals.

2.5. Curvature Changes in Implicit Contour Expression

The goal of this work is to smooth the SF contour lines. Thus, this section describes
a quantitative index for smoothing. The smoothness of a curve in space at any point can
be expressed by its curvature. A higher curvature at a point indicates that the curve is
more bent at that position, while a lower curvature at a point indicates a smoother curve.
This section calculates the implicit curvature value of the contour at each node on the
current-carrying surface. Thus, the maximum value of the implicit curvature is used as the
index for the level of function smoothness.

In the SFM, the contour lines of the SF at any point inside the coil design surface Γ
can be implicitly expressed by the function Ψ−Ψi = 0, where Ψi can take on any value
of the SF within the design domain and where Ψi ∈ [Ψmin, Ψmax]. Thus, the curvature
value of the curve can be calculated by using a second-order differential of its implicit
function expression:

κ = ∆ΓΨ. (15)

During the smoothing process, the maximum curvature value max(κ) on the current-
carrying design domain gradually decreases and converges. Based on this, the convergence
condition for smoothing can be set to

max(κ)i −max(κ)i−1
max(κ)i −max(κ)1

< 1%, (16)

where max(κ)i represents the maximum curvature value of the SF contour configuration in
the i-th iteration.

3. Numerical Example

This section applies the proposed method to a developable cylindrical surface and an
undevelopable human head surface. Furthermore, in both planar and curved structures,
smooth SF contour lines that meet design accuracy requirements are generated. Depending
on the complexity of the smoothing model, the program takes from several seconds to
dozens of seconds to run iteratively until convergence on an Intel(R) Core(TM) i5-9300H
2.4 GHz quad-core 8-thread CPU. We only need to select the optimal smoothing configu-
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ration that meets the design goal based on the physical parameters of the coil during the
smoothing process and the variation in the smoothing convergence curve. Considering
that the iteration coefficients for each step of the iteration process may differ for different
coil models, this work develops a unified iterative variable that ultimately sums all the
smoothing coefficients up to the current iteration step. This process represents the timeline
of the iteration process, e.g.,

coe =
n

∑
i=1

τi, (17)

where coe is the iteration degree variable, n is the current iteration step, and τi is the time
step coefficient for the ith iteration. Thus, we separately present the smoothing process
of the SF for undevelopable and developable surfaces. We also demonstrate the changes
in various parameters of the coil during the process, including magnetic field accuracy,
objective function variation, energy consumption, coil length, minimum wire spacing,
maximum curvature of contour lines, etc.

The resulting SF smoothing process is described below.

3.1. Undevelopable Human Head Surface Gradient Coil

Figure 3 shows the grid and current surface dimensions of the human head surface.
This is an undevelopable surface with a height of 0.4 m. The imaging region is a sphere
with a diameter of 0.1 m. The target magnetic field gradient is 10 mT/m. Figure 4 shows
the smoothing process of the SF configuration for the gradient coil on the undevelopable
human head surface. The leftmost column in Figure 4 shows the initial image of the flow
function structure, and the process of the SF evolution during the smoothing iteration is
shown from left to right.
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Figure 4. Configuration variation in the SF on the surface of the human head: (a) gradient coil in the
x-direction of the human head surface; (b) gradient coil in the y-direction of the human head surface.

3.1.1. X-Gradient Coil on an Undevelopable Surface

Figure 4a refers to the x-gradient coil on the undevelopable human head surface. For
the SF model in Case (a), the smoothing operator shows good results. Figure 5 shows a
clearer demonstration of the evolution from the initial image to coe = 4. According to
Figure 5a, the coil oscillation is mainly concentrated in the facial area connecting to the ears
and neck, as well as around the eyes. However, at coe = 2 in the smoothing process, the
contour lines of the SF in these areas reach basic smoothness, and the smoothing requires
27 steps. After that, the program step size increases, and the smoothing speed also increases.
A sufficiently smooth SF configuration is obtained at coe = 4.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 4. Configuration variation in the SF on the surface of the human head: (a) gradient coil in the 
x-direction of the human head surface; (b) gradient coil in the y-direction of the human head surface. 

