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Abstract: Intrusion detection systems, also known as IDSs, are widely regarded as one of the most
essential components of an organization’s network security. This is because IDSs serve as the
organization’s first line of defense against several cyberattacks and are accountable for accurately
detecting any possible network intrusions. Several implementations of IDSs accomplish the detection
of potential threats throughout flow-based network traffic analysis. Traditional IDSs frequently
struggle to provide accurate real-time intrusion detection while keeping up with the changing
landscape of threat. Innovative methods used to improve IDSs’ performance in network traffic
analysis are urgently needed to overcome these drawbacks. In this study, we introduced a model
called a deep neural decision forest (DNDF), which allows the enhancement of classification trees
with the power of deep networks to learn data representations. We essentially utilized the CICIDS
2017 dataset for network traffic analysis and extended our experiments to evaluate the DNDF
model’s performance on two additional datasets: CICIDS 2018 and a custom network traffic dataset.
Our findings showed that DNDF, a combination of deep neural networks and decision forests,
outperformed reference approaches with a remarkable precision of 99.96% by using the CICIDS
2017 dataset while creating latent representations in deep layers. This success can be attributed to
improved feature representation, model optimization, and resilience to noisy and unbalanced input
data, emphasizing DNDF’s capabilities in intrusion detection and network security solutions.

Keywords: network traffic analysis; deep neural decision forest (DNDF); CICIDS 2017 dataset; deep
learning; network security; machine learning

1. Introduction

The goal of the subset of traffic analysis methodologies, known as traffic classification,
is to categorize traffic flow into several predetermined groups, such as normal or abnormal
traffic and the application type [1]. It makes it easier for Internet service providers to man-
age their infrastructures effectively and meets the requirements for quality of service [2–4].
The first traffic processors used each application’s port number [3] to determine who it
was. By examining the packet header, this approach exclusively reveals the port numbers
and their correspondences. Due to this, the method that looks at port numbers turned out
to be the fastest and easiest [4]. However, there are some problems with this plan. Some
programs can hide from network security measures by using dynamic port numbers or
ports tied to multiple protocols. This makes port-based algorithms less accurate [5,6].

In the current digital era, the increasing complexity and frequency of cyber threats—
which include network breaches, data theft, and cyberattacks—pose serious risks to people,
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businesses, and entire countries. To combat these threats, there is an urgent need for IDSs
that are more effective. Traditional IDS techniques struggle to keep up with cyber attackers’
constant innovation of evasion strategies. A promising method for identifying complex
and evolving attack patterns that frequently escape conventional systems is provided by
deep learning models.

Deep packet inspection (DPI) methods [7–10] have been developed to enable a deeper
understanding of port numbers, moving beyond their face value interpretation. It looks
at all the packet data, which uses a lot of central processing unit (CPU) resources, can
be hard to scale, and needs protected data to be correctly identified. Machine learning
(ML) lets us model, learn, and find complex and hidden trends in network traffic behavior
using training data [11]. It can help solve the problems that have been identified. Simple
and ensemble models are the two main categories that can broadly classify ML-based
models [10–13]. Ensemble models seek to integrate heterogeneous or homogeneous (of-
ten, classifiers) to produce a model that outperforms each of the individual models and
overcomes the limits of each individual model [14–16]. More precisely, several alternative
homogeneous ensemble frameworks, such as bagging (e.g., random forest (RF)) and boost-
ing (e.g., XGBoost), have been presented, with the majority of them relying on the decision
tree (DT) model [8,15,17].

On the other hand, a heterogeneous ensemble has been proposed to use the models’
varied benefits. Blending and majority voting are two instances of distinct models [18]. The
blending process is divided into two stages: the underlying classifier and the meta-classifier.
Blending is a powerful ensemble approach because it combines the base classifier with
a meta-classifier, which is then merged with the base classifier [19]. On the other hand,
the application of the blended ensemble for network traffic categorization has received
comparatively little attention [20]. Deep learning (DL) is also well recognized for outper-
forming standard shallow ML models in a range of sectors, including healthcare, computer
vision, and network resource management. DL has also had success with network traffic
categorization. DL is a subset of ML that evolved from neural networks (NNs), and it
has a unique nature and set of characteristics for handling difficult tasks. Furthermore,
the DT algorithm is well known for its simplicity, making it straightforward for human
professionals to grasp. It is one of the best learning algorithms for classifying network
traffic [20,21].

This paper focuses on a unique approach for accurate network traffic analysis by
utilizing the CICIDS 2017 dataset [2,7–9]. We justify our choice to do so by citing the
reasons described in [12,17,22]. Several research projects have focused on developing
intrusion, botnet, and virus detection systems based on deep learning networks [23]. The
original artificial neural network (ANN) design serves as the foundation for deep learning
networks (DLN). This design includes a multilayer architecture in addition to activation
and optimization methods [24].

To build attack detection rules, deep learning-based intrusion detection simply needs
a small number of attack signatures or a short list of common actions [25]. By utilizing
a quantifiable characteristic of the monitored network traffic feature, the deep learning
model is trained with empirical data to identify network assaults. It is accomplished via
“empirical data training”. DL models have been gradually used in intrusion detection
during the past several years [21] to improve classification classifiers. This can be ascribed
to the astounding effectiveness and simplicity of DL models’ use. The class imbalance
significantly negatively impacts classification results [26], which happens when real-time
network intrusion detection is used. The difference between dominant and weaker classes
cannot be distinguished by models that exclusively forecast dominant classes [27]. Class
imbalance issues are commonly solved using resampling techniques [28,29]. The use of
oversampling techniques is not without drawbacks, though. The original data can be
harmed by oversampling [30]. The model may require more time to train when oversam-
pling techniques are used. Inadequate sampling might result in the loss of important data,
which can make classification difficult [31,32].
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The network analysis framework for the DNDF model, which essentially uses the
CICIDS 2017 dataset, is shown in Figure 1. We extended our experiments to evaluate the
DNDF model’s performance on two additional datasets: CICIDS 2018 and a custom network
traffic dataset. This study aimed to construct a robust network intrusion detection system
through experimentation with diverse datasets. Using a multi-categorization approach, the
system relies on flow-based statistics to detect and classify various attack types. To identify
the type of network traffic, we developed a deep neural decision forest network model.
The main contributions that this paper makes are listed below.

• DNDF Architecture: DNDF maximizes the advantages of both decision forest and
deep neural network models. Combining deep learning techniques with decision
forest models’ interpretability and ensemble capabilities enables the extraction of
complicated attributes and patterns from network traffic data.

• Enhanced Feature Representation: DNDF uses cutting-edge feature representation
algorithms to capture the complex properties of network traffic data accurately. Classi-
fication accuracy is improved with DNDF by extracting and encoding high-level data
that permits more effective separation between different network activities.

• Model Optimization: The DNDF uses cutting-edge optimization techniques developed
especially for deep learning models and decision forests. By assisting in optimizing
the decision limits and fine-tuning the model’s parameters, these strategies lead to
more accurate predictions and less overfitting.

• Robustness to Noisy and Unbalanced Data: DNDF is built to handle noisy and un-
balanced network traffic datasets effectively. It employs techniques such as data
augmentation, oversampling, and undersampling to balance out the distribution of
classes and increase the model’s tolerance to noise and outliers in the data.

• Evaluation through Diverse Datasets: Our proposed network analysis framework
using the DNDF model was primarily based on the CICIDS 2017 dataset. Our research
expanded into multiple experiments assessing the DNDF model’s performance, includ-
ing evaluations on two supplementary datasets: CICIDS 2018 and a custom network
traffic dataset. We aim to develop a robust network intrusion detection system by
comprehensively exploring various datasets.

Our proposed DNDF method surpassed all reference methods on the CICIDS 2017
dataset with an accuracy of 99.96%. This remarkable improvement may be caused by
several factors, as stated above.
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The following is the structural scheme for the remaining parts of this work: In Section 2,
we will go through related works. In Section 3, we will present the used dataset and the
performed preparation operations. In Section 4, we will talk about the proposed approach.
The experimental details and discussion are presented in Sections 5 and 6, followed by a
comparison. Lastly, the summary and future research directions are presented in Section 7.

2. Literature Review

Several other scholars have employed ML in ways comparable to our presented
method to evaluate network traffic. In this part of the article, we will examine and compare
their methods to ours, pointing out the key differences. In the first part of this presentation,
we will talk about researchers who have classified benign traffic data for network quality
assurance using data preparation approaches comparable to ours.

ML analysis was suggested by [7] as a way to enhance network security while lowering
the expense associated with preprocessing. In this instance, the raw network data was first
converted into bitmap files to find possibly malicious behavior and then it was processed
by a two-dimensional convolutional neural network (2D-CNN) model. Based on tests with
three publicly available network traffic datasets, their model successfully identifies various
malicious traffic patterns, including zero-day attacks. The researchers looked at how well
their model worked before coming to this conclusion. This technology is highly suited for
doing on-the-fly network traffic analysis to identify malicious traffic flows since the cost
of preprocessing the network data to use the 2D-CNN model is incredibly inexpensive.
On the CICIDS 2017 dataset, the first reference method, 2D-CNN, obtained an accuracy of
90.6%. This approach, which seeks to achieve this goal, aims to identify malicious network
traffic with the least amount of preprocessing expense.

In addition, ref. [8] introduced D.S. sampling, a fresh method for balancing datasets.
This strategy was inspired by the Synthetic Minority Oversampling Technique (SMOTE)
algorithm. Their solution separated the sample into easy- and hard-to-classify subsets, with
the latter being the only one to be balanced, in contrast to the method. The concepts of
oversampling and undersampling were combined into a cohesive framework, avoiding the
overgeneralization that the SMOTE brought. Given that adopting a hierarchical structure
may lead to better categorizing the minority of abnormal traffic, a two-layer structure
coupled with XGBoost and the random forest has been proposed as an additional technique
for the multiclassification of anomalous data. The CICIDS 2017 dataset was used for the
tests, and the findings are shown in their article. Based on the findings, it was determined
that the model under investigation had a classification accuracy of greater than 99.70%.