3.1.1. X-Gradient Coil on an Undevelopable Surface 
Figure 4a refers to the x-gradient coil on the undevelopable human head surface. For 

the SF model in Case (a), the smoothing operator shows good results. Figure 5 shows a 
clearer demonstration of the evolution from the initial image to coe = 4. According to 
Figure 5a, the coil oscillation is mainly concentrated in the facial area connecting to the 
ears and neck, as well as around the eyes. However, at coe = 2 in the smoothing process, 
the contour lines of the SF in these areas reach basic smoothness, and the smoothing re-
quires 27 steps. After that, the program step size increases, and the smoothing speed also 
increases. A sufficiently smooth SF configuration is obtained at coe = 4. 

 
Figure 5. The SF evolution of the gradient coil in the x-direction from initial image to coe = 4: (a) 
exhibition of the oscillation regions in the initial configuration of SF; (b) demonstration of the 
smoothing effect when coe = 2 on the oscillation regions; and (c) demonstration of the smoothing 
effect when coe = 4 on the oscillation regions. 

Figure 6 shows the changes in the various parameters of the coil during the smooth-
ing process. In Figure 6, the blue curve shown by the circular markers at the top represents 
the percentage of magnetic field error, while the red curve shown by the square markers 
represents the optimization objective value for the coil. The increase in the magnetic field 
error at coe = 4 is less than 1.5%, and the corresponding increase in the optimization ob-
jective value is within 1 × 10−8. In the middle of Figure 6, the purple curve with diamond 
markers represents the change in the minimum wire spacing, while the gray curve with 
inverted triangle markers represents the change in the energy consumption of the coil 

coe=8coe=6coe=4coe=2Initial

(a)

(b)

Figure 5. The SF evolution of the gradient coil in the x-direction from initial image to coe = 4:
(a) exhibition of the oscillation regions in the initial configuration of SF; (b) demonstration of the
smoothing effect when coe = 2 on the oscillation regions; and (c) demonstration of the smoothing
effect when coe = 4 on the oscillation regions.

Figure 6 shows the changes in the various parameters of the coil during the smoothing
process. In Figure 6, the blue curve shown by the circular markers at the top represents
the percentage of magnetic field error, while the red curve shown by the square markers
represents the optimization objective value for the coil. The increase in the magnetic
field error at coe = 4 is less than 1.5%, and the corresponding increase in the optimization
objective value is within 1× 10−8. In the middle of Figure 6, the purple curve with diamond
markers represents the change in the minimum wire spacing, while the gray curve with
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inverted triangle markers represents the change in the energy consumption of the coil
during the smoothing process. The change in the wire spacing curve occurs due to the
narrow width of the x-direction of the designed surface of the human head, which is
different from the y-gradient coil. In this section, the changes in the distribution of wire
spacing are further elucidated through Figure 7. In the wire spacing distribution shown in
Figure 7, the darker the red color, the denser the wire distribution. Thus, during the initial
stage of the smoothing process, the minimum wire spacing is always located above the
head and in front of the neck. As the SF contour lines gradually smooth out, the areas of
dense wire spacing caused by the oscillations disappear. As they are affected by the SF
diffusion, the SF contour lines in front of the neck become denser. As a result, the purple
curve, which represents the minimum wire spacing in Figure 6, decreases. After a certain
period of time in the smoothing process, the SF contour lines start to diffuse toward the
sparse regions, resulting in an increase in the wire spacing above the head and in front of
the neck. This is reflected in Figure 6 by the rise in the purple curve after coe = 7.
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Figure 6. Variation in the parameters during the smoothing process of the gradient coil in the
x-direction within the head form surface.