Another work [9] also investigated several ML approaches to determine which may
deliver the best traffic categorization outcomes based on classification, performance met-
rics, and execution times. This analysis used the CICIDS 2017 dataset since it provided
bidirectional traffic flows that included both traffic that was thought to be innocuous and
the traffic that included a variety of current attacks.

In the initial investigation, the authors employed decision-tree-based algorithms,
achieving F1 values exceeding 0.999, demonstrating the effectiveness of their proposed
approach in integrating raw network traffic samples from the CICIDS 2017 dataset. They
discovered that binary classification produced better and quicker results as process com-
plexity reduced when simply taking the most crucial factors into account. With F1 values
more than 0.997 and quick execution durations, the classification outcomes employing
tree-based approaches were robust. They verified that tree-based ML methods like PART
or J48 might be viable substitutes to the RF methodology for flow-based intrusion detection
with a 99.86% accuracy on the CICIDS 2017 dataset.

In a different study, the authors suggested utilizing the RF approach for feature
selection and figuring out the best threshold to accurately classify DoS assaults with a
99.83% accuracy rate on the CICIDS 2017 dataset.

In a different approach, ref. [22] combined three methodologies to achieve an accuracy
range of 99.7%. These methodologies included examining feature correlations, using the
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T-distributed stochastic adjacent embedding data dimensional reduction method, and
applying the R.F. technique to examine the accuracy and false positive rate complexities.

James Adeke and colleagues [17] used ML and the RF method to classify whether the
user datagram protocol and transmission control protocol accurately flow in the network,
achieving an average performance accuracy of 99.52%.

The Adaptive Convolutional Neural Network Structure for Network Traffic Classifi-
cation (ACNNS-NTC) was developed by Zhuang Han et al. [21] and showed above 99%
accuracy on publicly accessible datasets such as the ISCX-IDS2012, USTC-TFC2016, and
CIC-IDS2017.

An SDN-based modular architecture was created in another research [33] to identify
Distributed Denial-of-Service (DDoS) attacks at the transport and application levels. On
the CIC DoS 2017 and CICD DoS 2019 datasets, they classified unknown traffic with up to
99% accuracy using multiple ML and DL approaches.

Choobdar et al. achieved 98.5% average accuracy in attack detection and classification
using SDNs and a three-stage procedure on NSL-KDD and CICIDS 2017 datasets [34].

Convolutional neural networks and gated recurrent units were coupled by Henry
et al. [35] to optimize network parameters, resulting in 98.73% accuracy and a 0.075 false
positive rate (FPR) on the CICIDS-2017 dataset.

Finally, intrusion detection using raw network traffic in computationally constrained
contexts was performed using transfer learning with neural networks. By using only
5000 training samples on edge devices, the combination of a transferred one-dimensional
convolutional neural network model and a retrained random forest model was able to
outperform with a 96% accuracy on the UNSW-NB15 and CICIDS 2017 datasets.

The following sections are the main contributions of highlighted studies.
This research proposes increment, a measure of long short-term memory (LSTM) that

is derived as the function and derivative product. Additionally, the LSTM, regarded as an
incremental LSTM, is subject to state change. Finally, we used trials to examine how the
state change affected the performance of the incremental LSTM. The incremental LSTM-
based intrusion detection system has greater accuracy than previous methods, according to
experiments [2].

This suggested study introduces a novel technique employing an extended deep rein-
forcement learning (EDRL) algorithm to improve network traffic analysis and prediction.
This effort is significant because it will help with intelligence-based network traffic predic-
tion and network management problems. An experiment was conducted to evaluate the
EDRL’s accuracy, precision, and false positive and false negative characteristics. Addition-
ally, deep learning algorithms and CNN machines have been utilized to forecast various
kinds of network traffic, including unencrypted and encrypted data traffic as well as text-
and video-based traffic [4].

This study uses minimal preprocessing overhead ML analysis for network security.
Raw network data are instantly transformed into bitmap files to detect fraudulent traffic
and are analyzed using a 2D-CNN model. Based on testing with three open-source network
traffic datasets, the model accurately detects various malicious traffic flows, even zero-
day assaults. The 2D-CNN model is excellent for on-the-fly network traffic analysis for
malicious traffic flows since the overhead of preparing the network data before applying it
is relatively minimal [7].

Based on the SMOTE algorithm, this research suggests a brand-new dataset-balancing
technique called SD sampling. The SMOTE algorithm splits samples into two categories—
easily classifiable and difficultly classifiable—and only balances the difficultly classifiable
samples. This solution avoids the overgeneralization of the SMOTE algorithm and combines
the concepts of oversampling and undersampling. Additionally, employing a hierarchical
structure may better classify minority aberrant traffic. A two-layer structure paired with
XGBoost and the random forest is presented for the multiclassification of anomalous data.
In this stud, experiments are conducted on the CICIDS 2017 dataset [8].
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Weka software (4.2.x) has tested several classification methods, including naive Bayes,
logistic, multilayer perceptrons, sequential minimum optimization, k-nearest neighbors,
adaptive boosting, OneR, J48, PART, and random forest. As a general conclusion, decision-
tree-based approaches (PART, J48, and random forest) proved to be the most effective, with
F1 values over 0.999 (an average value was derived for the whole dataset). Additionally,
binary classification (distinguishing only between normal traffic and attack) and multiclass
classification (differentiating between various attack types) were compared, and the out-
come of reducing the number of attributes using the correlation-based feature selection
(CFS) technique was assessed [9].

This study uses ML and parameter optimization to accurately classify the network’s
user datagram protocol (UDP) and transmission control protocol (TCP) flows. The Waikato
Environment for Knowledge Analysis (WEKA, 4.2.x) software’s three randomly chosen
ML algorithms were used to validate the approach using 10 folds of cross-validation, and
the algorithm with the highest performance was picked. Three scenarios were used in
experiments utilizing the USTC-TFC2016 dataset [17].

The study of [36] illustrates the viability of transfer learning for intrusion detection in
computationally constrained contexts utilizing raw network traffic. Our findings demon-
strate this when a retrained random forest model is used in conjunction with a transferred
one-dimensional convolutional neural network model [37–40].

A novel Lightweight Double-Stage Scheme for identifying malicious Domain Name
System (DNS) over HTTPS traffic is introduced in a recent study by Abu Al-Haija et al. [41].
The method uses a hybrid learning approach and provides encouraging insights into better
detection techniques for secure network communications. A one-class classifier model for
memory dump malware detection is presented by Al-Qudah et al. [42] in their research.
This model demonstrates how it might improve memory dump analysis methods for
malware detection, thus advancing cybersecurity.

The Abu Al-Haija and Al-Badawi [43] study introduced a system for routing attack-
aware Internet of Things (IoT) network traffic. This method addressed the difficulties
of IoT traffic routing while considering potential threats by utilizing ensemble learning,
improving the security of IoT networks. An intrusion detection and classification system
with improved data engineering was proposed by Alsulami et al. [44] for IoT traffic. This
system, which they discuss in their research, shows enhanced abilities in identifying and
categorizing intrusions within IoT networks, enhancing their overall security posture.

Table 1 contains related works describing the proposed methods, the used datasets,
and the obtained performance.

Numerous significant research gaps in the areas of network traffic analysis and intru-
sion detection were found as a result of the thorough literature review that was conducted
for this study. ML and DL techniques need to be more accurate and efficient to deal with
large datasets and complex traffic patterns. Additionally, the problem of dealing with
imbalanced data distributions—where legitimate traffic far outweighs malicious traffic—
remains a crucial factor that calls for creative solutions to avoid overgeneralization. A
clear understanding of the relative performance of different ML and DL approaches in
various scenarios is made more difficult by the lack of thorough comparisons between
various ML and DL approaches. The transition from theoretical performance metrics to
actual implementation of intrusion detection systems has also received little attention, even
though it is crucial to comprehend the implications of their deployment in the real world.
Another research challenge is adapting IDSs to detect new and emerging attack patterns,
especially zero-day attacks. By introducing a cutting-edge method called DNDF, this study
significantly adds to the body of knowledge on IDS and network traffic analysis. IDSs
are essential for maintaining organizational network security because they act as the first
line of defense against online dangers. However, in the face of evolving cyber threats,
traditional IDSs frequently struggle to deliver accurate and real-time intrusion detection.
To improve the classification of network traffic data, the DNDF model described in this
study combines the advantages of deep neural networks and decision forests. The model’s
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ability to produce latent representations within deep network layers is demonstrated by
the experimentation using the well-known CICIDS 2017 dataset. A detailed description of
the proposed model is presented in the subsequent sections.

Table 1. List of related works.

Ref. Datasets Methods Accuracy

[2]
� CICIDS 2017 and

NSL-KDD dataset.

� Deep learning and
deep neural
network.

� Accuracy of 99.6%
and 99.4% for
NSL-KDD and
CICIDS 2017
datasets.

[4]

� Data were collected
from
ISCXVPN2016.

� ML, deep learning,
reinforcement
learning, CNN,
KNN, and
enhanced deep
reinforcement
learning (EDRL)
algorithm.

� The accuracy for
the EDRL algorithm
is 97%, the mean
false positive value
is 2.65%, the mean
precision is 97.4%,
and the mean false
negative value is
2.57%.

[7]

� USTC-TFC2016,
CIC17 and UTSA21
datasets.

� Deep learning,
CNN, 1D-CNN,
2D-CNN.

� ML, R.F., KNN, and
SVM.