The energy consumption during the smoothing process also rapidly decrease as the
coil oscillation disappears during the smoothing process. The change in the maximum
curvature of the SF contour lines during the smoothing process is shown by the green
curve with star markers in the bottom of Figure 6. The inflection point of the maximum
curvature curve appears in the coe = 2− 4 stages. The convergence condition described
by Equation (15) is satisfied at coe = 4. Considering the various curve parameters shown
in Figure 6, the SF configuration obtained at coe = 4 is undoubtedly the best in this
example. At this stage, the coil efficiency (Gx/|rROI × I|) [2] is 0.72073

a2 mT·m−1·A−1. Here,
Gx = dBz/dx is the gradient value of the magnetic field in the x-direction; rROI denotes the
radius of the imaging region; and a represents the average radius of the coil design surface.
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and (c) the SF contour lines configuration (top) and wire spacing distribution (bottom) when coe = 4.

The quality of the mesh partition for the undevelopable surfaces affects the calculation
accuracy of the L–B operator. A poor mesh partitioning introduces larger normal surface
errors, which accelerates the loss in the magnetic field accuracy during the smoothing
process. Therefore, for the non-developable surface in the example, we use the Delaunay
triangulation method [24,25]. Thus, the error tolerance relative to the target magnetic field
is controlled within 5% to meet the design requirements of the gradient coil.

3.1.2. Y-Gradient Coil on Undevelopable Surface

Figure 4b shows the y-gradient coil configuration and its smooth iteration on the
same surface as in example (a). Due to the poor symmetry of the current-carrying surface,
rotations of the target magnetic field along the non-symmetric axes can cause significant
changes in the SF configuration. This is also the reason why we chose it as a separate
example. From the initial image shown in Figure 8a, the oscillations in the initial SF
configuration mainly occur on the facial surface and the lateral side. These oscillations
need to be eliminated during the coil design process.

From the smoothing process in Figure 8b, when the time step reaches coe = 2, the
coil oscillation and independent loop on the designed surface disappears, and the coil is
essentially smooth. At this point, the iteration progresses to 30 steps. In Figure 8c, when
the process reaches coe = 4, the smoothness of the coil essentially meets the requirements
for post-processing. At this point, the error loss generated by the coil-generated magnetic
field relative to the target magnetic field is less than 2%, as shown by the blue curve with
circular markers in Figure 9. The image in the middle of Figure 9 shows the variation in the
theoretical minimum wire spacing and energy consumption of the coil, which is indicated
by the purple and gray curves, respectively. Figure 10 provides a detailed explanation
of the variation in the minimum wire spacing curve. Unlike the case in the x-direction,
the wire spacing distribution in this example is more scattered. As the smoothing process
progresses, the SF contour lines for the top of the head, back of the head, sides of the neck,
and upper eyelids gradually becomes more dispersed. This leads to a gradual increase
in the purple curve, as shown in Figure 9. The energy consumption of the coil decreases
continuously with the smoothing process, which is also the desired result for the designers.
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In the bottom of Figure 10, the green curve, which represents the maximum curvature of the
SF contour lines, gradually decreases and meets the convergence condition at coe = 5.32,
indicating that the curve is smoothed to a certain extent. At that point, the coil efficiency is
0.5382

a2 mT·m−1·A−1.
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Figure 8. The SF evolution of the gradient coil in the y-direction from the initial image to coe = 4:
(a) exhibition of oscillation regions in the initial configuration of SF; (b) demonstration of the smooth-
ing effect when coe = 2 in the oscillation regions; and (c) demonstration of the smoothing effect when
coe = 4 in the oscillation regions.
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Figure 9. Variation in the parameters during the smoothing process of the gradient coil in the
y-direction within the head form surface.



Sensors 2023, 23, 7912 13 of 18

Sensors 2023, 23, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 9. Variation in the parameters during the smoothing process of the gradient coil in the y-
direction within the head form surface. 

 
Figure 10. The SF contour lines and corresponding wire spacing distribution from the initial value 
to coe = 6: (a) the initial SF contour lines configuration (top) and wire spacing distribution (bot-
tom); (b) the SF contour lines configuration (top) and wire spacing distribution (bottom) when 
coe = 2; (c) the SF contour lines configuration (top) and wire spacing distribution (bottom) when 
coe = 4; and (d) the SF contour lines configuration (top) and wire spacing distribution (bottom) 
when coe = 6. 