� Accuracy: 90.6%.

[8]
� CICIDS 2017

dataset.

� SMOTE algorithm,
XGBOOST method,
and R.F.

� Accuracy: 99.7%.

[9]
� CICIDS 2017

dataset.

� ML, decision tree,
RF, and
correlation-based
feature selection
technique.

� F1-Score of 0.99;
accuracy of RF is
99.86%

[12]

� CICIDS 2017 and
UNSW-NB15
datasets.

� ML, RF, and
feed-forward
neural networks.

� The obtained
accuracy for the
CICIDS 2017
dataset is 99.8%,
and 93.5% for the
UNSW-NB15
dataset.

[17]
� USTC-TFC2016 and

CIC17 Datasets.

� ML, transmission
control protocol,
user datagram
protocol, naive
Bayes, and decision
tree.

� Accuracy: 99.5%.

[36]

� UNSW-NB15 and
CICIDS 2017
datasets.

� 1D CNN and
random forest
model.

� Accuracy: 96%.
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3. Datasets

We primarily employed the CICIDS 2017 dataset for network traffic analysis and
expanded our experiments to assess the DNDF model’s performance on two additional
datasets: CICIDS 2018 and a custom network traffic dataset.

3.1. CICIDS 2017 and 2018

The data used for our study were from the CICIDS 2017 and the CICIDS 2018 datasets,
sizable collections of network traffic data made especially for intrusion detection and
network traffic analysis operations. These datasets contain numerous network traffic
scenarios, such as typical traffic and various assaults and irregularities.

The CICIDS 2017 dataset was gathered in a controlled experimental environment that
featured numerous network activities and traffic simulations. It comprises network traffic
flows that reflect both good and bad traffic scenarios and are captured in a real-world
network environment [45]. The dataset contains a broad range of features extracted from
network traffic and is highly beneficial in studying the characteristics and behaviors of
different network activities.

The CICIDS 2017 data frame can be seen in Table 2. The network traffic was obtained
from some sources, including actual network scenarios, network simulations, and attack
simulations, to ensure the dataset’s validity and applicability. The raw network packets
were captured during the data gathering process using sensors and network monitoring
tools, and they were afterward turned into a structured dataset for additional analysis.
The obtained dataset includes elements allowing in-depth analysis and classification of
network traffic patterns, such as flow-level properties, statistical measurements, payload
characteristics, and packet-level data. This dataset also provides labeled ground truth
data demonstrating the existence of different network activities, including ordinary traffic,
assaults (including DDoS and port scanning), and anomalies. The CICIDS 2017 dataset’s
properties provide useful information for network traffic analysis, as shown in Table 3.

Table 2. CICIDS 2017 data frame.

Port
Destination

Flow
Duration

Total
Fwd

Packets

Total
Backward

Packets

Total
Length
of Fwd
Packets

Total
Length
of Bwd
Packets

Fwd
Packet
Length

Max

Fwd
Packet
Length

Min

Fwd
Packet
Length
Mean

Fwd
Packet
Length

Std

54865 3 2 0 12 0 6 6 6.0 0.0

55054 109 1 1 6 6 6 6 6.0 0.0

55055 52 1 1 6 6 6 6 6.0 0.0

46236 34 1 1 6 6 LO 6 6.0 0.0

54863 3 2 0 12 0 6 LO 6 6.0 0.0

Table 3. Dataset properties for traffic analysis of the network.

Basic Flow Features

• Source and destination I.P. addresses.
• Source and destination port numbers.
• Protocol type (TCP, UDP, etc.).
• Flow duration.

Traffic Features

• Total number of packets.
• Total number of bytes.
• Packet and byte rate.

Payload Features
• Average, minimum, and maximum packet and byte sizes.
• The standard deviation of packet and byte sizes.

Network Protocol Features
• Number of TCP, UDP, and ICMP packets.
• Number of HTTP, DNS, and FTP packets.
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Table 3. Cont.

Statistical Features

• Distribution of packet and byte sizes.
• Statistical measures such as mean, variance, skewness, and

kurtosis.

Label (Target Variable)
• Indicates the class or category of the network traffic flow

(e.g., normal traffic, specific attack types, anomalies).

A class label was assigned based on the type of network activity that each instance of
the CICIDS 2017 dataset represents. The network traffic categorization algorithms can be
trained and evaluated using the class labels, which provide real-world data.

The most recent version of the dataset, CICIDS 2018, has the same feature set as CICIDS
2017 with the exception of one additional feature: timestamp. However, it is enriched and
more comprehensive, maintaining the same three-label distribution. This extensive dataset
has a sizable size and is described as shown by Table 4.

Table 4. CICIDS 2018 data frame.

Protocol Timestamp Flow
Duration

Fwd
Pkts
Tot

Bwd
Pkts
Tot

TotLen
Fwd
Pkts

TotLen
Bwd
Pkts

Fwd
Pkt
Len
Max

Fwd
Pkt
Len
Min

. . .

Fwd
Seg
Size
Min

Active
Mean

Active
Std

Active
Max

0 14/02/2018
08:31:01 112,641,719 3 0 0 0 0 0 . . . 0 0 0 0

0 14/02/2018
08:33:50 112,641,466 3 0 0 0 0 0 . . . 0 0 0 0

0 14/02/2018
08:36:39 112,638,623 3 0 0 0 0 0 . . . 0 0 0 0

6 14/02/2018
08:40:13 6,453,966 15 10 1239 2273 744 0 . . . 32 0 0 0

LO 6 14/02/2018
08:40:23 8,804,066 14 11 1143 2209 744 0 . . . 32 0 0 0

The CICIDS 2017 and CICIDS 2018 datasets were used in this study to train and assess
the deep neural decision forest (DNDF) model for network traffic analysis. Using these
datasets, we studied the characteristics and patterns of network traffic flows, identified
potential dangers or anomalies, and developed a robust classification model.

By employing the rich characteristics and label information of the CICIDS 2017 and
CICIDS 2018 datasets, we conducted an in-depth study of network traffic and accurately
characterized various types of network activity. These datasets made a substantial contri-
bution to the development of intrusion detection and network traffic analysis, as well as to
the validity and dependability of the findings of our study.

3.2. Custom Network Traffic Dataset

Wireshark, a flexible program that can examine traffic from a variety of sources,
including Wi-Fi, Bluetooth, and Ethernet connections, was used to create our customized
network traffic dataset. In this study, Wi-Fi and Ethernet connections were particularly
utilized to assess the traffic of three computer systems under normal conditions.

We instantly collected and recorded traffic data using Wireshark, which helped us
produce a comprehensive table with information on protocols, packet durations, payloads,
source IP addresses, and destination IP addresses. To simulate malicious network traffic
over the transmission network, we used metaplots. The introduced intrusion traffic includes
XSS (Cross-Site Scripting) and SQL injection.

Three real-time scenarios were used in the investigation, enabling us to examine both
normal and intrusion-simulated transmission traffic.
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1. We captured normal network traffic over the Internet via Ethernet and Wi-Fi connec-
tions using Wireshark.

2. We utilized Metasploit to simulate XSS (Cross-Site Scripting) network traffic, and
Wireshark captured the traffic on the host computer.

3. We simulated SQL injection traffic using Metasploit, with Wireshark capturing the
traffic on the host computer.

We tested multiple types of traffic in our transmission network tests and examined the
results. The transmission dataset was recorded using Wireshark and saved as a pcapng file.
Later, this file was used to create models and extract features. Figure 2 shows a screenshot
of a network traffic generation with Wireshark.
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To make our network traffic dataset more comprehensive, we have expanded its
feature set. However, as exposing our PC to real malicious traffic is not advisable, this
dataset does not include malware traffic initially. We used Metasploit, a different piece of
software, to simulate various types of attacks to address this, and Wireshark was used to
analyze the resulting traffic. We specifically utilized XSS (Cross-Site Scripting) and SQL
injection attacks. In order to capture normal, XSS, and SQL injection traffic, Wireshark
created files in the CSV and pcapng formats. The dataset’s comprehensiveness improved
once these output files were placed into a Python environment for additional feature
extraction. We retrieved three distinct types of features from this dataset. These types are
described in the following list.

• Packet-level features:

# Interarrival times: calculate the time interval between consecutive packets.
# Packet size statistics: extract statistics such as mean, median, and standard

deviation of packet sizes within a flow.
# Direction of traffic: analyze the direction of network traffic, including statistics

such as mean, median, and standard deviation of packet sizes within a flow.

• Flow features:

# Number of packets per flow: count the total number of packets in a flow.
# Duration of flows: calculate the time duration of each network flow.
# size of flows: compute statistics (e.g., mean, max, min) related to the size of

data transferred in each flow.

• Protocol features:
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# Protocol counts: create features that count the usage of different protocols in
network traffic.

# Statistical relevance to the protocol: Calculate unique statistics for each protocol,
such as the quantity of HTTP requests within HTTP flows.

After extracting these features, we concatenated all data frames to create a comprehen-
sive dataset of all labels, i.e., normal, XSS, and SQL injection.

The dataset underwent label encoding, creating two classes (‘normal’ and ‘attack’),
encompassing both the SQL injection and XSS. The labeling is also performed by con-
sidering the length of payloads because most malicious attacks have a longer length of
payload information.

In this custom dataset, there are a total of 15 features along with one target column. The
features include ‘Time’, ‘Source’, ‘Destination’, ‘Protocol’, ‘Length’, ‘Info’, ‘Flow_Duration’,
‘Num_Packets_Per_Flow’, ‘Flow_Size’, ‘MinPacketLength’, ‘MaxPacketLength’, ‘AvgPack-
etLength’, ‘TotalPackets’, and ‘TotalBytes.’ While additional features such as time-based
attributes, payload analysis, and aggregated features can be extracted, the existing feature
set provides satisfactory performance for the scope of this study.

The final data frame is shown in Table 5.

3.3. Data Preprocessing

Data pretreatment is just one of the crucial stages in preparing the dataset for analysis
and modeling. For network traffic analysis utilizing the CICIDS 2017 dataset, the following
are some typical data preparation techniques.

Data Cleaning

In this step, we performed the removal of duplicate records from the dataset. We also
addressed incomplete values by either imputing them or removing instances where they
existed based on the extent of missing data and its impact on the analysis.

The number of empty elements in our data frame is listed below in Table 6.
The modified data frame after deleting these null elements is shown in Table 7 that

follows. These null entries are eliminated using Pandas’ drop method. Currently, none of
our data frame’s variables have any null entries.
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Table 5. Data frame of the custom network traffic dataset.

Source Destination Protocol Length Info Flow
Duration

Num_Packets
Per_Flow Flow_Size Label MinPacketLength MaxPacketLength AvgPacketLength TotalPackets 1

104.18.37.228 192.168.8.106 15 1094
443 >
64364

Len = 1052
16.07158 1537.0 1,736,392.0 attack 67 1242.0 1129.728042 9443.0

104.18.37.228 192.168.8.106 15 1242
443 >
64364

Len = 1200
16.07158 1537.0 1,736,392.0 attack 67 1242.0 1129.728042 9443.0

104.18.37.228 192.168.8.106 15 1095
443 >
64364

Len = 1053
16.07158 1537.0 1,736,392.0 attack 67 1242.0 1129.728042 9443.0

104.18.37.228 192.168.8.106 15 1242
443 >
64364

Len = 1200
16.07158 1537.0 1,736,392.0 attack 67 1242.0 1129.728042 9443.0

104.18.37.228 192.168.8.106 15 1098
443 >
64364

Len = 1056
16.07158 1537.0 1,736,392.0 attack 67 1242.0 1129.728042 9443.0
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Table 6. Null entries in a data frame.

Destination Port 0

Flow Duration 0

Total FWD Packets 0

Total Backward Packets 0

Total Length of FWD Packets 0

. . .. . .. . ...

Idle Mean 1

Idle Std. 1

Idle Max 1

Idle Min 1

Label 1

Table 7. Updated data frame after removing null entries.

Destination Port 0

Flow Duration 0

Total FWD Packets 0

Total Backward Packets 0

Total Length of FWD Packets 0

. . .. . .. . ...

Idle Mean 0

Idle Std. 0

Idle Max 0

Idle Min 0

Label 0

3.4. Feature Selection

In this step, we performed an analysis of each component of the dataset to assess
its value and significance. We then selected the informative attributes from this subset,
focusing on those crucial for network traffic analysis. Our selection process was guided by
techniques such as correlation analysis, feature importance ranking, and domain expertise.
Furthermore, we employed automated feature selection methods, such as recursive feature
elimination (RFE), selectKBest, and principal component analysis (PCA), to identify the
most relevant characteristics.

Correlation-Based Feature Selection

We employed a correlation analysis-based technique to locate highly linked features
in the dataset during the feature selection stage. While minimizing redundant information,
the goal was to select the most informative subset of attributes. The best traits for this
study’s feature selection were chosen using the Pearson coefficient approach. A total of
40 characteristics have been selected out of 76. In the following points, we list the steps that
made up this procedure:

• Calculate the Correlation Matrix: We initially calculate the dataset’s correlation matrix
using the corr() method. The correlation matrix calculates the pairwise correlation
between each pair of features in the dataset. The linear correlation between the
variables is evaluated numerically.
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• Set the Correlation Threshold: We set a threshold value to establish the level at which
two attributes are deemed highly connected. The threshold is now set at 0.8, although
it might change depending on the demands of this study. The thirty-nine identified
correlated features are displayed in Table 8.

• Finding Highly Correlated Features: Using the correlation matrix and the threshold,
we compare each correlation value to the threshold to determine the highly correlated
features. We use the np where () method to obtain the indices of the objects that satisfy
the criterion.

• Obtain Unique Feature Pairs: We extract the unique feature pairs from the highly
linked qualities. By iterating through the feature indexes, the feature names for each
index of a highly correlated feature are derived from the columns of the data frame.
We take care only to consider one pair of qualities for each identical pair, and we make
sure that no two separate pairs of features are linked together.

• Create a New Data Frame: We create a new data frame (new_df) by selecting the
remaining features from the original data frame after deleting the strongly related
features. The set difference between the columns in the original data frame and the
features discovered in the feature pairs is used to do this.

• Print the New Data Frame: Finally, we print the new data frame to confirm that the
strongly correlated features were removed and the remaining features are appropri-
ately depicted.

Table 8. Thirty-nine selected correlated features.

PSH
Flag
Count

Flow
Packets/s

Fwd
Packet
Length
Max

Init_Win_
bytes_forward

Fwd
Avg
Bulk
Rate

Bwd Avg
Packets/Bulk

URG
Flag
Count

Destination
Port

Bwd
IAT
Std

0.0 666666.66670 6 33.0 0.0 0.0 0.0 54865 0.0

0.0 18348.62385 6 29.0 0.0 0.0 1.0 55054 0.0

0.0 38461.53846 0 29.0 0.0 0.0 1.0 55055 0.0

0.0 58823.52941 6 31.0 0.0 0.0 1.0 46236 0.0

0.0 666666.66670 6 32.0 0.0 0.0 0.0 54863 0.0

By locating and removing strongly correlated features, we are able to eliminate redun-
dancy, enhance the functionality of our model, and make it easier to understand. We can
concentrate on the most important and independent factors for our network traffic analysis
by choosing a subset of features that are less connected with one another. We used the
Pearson coefficient approach to select the most appropriate features for this investigation.
Out of 76 features, a total of 40 have been chosen.

3.5. Feature Encoding

In this step, we normalized numerical attributes to achieve consistent measurement
scales. This was achieved by applying either min-max scaling or standardization techniques,
ensuring that feature values align with a specific range, mean, or standard deviation.
Specifically, we standardized the selected features in both the training and testing sets using
a regular scalar operation. You can find the data frame displaying standardized features in
Table 9.
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Table 9. Categorical target variable.

0 Benign

1 Benign

2 Benign

3 Benign

4 Benign

. . .. . ...

525468 Benign

525461 Benign

525462 Benign

525463 Benign

525464 Benign

The three classes in the label are as follows:

BENIGN 238221.
PortScan 158804.
DDoS 128025.

The label encoding translates these labels into a numerical type as an array ([0, 0, 1,
. . ., 1, 1, 2]).

Data Scaling and Normalization

The aim of this step is to normalize the numerical properties to ensure they are all
measured on the same scale. Min-max scaling or standardization is used to scale the feature
values to a specific range, mean, or standard deviation. Here, we converted the chosen
features in the training and testing sets to standard features using a regular scalar operation.
The data frame for standardized features is also shown in Table 10.

Table 10. Standardized features data frame.

Array ([[0. −0.62552915 −0.25022434, 0.00840025,

U −0.16757888]

[0.0. −0.62080808, −0.16757888] −0.24989545, −0.0092991,

[0.
I 0.00989455, −0.16757888], −0.2501323 −0.00536591,

[0. 0.00989455, −0.16757888], −0.25018099 −0.00536591,

[0
.
0.

−0.62512906, −0.11300009], −0.25022265 −0.00339931,

[0
.
0.

−0.56367516, −0.14938595]] 0.00143074 −0.0092991

Each feature is modified individually with the StandardScaler to have a mean and
variance of 0 and 1, respectively. The traits are, therefore, changed to have a mean of 0 and
a standard deviation of 1. This must be modified to enable ML algorithms to utilize the
input data.

3.6. Handling Imbalanced Data

This step aims to resolve any issues with a class imbalance in the dataset, especially if
there is a wide gap in the distribution of the different classes.
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Methods such as oversampling (such as SMOTE), undersampling, or class weight
adjustment can address the disparity across classes. We do not perform any more operations
to balance the imbalanced labels, even though we can see that our target variable’s labels
are not evenly balanced nor significantly unbalanced.

Train–Test Split

The aim of this step is to distinguish the preprocessed dataset from the training and
testing subsets. Using a stratified sampling approach guarantees that class distribution is
retained across the training and testing sets. Using these pretreatment techniques, we can
ensure that the dataset is prepared for future modeling and analysis. Remember to adapt
and change these steps to our study’s unique requirements and characteristics as well as
the CICIDS 2017 dataset.

The dataset is separated into training and testing using the train–test split method.
The split dataset is displayed as follows:

x_train, x_test, y_train, y_test

Their shape is as follows:

(420040, 39) (105010, 39) (420040,) (105010,)

3.7. Exploratory Data Analysis

Engaging in exploratory data analysis (EDA) is necessary to comprehend the charac-
teristics and patterns in the dataset. For our research on network traffic analysis utilizing
the CICIDS 2017 dataset, we are able to employ the following crucial EDA techniques and
visualizations.

3.7.1. Class Distribution

We recommend utilizing either a bar chart or a pie chart to visually represent the
distribution of class labels, such as distinguishing between usual traffic and different attack
types. This visualization method allows us to better understand any class imbalance which
is present and assists us in making informed decisions regarding preprocessing, including
class balancing techniques.

The distribution of network traffic types is displayed in the depiction mentioned
above (Figure 3). This illustrates that the maximum network traffic flow is categorized as
normal, based on our existing network features. Conversely, network flows that do not fall
under the normal category are further classified into two additional categories: Portscan
(with a significant contribution) and DDos (the least strange contributor to the network
traffic flow).

We recommend performing feature correlation analysis, which involves generating
a correlation matrix or heatmap to visualize the relationships between various attributes.
This analysis helps identify attributes with strong associations that may be crucial for the
model’s performance.