2

0
1

2

3

4

5

6

0.2

0.4

0.6

0.8

1.0

1.2

1.4 10–6

1.90
1.95

2.00

2.05

2.10

2.15

2.20

210

220

230

240

250

260

270

0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

0

0 2 4 6 8 10 12

10–2

2

        

Figure 10. The SF contour lines and corresponding wire spacing distribution from the initial value to
coe = 6: (a) the initial SF contour lines configuration (top) and wire spacing distribution (bottom);
(b) the SF contour lines configuration (top) and wire spacing distribution (bottom) when coe = 2;
(c) the SF contour lines configuration (top) and wire spacing distribution (bottom) when coe = 4; and
(d) the SF contour lines configuration (top) and wire spacing distribution (bottom) when coe = 6.

3.2. Cylindrical Developable Surface Gradient Coil

To demonstrate the compatibility of the proposed method on planar meshes, this
section presents the SF configuration for two types of radial gradient coils, i.e., folded
and unfolded, on the same size cylindrical design surface along with their corresponding
smoothing processes. Both coils were initialized with high accuracy and low smoothness
through the same Tikhonov regularization minimization. Subsequent iterations of the
smoothing were based on this initial value. The coil cylinder had a height of 0.3 m and
a diameter of 0.1 m. To maintain the compactness of the coil, the imaging area was a
sphere with a uniform diameter of 0.08 m. The magnetic field gradient value of the coil
was designed to be 10 mT/m. Figure 11 shows the initial value of the SF configuration
for the gradient coil and the corresponding iterative smoothing process. To compare the
cylindrical Case (c) more intuitively with the planar Case (e), the results of the cylindrical
case were unfolded along the axis and shown in Figure 11(d). It is necessary to explain here
that although Case (c) and Case (e) had the same physical and dimensional parameters for
the design surface and imaging area, as well as the same regularization coefficient, due to
the difference in the calculation of the sensitivity matrix [∂Bz/∂Ψ] on the curved surface
and the planar grid, it was not possible to obtain the same initial value. This section tries to
control the physical parameters as much as possible to reduce this difference.
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Figure 11. Configuration of the variation in SF in the expandable cylindrical surface: (c) the design
and smoothing of gradient coils for an unfolded cylindrical surface; (d) the busbar expansion diagram
of Example (c); and (e) the design and smoothing of the gradient coils for a cylindrical surface.

3.2.1. Cylindrical Gradient Coil

Figure 11 (c) shows the smoothing process of the radial gradient coil on the cylindrical
surface before unfolding. The smoothing in Case (c) was conducted entirely within the
unrolled cylinder surface. On the cylindrical surface, there were many oscillations and
independent coil loops in the middle part of the contour lines of the coil due to the selection
of the low regularization coefficient. We can see that during the smoothing process, the
independent coil loops gradually disappeared, and the SF contour lines changed from
oscillating to smooth, then finally become completely smooth. The change in the coil
parameter during the smoothing process is shown in Figure 12, and the error of the
magnetic field accuracy compared to the objective value was within 0.6%. The optimized
objective value gradually increased during the smoothing process, but it can be maintained
within the order of 10−10. The minimum wire spacing gradually increased in the initial
stage of smoothing. To better illustrate the variation in the theoretical minimum wire
spacing, which is represented by the purple curve in Figure 12, we plotted Figure 13. In
each subplot of Figure 13, the left side corresponds to the SF configuration of the respective
optimization stage. The images on the right side represent the wire spacing distribution
that corresponds to the SF configuration. In these images, the darker the red color, the
denser the wire distribution in that area. In the initial SF configuration shown by Figure 13a,
the position of the minimum spacing between the wires appeared between two sets of coils
along the axis of the coil. As the coil further evolved toward uniformity, the distribution of
the wire spacing gradually became uniform. The minimum spacing position shifted toward
the outer end of the radial coil. This is reflected in the purple curve of Figure 12 as a slow
reduction in the wire spacing after the inflection point. The energy consumption of the coil
decreased rapidly as the small independent coil loops disappeared and the boundary was
gradually smoothed. After it decreased to 0.4 W, the rate of decrease gradually slowed
down. The maximum curvature change in the SF contour lines, as shown by the green curve
with star markers in Figure 12, indicated that the contour lines were rapidly smoothed
in stages of coe = 0− 3, and the convergence condition was met when coe = 4. The
smoothing of the entire coil reached a certain degree.
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Figure 12. Variations in the various parameters in the smoothing process of SFs on a cylindrical sur-
face.
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Figure 13. The evolution of the SF configuration and the corresponding conductor spacing from the
initial value to coe = 8.