Since there are nearly 75 features in our dataset, the image above demonstrates the
correlation of a few chosen features. In this visualization, we displayed some features
to determine the correlation between the forward packets, backward packets, and other
features that are highly correlated, which are displayed in red. On the other hand, there is
a weak correlation between the minimum and maximum packet lengths. It is also crucial
to note how poorly connected most of the features are with one another.

The feature correlation heatmap of the CICIDS 2017 dataset reveals the relationships
and interdependencies between different attributes. For our network traffic analysis inves-
tigation, the visualization can show us the following information (Figure 4):
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When two attributes exhibit a strong positive correlation (close to 1), they tend to
increase or decrease together. Such attributes may contain redundant or similar information.
In such cases, removing one of the related features is worth considering, and can reduce
redundancy in the analysis.
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A substantial negative correlation between two attributes (closer to −1) signifies an
inverse relationship, implying that as one attribute increases, the other decreases. This
information is valuable for comprehending network traffic flow and uncovering potential
relationships between components.

The heatmap may help us to identify traits with minimal relationship to the target
variable. These features may not be very predictive and may not significantly impact cate-
gorization. We might prioritize better correlation features when deciding which attributes
are most important to train our network traffic analysis model.

The heatmap enables understanding the interactions between different features. We
can discover more about the connections between the different traits by looking at the
correlation patterns. This information can help to focus feature engineering efforts and give
crucial context data for assessing model predictions.

Additionally, correlations might offer data for preprocessing methods. If two character-
istics have a high positive or negative correlation, we can consider normalizing or standard-
izing them to ensure their scales are equivalent and prevent bias during model training.

We recommend generating histograms or boxplots depicting packet durations for
different classes, including normal and assault categories. This approach allows us to gain
insights into the distribution and potential variations, enabling us to identify patterns or
specific characteristics associated with distinct types of traffic.

The packet length distribution of a benign or typical traffic flow is shown in Figure 5. In
contrast, Figure 6 depicts the distribution of the DDoS network traffic flow’s packet lengths.
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Figure 7 displays a histogram of the distribution of packet lengths for the selected
traffic type. While the x-axis shows values for packet lengths, the y-axis shows the frequency
or count of packets for each length. The visualization reveals the variation and distribution
of packet lengths within the chosen network traffic class.

The analysis that results from displaying the packet length distribution can provide
insight into the quirks of different types of network traffic. Here are some potential analyses
that we could make:
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3.7.2. Identification of Traffic Patterns

By examining the packet duration distribution for each network activity type, we
can identify any obvious trends or fluctuations in packet length. For instance, it depicts a
typical pattern for ordinary network traffic if the “regular” traffic class distribution peaks
around a specific packet length range.

On the other hand, if some attack classes exhibit atypical or anomalous packet length
distributions, it implies that differences in packet lengths are related to specific assaults.

3.7.3. Differentiation between Network Activities

We can distinguish between genuine and malicious network activity by contrasting
the packet length distributions across different traffic classifications. If the distributions
are noticeably different, packet length may be valuable for identifying various types of
network traffic.
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The graphic makes it easier to quantify and visually assess the differences in packet
lengths between different classes.

• Flow Duration: This is used to visualize the distribution of flow durations for the
different classes using boxplots or violin plots. It can demonstrate whether particular
traffic classes exhibit observable flow length patterns.

The duration of the normal and abnormal traffic flow patterns is shown in Figure 8.
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Figure 8. Flow duration of normal and anomaly traffic flow distribution.

This method separates the data into two subsets based on the class labels: normal
traffic and attacks. Then, it generates boxplots showing the flow duration distribution for
regular traffic and assaults using the “Flow Duration” function. Boxplots show the median,
quartiles, and any outliers in the data.

The y-axis displays the flow time in seconds, and the x-axis displays the two types of
traffic: “normal traffic” and “attacks”. Each category’s boxplot displays the flow duration
distribution and any variations between ordinary traffic and assaults.

Interpreting the flow duration distribution graphic can provide the following insights:

• The median value, or line inside the box, represents the central tendency of the flow
durations for each group. By contrasting the medians of regular traffic and assaults, it
is possible to identify potential changes in flow length patterns.

• Interquartile Range (IQR): The box shows the quartiles, which are the middle 50% of
the data, as the interquartile range (IQR). The distribution of flow durations within
each category is shown by the lower and upper quartiles, Q1 and Q3, respectively.

• Outliers, or data points that stand out from the others, are those outside the whiskers
(lines extending from the box). These indicators of anomalous or unusual flow lengths
demand further study.

• By examining the flow duration distribution using boxplots, we can learn more about
the differences in flow durations between normal traffic and attacks. This image helps
distinguish between safe network traffic and malicious activities and shows potential
flow duration patterns specific to different classifications.

• Dimensionality Reduction Visualization: Utilize dimensionality reduction techniques,
such as the t-SNE (t-Distributed Stochastic Neighbor Embedding) or PCA (principal
component analysis), to visualize the high-dimensional feature space in a lower-
dimensional scatter plot. Color the spots according to their respective class names to
visualize the clustering or separation of different traffic categories.

This approach uses principal component analysis (PCA) to reduce dimensionality
and compress the feature space into three dimensions. PCA separates the features from
the target variable (“label”) to convert the feature matrix X into an X_pca with three
major components.



Sensors 2023, 23, 8362 21 of 41

The algorithm then creates a three-dimensional scatter plot to display the data in
compressed dimensions. Each dot on the plot represents a dataset instance and is colored
according to the class labels (“label”) (Figure 9).
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3.7.4. Interpreting the Dimensionality Reduction Visualization

This subsection will explore the interpretation of dimensionality reduction visualiza-
tions created using techniques such as PCA. These visualizations offer valuable insights
into various aspects of our data. Specifically, the following:

• Class Division: The visualization allows us to understand the division or grouping
of instances from different classes. If instances from distinct classes are separated
in reduced dimensions, the features used in PCA effectively distinguish between
the classes.

• Classes that Overlap or are Closely Interleaved: This suggests that it may be chal-
lenging to distinguish the classes based on the selected attributes. It happens when
examples from several classes are closely interspersed or overlayed in the reduced
dimensions. Additional feature engineering or more sophisticated dimensionality
reduction techniques may be required.

• Patterns and Structures: When compared to the original high-dimensional space, the
visualization may make patterns or structures in the data that were previously hidden
obvious. For example, we could identify clusters, outliers, or linear or non-linear
connections between the occurrences.

By using dimensionality reduction and PCA to visualize the data, we can determine
the structure and separability of the CICIDS 2017 dataset in a low-dimensional space.
Further research or modeling decisions can be aided by understanding the data distribution,
detecting probable patterns or clusters, and using this visualization.

3.8. Network Traffic Analysis

Network traffic analysis examines and interprets network traffic data’s patterns, be-
haviors, and characteristics. It involves analyzing the packet traffic within a network to
discover more about network activity, identify anomalies, and improve network perfor-
mance and security.

Network traffic analysis can be used to learn about several aspects of network com-
munication, including the source and destination of data packets, the protocols being used,
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packet sizes, timestamps, and other important metrics. By examining this data, network
managers and security analysts can identify patterns in network use, identify suspicious or
malicious activities, and maximize the use of network resources.

The basic objectives of network traffic analysis are as follows:

• Monitoring Network Performance: Managers can gain additional insight into perfor-
mance metrics, including bandwidth consumption, traffic congestion, latency issues,
and others, by looking at network traffic. It facilitates resource efficiency and the
simplification of network operations.

• Identifying Potential Security Threats: Network traffic analysis is crucial for identifying
anomalies and intrusions, such as attempted intrusions, malware infections, and
unauthorized access. Spotting suspicious activity and putting the necessary security
measures in place by looking at network traffic patterns and spotting variations from
typical behavior is possible.

• Debugging and Troubleshooting: Traffic analysis can help identify the root cause of
network problems and aid debugging and troubleshooting. By examining network
traffic flows, administrators can locate areas of congestion, improper configurations,
or damaged equipment, enabling efficient troubleshooting and remedies.

Traffic engineering and capacity planning are aided by network traffic analysis, which
provides data on traffic patterns and trends. Having a firm knowledge of the volume and
nature of network traffic allows administrators to allocate resources, update hardware, and
enhance network performance.

Network traffic analysis is crucial for enterprises as it supports compliance with regu-
latory standards and requirements. This involves monitoring network usage, identifying
policy violations, and ensuring adherence to privacy and data protection legislation.

Network traffic analysis is crucial for both network administration and security. Exam-
ining network traffic data is necessary to comprehend network activity, identify anomalies,
boost performance, and ensure the overall integrity and security of the network infrastructure.

3.9. Deep Neural Decision Forest (DNDF)

The benefits of deep neural networks and decision forests are combined in an ML
model called the DNDF. Deep neural networks for learning features are fused with decision
forests for decision-making and ensemble learning.

Deep neural networks that can be used to learn features from the DNDF include the
CNN and feed-forward neural networks (FNNs). The neural network is trained on the input
data to get meaningful representations or features from the raw input. Following feature
learning, the DNDF incorporates decision forests, merely collections of decision trees. Each
decision tree in the forest makes predictions based on a subset of the learned attributes.
The decision trees are trained to segment the feature space and provide predictions using
rules and thresholds (Figure 10).

A DNN with a variable layer count and representation with parameters at the top.
Block F.C.: The fully connected layer offers the following functions, which are defined in
Equation (1).

dn(x; Θ) = σ(fn(x; Θ)) (1)

The routing (split) choices dn(x) = (fn(x)) are created when each output of fn is brought
into correspondence with a split node in a tree. It is possible to add output units to deci-
sion nodes in any sequence (the arrangement we describe provides for a straightforward
visualization). As a result of resolving the convex optimization issue described in Equation
(1), the bottom circles are leaf nodes containing probability distributions.

We now consider the minimization concerning π when Θ is fixed. This is represented
by Equation (2).

minπR(Θ,π; T) (2)
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DNDF combines the forecasts given by the decision trees in the forest to produce the
final forecast. It may combine every decision tree forecast using ensemble techniques, such
as weighted averaging or majority voting.

The DNDF model aims to exploit the interpretability and ensemble learning of decision
forests as well as the representational learning potential of deep neural networks. It can
identify complex patterns and correlations in the data by combining a deep neural network
with the diversity and robustness of a decision forest ensemble. The DNDF model’s
decision forest and deep neural network components are typically trained separately before
being integrated for inference during implementation. The deep neural network is trained
on the input data using common optimization techniques such as backpropagation and
stochastic gradient descent. The decision forest is trained using methods such as the
random subspace technique, bootstrapping, or random forests. To implement the DNDF
model for network traffic analysis using the CICIDS 2017 dataset, we would need to tweak
it to fit the particular requirements of our research and dataset. It can necessitate changing
the architecture, hyperparameters, and training technique, depending on the peculiarities
of the network traffic data and the classification task at hand.
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4. Methodology

The following is a high-level method for performing a network traffic analysis using
the DNDF model on the CICIDS 2017 dataset and is also depicted in Figure 11 as follows:

4.1. Data Preprocessing

Incorporating the CICIDS 2017 dataset into an appropriate data structure, such as a
Pandas data frame, is advisable. Vital data preparation steps encompass handling missing
values, encoding categorical variables, and normalizing numerical features. To assess the
effectiveness of the DNDF model, it is essential to partition the dataset into training and
testing sets.

We prioritize data integrity throughout the process, ensuring it is well-structured
within a Pandas data frame. Continuously, we vigilantly monitor for shifts in feature
distributions, detect missing values, and remain attentive to changes in data quality. It is
crucial to regularly update the training and testing datasets to adapt to evolving network
traffic patterns.

Incorporating the CICIDS 2017 dataset into a suitable data structure, such as a Pandas
data frame, is highly recommended. This entails essential steps such as handling miss-
ing values, encoding categorical variables, and normalizing numerical features. Further,
dividing the dataset into training and testing sets allows us to assess the DNDF model’s
performance effectively.
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We emphasize the importance of unwavering diligence in overseeing input data
throughout the analysis. This involves maintaining its structure within a Pandas data frame
and remaining vigilant for any shifts in feature distribution, missing data instances, or
data quality alterations. The consistent updating of both training and testing datasets is
imperative to accommodate the dynamic nature of network traffic patterns.
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4.2. Feature Selection and Engineering

Use exploratory data analysis to understand attributes’ distribution and the dataset,
and to find pertinent linkages. Use feature selection techniques such as correlation analysis
or mutual information to identify the most important features for network traffic analysis.

Consider domain expertise and professional insights while designing extra features
that could improve the DNDF model’s functionality.

4.3. Model Training and Validation

The DNDF architecture, which combines decision forest and DNN elements, should
be created and configured. The training dataset, appropriate optimization methods, and
loss functions are used to train the deep neural network. The learned deep neural net-
work’s recovered features are used to train the decision forest component. Recall, accuracy,
precision, and F1-score are suitable evaluation metrics for evaluating the DNDF model’s
performance on the testing dataset.

Using cross-validation or other techniques, evaluate the robustness and generalizabil-
ity of the model.

4.4. Mathematical Model

The decision forest is a collection of decision trees. Each decision tree is constructed via
recursive partitioning, according to the splitting criteria that categorize the data into groups.
The splitting criterion may also be calculated using other metrics, such as information gain,
the Gini index, or entropy. The decision trees in the forest collectively predict outcomes by
averaging the outputs of individual trees [46]. DNNs are composed of artificial neurons
coupled in several layers and are frequently called nodes or units. Each neuron applies a
non-linear activation function to the weighted sum of its inputs. The weights connecting
the neurons are learned using backpropagation, which involves iteratively changing the
weights by the gradient of a loss function about the network parameters. During training,
the deep neural network approximates the basic mapping between the input features and
the target labels.
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The DNDF model combines decision forests with deep neural networks to use their
complementing features. The decision forest component provides interpretability and
feature significance analysis, while the deep neural network component enables the model
to capture complex patterns and non-linear correlations in the data.

The input features are represented by x in the DNDF model, which will be written
as f(x).

4.4.1. Decision Forest Component

F(x), which is an ensemble of decision trees, may be used to represent the decision
forest. The denotation of each decision tree in the forest is T_i(x), where ‘i’ stands for
the tree’s index. It is possible to compute the decision forest component F(x)’s output as
Equation (3) as follows:

F(x) = 1/N × (T_i(x)) (3)

In this case, N represents the overall number of decision trees in the forest and the
total number of decision trees.

4.4.2. Deep Neural Network Component

The deep neural network, which consists of several layers of linked neurons, may be
expressed as DNN(x). N_j, where j is the neuron’s index, can be used to represent each
neuron. It is possible to compute the output of the deep neural network component DNN(x)
by using Equation (4).

DNN(x) = N_L(N_L − 1(. . .N_2(N_1(x)))) (4)

In this case, L stands for the total number of layers in the network, and N_i stands for
the output of layer i.

4.4.3. Integration of Decision Forest and Deep Neural Network

The final prediction is created by combining the outputs of the deep neural network
component DNN(x) with the decision forest component F(x).

The DNDF model’s ultimate output may be computed using Equation (5).

F(x) = F(x) + DNN(x) (5)

Here, we see the weighting coefficients that establish how much each component
contributes to the outcome of the prediction. These coefficients can be changed depending
on the desired ratio between the decision forest and the deep neural network.

4.5. Model Architecture Design

DNDF model architecture design (Figure 12) for network traffic analysis utilizing the
CICIDS 2017 dataset is shown below.

Deep Neural Network (DNN) Component

The structure of the DNN model includes the following components:

• Input Layer: The input layer obtains the dataset’s characteristics related to network
traffic. The dimensionality of the input characteristics affects how many neurons are
present in this layer.

• Hidden Layers: Several hidden layers might be added to identify and understand
intricate patterns in the data. Depending on the type of network traffic data, we may
utilize a variety of layer types, such as fully connected (dense), convolutional, or
recurrent layers. Each hidden layer usually uses an activation function to introduce
non-linearity and helps the model learn non-linear correlations. Sigmoid, tanh, and
ReLU (Rectified Linear Unit) are typical activation functions.
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• Dropout and Regularization: We may use regularization methods such as L1 or L2
regularization or dropout layers to avoid overfitting.

• Output Layer: The anticipated class probabilities are represented by the output layer.
The number of classes in the network traffic classification task corresponds to the num-
ber of neurons in this layer. Softmax activation may be used to get class probabilities.

We emphasize the importance of considering model architecture design. In response
to the evolving nature of network traffic, we conduct extensive testing on the DNN compo-
nent’s structure. This testing encompasses various settings, including the number of layers,
neurons, and activation functions. Additionally, we incorporate regularization and dropout
techniques to mitigate overfitting, particularly as the dataset’s properties undergo changes.
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4.6. Decision Forest Component

The decision forest component comprises a group of decision trees, each trained to
generate predictions using a subset of characteristics obtained from the DNN component.
Leaf nodes indicate class predictions, while interior nodes reflect feature tests in each
decision tree. To generate the final forecast, the predictions from several decision trees in
the forest can be integrated using techniques such as majority voting or weighted averaging.

4.7. Integration of DNN and Decision Forest

The deep neural network component extracts significant features from the network
traffic data. A subset of pertinent characteristics for the decision forest component is chosen
or changed from the retrieved features. Training and Inference: The DNN component is
trained individually using backpropagation and optimization methods. The decision forest
component then receives the newly learned features for training and inference. Model
Fusion: To reach the final forecast, the predictions from the DNN and decision forest
components may be fused or blended.

TensorFlow or PyTorch are two examples of deep learning frameworks that can be
used to create the model architecture. Based on the properties of the CICIDS 2017 dataset
and the particular network traffic analysis task, the precise configuration, including the
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number of layers, neurons, activation functions, and regularization approaches, may be
customized and optimized.

4.8. Model Training
CICIDS 2017 Dataset

According to the training results, the model had a high training accuracy of 0.9993 and
a low training loss of 0.0033. It is reflected in the validation results provided in Figure 13,
which show a low validation loss of 0.0035 and a high validation accuracy of 0.9993.
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These results suggest that the model completed both training and validation. The
model successfully minimized the gap between the predicted outputs and the actual labels
in the training and validation datasets, as shown by the small training and validation
losses presented in Figure 14. This demonstrates how well the model and training set fit
each other.
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High accuracy rates during training and evaluation are proof that the model works. A
high accuracy score means the model correctly forecasted most cases in both the training
and validation datasets. The results demonstrate that the model effectively generalized the
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training data to the unseen data, comprehending the fundamental trends and relationships
within the dataset.

The consistent training and validation results show that the model did not demonstrate
overfitting or underfitting. Overfitting, which hinders a model’s capacity to generalize to
new data, occurs when a model becomes excessively complex and starts to recall the training
set. On the other hand, underfitting occurs when the model fails to capture the underlying
patterns in the data and performs badly on both the training and validation datasets.

Based on the strong agreement between training and validation measures, including
loss and accuracy, the model was effective in striking a good balance between fitting the
training data and generalizing it to unknown data. It demonstrates that the model is
accurate and well-optimized in classifying situations in the dataset.