To demonstrate the convergence of the smoothing program and the changes in the
parameters of the coil, a sufficient number of iterations were run in this article. However,
in the actual coil design, we only needed to select a good result based on the convergence
condition and comprehensive consideration of the changes in various parameters during
the smoothing process. Usually, this process only takes a few seconds to complete. In
this case, as shown in Figure 12, to achieve a larger wire spacing, the coil structure with
a coe = 6 could be set as the optimal result for the smoothing. This came at the cost of
a relative loss of accuracy in the target magnetic field of less than 0.1%, and the value of
the coil was then 1.8687

a2 mT·m−1·A−1. In this example, the design surface radius was set as
a = 0.05 m.
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3.2.2. Cylindrical Unfolded Gradient Coil

Figure 11 (e) shows the smoothing of the gradient coil on the unfolded plane of the
cylindrical coil. Example (e) has the same number of grid cells and division method as
that in Example (c), as well as the same regularization coefficients and SF structure. The
difference is that the smoothing process of Example (e) is completely carried out on the
unfolded plane. The variation in the coil parameters during the smoothing process is
shown in Figure 14.
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Figure 14. Variations in the various parameters in the smoothing process of SFs on an unfolded
cylindrical surface.

By comparing Example (d) and (e) in Figure 11, the SF on the curved surface and the
unfolded plane underwent a similar smoothing evolution process and degree. However,
the coil parameters in Figure 14 reveal more details regarding the smoothing process. The
same initial value of the gradient coil showed a similar but not identical smoothing process
due to the different shapes of the curved surfaces. The latter stages of the SF evolution
process on the unfolded plane even had a lower error loss. The curve of the objective
function, as shown by the red curve with square markers in Figure 14, maintained a similar
shape and the same order of magnitude as in Example (c). The minimum wire spacing is
shown by the purple curve with diamond markers in Figure 14. Although Example (e)
had a lower initial value and a larger increase rate in the initial stage of smoothing due
to the slight difference in the initial value, it had a similar turning point and the same
geometric meaning as Example (c) in general. The changes in coil power consumption and
the maximum curvature value of the contour lines were almost identical in both examples.
When choosing the smoothing parameter coe = 6 for both examples, the accuracy loss
relative to the target magnetic field was less than 0.1%. In this example, the coil efficiency
was 1.8638

a2 mT·m−1·A−1, which was almost the same as in Example (c).
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When comparing the two sets of examples on the cylindrical surface and its unfolded
plane—although the smoothing operator in this paper had a different evolution process
when applied to the surface and the unfolded plane due to the curvature of the design
surface grid—the smoothing operator undoubtedly produced the same smoothing perfor-
mance on the unfolded plane.

4. Discussion and Conclusions

The work presented in this paper proposes an alternative method for constructing
smooth MRI gradient coils when using Tikhonov regularization. In contrast to the most
used L-curve method, the entire smoothing process for our proposed algorithm takes only
a few seconds to tens of seconds when utilizing the given initial value of the SF.

This method is successfully applied to gradient coil design on complex conformal
surfaces, and it is shown to be compatible with classical cylindrical surfaces and their
unfolded planes. This method constructs a diffusion equation of the implicit function on
the surface, ensuring function smoothness without being restricted by the shape of the
surface. The method can be applied to most C0 smooth discrete design surfaces, thus
avoiding the problem of having to parameterize non-developable design surfaces, which
will be greatly beneficial for the development of conformal gradient coils.
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