5. Model Evaluation

We ran a model evaluation to assess how well our trained model fared in our research.
Using a range of assessment metrics, we assessed the model’s effectiveness in classifying
instances of network traffic (Table 11). The following are the often-used evaluation metrics
and their definitions:

• Accuracy: The percentage of cases in the dataset that were properly categorized is a
frequently used metric. It offers a comprehensive evaluation of the model’s predictive
power. Equation (6) illustrates this metric.

Accuracy = total number of predictions/number of correct predictions (6)

• Precision: Precision is the proportion of all correctly classified cases or true positive
predictions that the model made out of all positive predictions. It focuses on the
precision of optimistic forecasts and aids in assessing how effectively the model can
prevent false positives. Equation (7) illustrates this metric.

Precision = true positives + false positive/true positives (7)

• Recall (Sensitivity or True Positive Rate): Recall calculates the percentage of true
positive forecasts based on all of the dataset’s real positive cases. It focuses on how
well the model can spot good cases and avoid false negatives. Equation (8) illustrates
this metric. Equation (8) illustrates this metric.

Recall = true positives + false negatives/true positives (8)

• F1-Score: The F1-Score is a harmonic measure of recall and accuracy. It provides a
fair evaluation of recall and accuracy that considers both false positives and false
negatives. The F1-Score is highly useful when there is a mismatch between the classes
in the dataset. Equation (9) illustrates this metric.

F1-Score = precision + recall/2 × precision × recall (9)

• Confusion Matrix: A confusion matrix is a table that shows how well a classification
model works by comparing expected labels to actual labels. It provides in-depth data
on true positives, false positives, and false negatives to allow for a more thorough
evaluation of the model’s performance. Figure 15 depicts the confusion matrix of three
label classes.

Each test entry is correctly predicted for each class according to the confusion matrix
visualization for each class shown above. Three different patterns of network traffic flow
existed. One was labeled as typical network traffic flow, and the other as oddities. The test
data for each class exhibited accurate predictions, confirming the model’s reliability and its
ability to generalize to previously unobserved data. We evaluated our model’s capability
to classify network traffic instances by accurately using various assessment criteria. These
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criteria include overall accuracy, F1-Score, recall, and precision metrics. Additionally, the
confusion matrix helps to pinpoint particular strengths and weaknesses in the model’s
predictions, as illustrated in Figure 15.

Table 11. Evaluation metrics of the proposed model.

Evaluation Metric Performance Value

Mean accuracy 0.9999

Test accuracy 0.9995

Macro precision 0.9997

Macro recall 0.9831

Macro F1 score 0.9912
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Figure 16 illustrates the training and validation accuracies for the testing subset of the
CICIDS 2017 dataset. Figure 17 presents the curves depicting the training and validation
losses for the same testing subset of the CICIDS 2017 dataset.

Next, we proceed by dividing this data into training and testing subsets, resulting in
the following sizes:

X train = (38614, 11).
X test = (9654, 11).
Y train = (38614).
Y test = (9654).

The dataset was trained using the same DNDF model and hyperparameters, and the
results are displayed in Figures 16 and 17, and shows an accuracy of 0.9968 and a loss of
0.0104. The obtained validation accuracy and loss were 0.0155 and 0.9936, respectively.

The performance of our model is shown in Table 12 for both the training and un-
seen validation datasets, demonstrating that neither overfitting nor underfitting affects the
model. We used a testing dataset to deduce evaluation measures and their
corresponding curves.



Sensors 2023, 23, 8362 30 of 41Sensors 2023, 23, x FOR PEER REVIEW 29 of 40 
 

 

 
Figure 16. Training and validation accuracies of the testing subset. 

 
Figure 17. Training and validation losses of the testing subset. 

Next, we proceed by dividing this data into training and testing subsets, resulting in 
the following sizes: 
X train = (38614, 11). 
X test = (9654, 11). 
Y train = (38614). 
Y test = (9654). 

The dataset was trained using the same DNDF model and hyperparameters, and the 
results are displayed in Figures 16 and 17, and shows an accuracy of 0.9968 and a loss of 
0.0104. The obtained validation accuracy and loss were 0.0155 and 0.9936, respectively. 

The performance of our model is shown in Table 12 for both the training and unseen 
validation datasets, demonstrating that neither overfitting nor underfitting affects the 
model. We used a testing dataset to deduce evaluation measures and their corresponding 
curves. 

  

Figure 16. Training and validation accuracies of the testing subset.

Sensors 2023, 23, x FOR PEER REVIEW 29 of 40 
 

 

 
Figure 16. Training and validation accuracies of the testing subset. 

 
Figure 17. Training and validation losses of the testing subset. 

Next, we proceed by dividing this data into training and testing subsets, resulting in 
the following sizes: 
X train = (38614, 11). 
X test = (9654, 11). 
Y train = (38614). 
Y test = (9654). 

The dataset was trained using the same DNDF model and hyperparameters, and the 
results are displayed in Figures 16 and 17, and shows an accuracy of 0.9968 and a loss of 
0.0104. The obtained validation accuracy and loss were 0.0155 and 0.9936, respectively. 

The performance of our model is shown in Table 12 for both the training and unseen 
validation datasets, demonstrating that neither overfitting nor underfitting affects the 
model. We used a testing dataset to deduce evaluation measures and their corresponding 
curves. 

  

Figure 17. Training and validation losses of the testing subset.

Table 12. Performance evaluation metrics values.

Evaluation Metric Performance Value

Mean accuracy 0.9968

Test accuracy 0.9968

Macro precision 0.9962

Macro recall 0.9967

Macro F1 score 0.9964

The evaluation metrics’ performance on the unseen test data is highly satisfactory,
exhibiting a performance level similar to that observed in the CICIDS 2017 dataset. The
associated confusion matrix is presented below in Figure 18.

The test data demonstrates accurate predictions for both attack and normal classes,
with no misclassified points. This emphasizes the exceptional performance of our model
architecture, which achieves a near-identical 99% accuracy rate, while the other evaluation
metrics also demonstrate satisfactory results.
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5.1. DNDF Model PERFORMANCE Using the CICIDS 2018 Dataset

For this dataset, we have not extracted more features since this dataset already
has more comprehensive features. The dataset is split into training and testing subsets
as follows:

X train = (835800, 78).
X test = (208951, 78).
Y train = (835800).
Y test = (208951).

This dataset is trained on the same model with the same hyperparameters and achieved
a training accuracy of 1.0000 and a training loss of 6.2132 × 10−4. DNDF achieved 1.0000
and 5.2341 × 10−4 as validation accuracy and loss, respectively.

It is worth emphasizing that the model achieved higher accuracy and significantly
lower loss values for the CICIDS 2018 dataset. This outcome underscores the notion that
the comprehensiveness and size of the dataset influence our model’s performance. Below,
you will find the training and loss performance curves obtained when using the CICIDS
2018 dataset.

Figure 19 illustrates our model’s training and validation accuracies using the CICIDS
2018 dataset. Figure 20 presents the curves depicting the training and validation losses.

The performance curves above indicate that the accuracy and loss curves for the
training and validation datasets showed satisfactory behavior. Although there were minor
fluctuations in the training curves, they did not reach significant levels. These fluctuations,
within acceptable limits, prove that our model was trained effectively without any signs of
overfitting or underfitting.

For the CICIDS 2018 dataset, the performance metrics’ values of our DNDF model are
provided in Table 13.
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Table 13. Performance evaluation values on the testing subset of the CICIDS 2018 dataset.

Evaluation Metric Performance Value

Mean accuracy 0.99995

Test accuracy 0.99995

Macro precision 0.99992

Macro recall 0.999939

Macro F1 score 0.999930

The table above demonstrates that the model performs exceptionally well on unseen
data, excelling not only in terms of accuracy but also across various evaluation metrics.
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Figure 21 shows the confusion matrix for testing data used from the CICIDS 2018 dataset.



Sensors 2023, 23, 8362 33 of 41

Sensors 2023, 23, x FOR PEER REVIEW 32 of 40 
 

 

Table 13. Performance evaluation values on the testing subset of the CICIDS 2018 dataset. 

Evaluation Metric Performance Value 
Mean accuracy 0.99995 
Test accuracy 0.99995 
Macro precision 0.99992 
Macro recall 0.999939 
Macro F1 score 0.999930 

The table above demonstrates that the model performs exceptionally well on unseen 
data, excelling not only in terms of accuracy but also across various evaluation metrics. 

Figure 21 shows the confusion matrix for testing data used from the CICIDS 2018 
dataset. 

 
Figure 21. Confusion matrix for testing data used from the CICIDS 2018 dataset. 

Here, we now have three classes compared to two in the custom dataset. It should be 
noted that all classes are accurately predicted, with no misclassifications in the test data. 
This finding highlights the DNDF model’s remarkable performance across several da-
tasets. 

By analyzing our DNDF model’s performance on multiple datasets, we broadened 
its potential. In the first scenario, we used the CICIDS 2018 dataset, an expanded version 
of the dataset previously used. Notably, the model performed better than the CICIDS 2017 
dataset, obtaining an accuracy of 100% as opposed to the latter’s accuracy of 0.9993. Ad-
ditionally, the loss for the 2017 dataset was 0.0027, but it was 6.2132 × 10−4 for the 2018 
dataset. These minor performance variations demonstrate our DNDF model’s remarkable 
capabilities and consistency across datasets with similar architecture and hyperparame-
ters. 

Wireshark and Metasploit, two network analysis tools that operate well together, 
were used to create a new dataset. The network traffic of connected systems, including 
Bluetooth, Wi-Fi, and Ethernet cable interfaces, was properly examined with Wireshark. 
We used Metasploit, a tool that simulates various attacks within the host system, to pro-
mote dataset comprehensiveness. Both XSS and SQL injection were incorporated into the 
simulated attacks. Wireshark was used to analyze and log the resulting network traffic 
meticulously. We meticulously extracted additional protocol, flow, and packet-level fea-
tures to enrich the generated dataset further. After feature extraction, we labeled the da-
taset and trained the DNDF model using consistent hyperparameters. 

Figure 21. Confusion matrix for testing data used from the CICIDS 2018 dataset.

Here, we now have three classes compared to two in the custom dataset. It should be
noted that all classes are accurately predicted, with no misclassifications in the test data.
This finding highlights the DNDF model’s remarkable performance across several datasets.

By analyzing our DNDF model’s performance on multiple datasets, we broadened
its potential. In the first scenario, we used the CICIDS 2018 dataset, an expanded version
of the dataset previously used. Notably, the model performed better than the CICIDS
2017 dataset, obtaining an accuracy of 100% as opposed to the latter’s accuracy of 0.9993.
Additionally, the loss for the 2017 dataset was 0.0027, but it was 6.2132 × 10−4 for the 2018
dataset. These minor performance variations demonstrate our DNDF model’s remarkable
capabilities and consistency across datasets with similar architecture and hyperparameters.

Wireshark and Metasploit, two network analysis tools that operate well together, were
used to create a new dataset. The network traffic of connected systems, including Bluetooth,
Wi-Fi, and Ethernet cable interfaces, was properly examined with Wireshark. We used
Metasploit, a tool that simulates various attacks within the host system, to promote dataset
comprehensiveness. Both XSS and SQL injection were incorporated into the simulated
attacks. Wireshark was used to analyze and log the resulting network traffic meticulously.
We meticulously extracted additional protocol, flow, and packet-level features to enrich the
generated dataset further. After feature extraction, we labeled the dataset and trained the
DNDF model using consistent hyperparameters.

DNDF yielded an accuracy of 0.9956, which is below that obtained with the CICIDS
2017 and CICIDS 2018 datasets, yet still exhibited remarkable performance. Furthermore,
the model achieved a loss of 0.014. We thoroughly evaluated the DNDF model’s perfor-
mance through this systematic experimentation, yielding consistently satisfactory results.

5.2. Proposed Model Design

Our research proposes a novel DNDF approach for accurate network traffic analysis
using the CICIDS 2017 dataset, as shown in Figure 22. DNN and decision forests are
coupled in DNDF to achieve precise and reliable traffic categorization.

• DNNs: We use DNNs as the DNDF architecture’s basic model. Being strong models,
DNNs can learn complex representations from raw input data. To find complicated cor-
relations and patterns in network traffic data, our technique builds a deep architecture
composed of numerous layers of neurons.

• Decision Forests: Besides DNNs, we include decision forests in the DNDF architecture.
Decision forests, which are ensemble learning models, are created by combining
several decision trees. Each decision tree is trained using different traits or data
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samples to encourage diversified and complementary learning. A reliable and accurate
traffic classification can be produced using projections from many decision trees.

• Hybrid Learning and Fusion: To leverage the advantages of both decision forests
and DNNs, the DNDF technique uses a hybrid learning and fusion process. To learn
hierarchical representations of the input data, the DNN component of the model
first gets network traffic data. The decision forest component performs classification
using the learned representations as the input and an ensemble of decision trees. The
forecasts from the two components are combined to produce the outcome.

• Attention Mechanisms: To improve the model’s capacity for discrimination, we in-
corporate attention mechanisms into the DNDF framework. Attention approaches
allow the model to dynamically focus on the most instructional features or chunks
of the traffic data throughout the categorization phase. The model may then give
more weight to important features, improving the prediction’s overall accuracy and
understandability.
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5.3. Model Optimization and Regularization

We employ a range of optimization and regularization techniques to ensure the model’s
usability and generalizability. It covers techniques, such as batch normalization, dropout,
and weight decay, that reduce overfitting and improve model robustness.

By combining the benefits of deep neural networks, decision forests, attention mecha-
nisms, and model regularization techniques, the DNDF methodology offers a novel and
effective method for accurate network traffic analysis. To obtain outstanding classifica-
tion accuracy on the confronting CICIDS 2017 dataset, decision forests’ ensemble learning
capabilities are combined with the DNN’s rich representations.
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Core Contributions

The following points presented in Figure 23 show the essential contributions to our
study on network traffic analysis using the DNDF model:

• Novel Model Combination: For network traffic analysis in particular, the paper sug-
gests including decision forests and DNNs in the DNDF model. The advantages of
both elements are used in this article’s new and effective way for precise categorization
and interpretability.

• Performance Evaluation: The study comprehensively evaluates the DNDF model’s
performance using the CICIDS 2017 dataset. It assesses the model’s accuracy, preci-
sion, recall, and F1 score by comparing it to other recent models or baseline meth-
ods. This contribution demonstrates the DNDF model’s ability to classify network
traffic appropriately.

• Interpretability and Explainability: This study concentrates on the interpretability
and explainability of the DNDF model’s results. Examining the decision rules and
feature importance generated by the decision forest component offers knowledge
of the factors influencing the categorization decisions. This information advances
our comprehension of network traffic patterns and aids in detecting malicious or
anomalous conduct.

• Feature Importance Analysis: Each character in the DNDF model is carefully analyzed
to determine its importance. To properly categorize network traffic, it identifies its
fundamental components. By giving knowledge about the key signs of network attacks
or irregularities, this contribution helps in the development of efficient intrusion
detection systems.

• Comparative Study: By using different State-of-the-Art models or techniques for
network traffic analysis, the performance of the DNDF model is compared. While
stressing its advantages over other tactics, it evaluates the model’s accuracy, robustness,
and effectiveness. This article focuses on the distinction and superiority of the DNDF
model in the context of network traffic analysis.

• Practical Application: This study discusses the potential applications of the DNDF
model to real-world issues, including network security and anomaly detection. The
possible benefits and outcomes of the DNDF paradigm for proactive network monitor-
ing and response are highlighted. This contribution demonstrates the DNDF model’s
usefulness in enhancing network security.

• Scalability and Efficiency: This study examines the DNDF model’s scalability and
efficiency, particularly when handling huge network traffic datasets. We examine
the model’s memory usage, training and testing times, and computing requirements.
This contribution helps determine whether the DNDF model is applicable in high-
throughput or real-time network scenarios.

These key contributions demonstrate the novelness, power, and utility of using the
DNDF model for network traffic analysis. They advance network security and intrusion
detection methods by providing knowledge of the model’s usability, interpretability, feature
importance, and comparative advantages.
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5.4. Comparative Analysis

We compared our proposed DNDF method in this study to the 2D-CNN, Xgboost, and
RF (random forest) reference methods, as shown in Table 14. Each approach was evaluated
using the CICIDS 2017 dataset, and the accuracy measure was used for comparison.

Table 14. Comparison between different methods.

Reference Approach Accuracy Dataset

[7] 2D-CNN 90.6% CICIDS 2017

[8] XGBOOST 99.7% CICIDS 2017

[9] RF 99.8% CICIDS 2017

Our Approach DNDF 99.96 CICIDS 2017

The first reference method, 2D-CNN, obtained an accuracy of 90.6% on the CICIDS
2017 dataset. This approach aims to detect malicious network traffic with the least amount
of preparation work. The achieved precision was significantly lower than other techniques,
which must be considered. The drawbacks of the 2D-CNN approach may be due to the
model design, feature representation, or optimization techniques that were employed.

The second reference method, Xgboost, achieved an accuracy of 99.7% on the CICIDS
2017 dataset. This method classifies network traffic using statistical description sampling
and hierarchical ensemble learning. While it shows promise and achieves accuracy com-
parable to the 2D-CNN method, there may be room for improvement in how it manages
complex patterns and extracts sufficient information from network traffic data.

The third reference method, RF (random forest), performed better than the first two
methods on the CICIDS 2017 dataset, with an accuracy of 99.9%. RF uses ensemble learning
capabilities to obtain high traffic flow-based intrusion detection accuracy. However, it
is crucial to remember that RF relies on decision trees as its underlying models, and
might need help to completely capture complex interactions and non-linear correlations in
the data.

Our DNDF method outperformed the reference approaches on the CICIDS 2017
dataset, achieving an accuracy of 99.96%. Collaboration between deep learning and decision
trees, enhanced feature representation, model optimization techniques, and robustness to
noisy and imbalanced data are all aspects that helped this progress. These factors helped
DNDF to achieve great performance in precisely detecting instances of network traffic,
making it a useful model for network traffic analysis.
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6. Discussion

The DNDF model for network traffic analysis was trained and evaluated using the
CICIDS 2017 dataset in this research project. Using the dataset, we were able to conduct
research on the features and patterns of network traffic flows, determine whether or not
there were any potential risks or anomalies, and construct a reliable classification model. In
this study, we extensively used the features offered by the CICIDS 2017 dataset to conduct
an in-depth investigation of network traffic and accurately categorize the many kinds of
activities that might occur in a network. This dataset made a significant contribution to the
development of intrusion detection and network traffic analysis, as well as to the validity
and reliability of our study. In addition, our study was conducted with it.

We recommend a two-layer structure combined with a CNN and the decision forest
for the classification module. When producing the final forecast, the DNDF considers
all of the predictions made by the decision trees in the forest. It can integrate the pre-
dictions of each decision tree by employing many different ensemble procedures, such
as weighted averaging or majority voting. The purpose of the DNDF model is to use
the interpretability and ensemble learning capabilities of decision forests in addition to
the possible representational learning capabilities of DNN. As it combines a deep neural
network with the diversity and robustness of a decision forest ensemble, it can recognize
intricate patterns and correlations hidden within the data. If we were to analyze network
traffic using the same dataset as before using the DNDF model, we would need to modify
the model to satisfy the specific needs of both our research and the dataset. It may be
necessary to modify the architecture, the hyperparameters, and the training technique. The
specifics of the network traffic data and the classification task at hand play a role in this
decision. The model was evaluated to determine how well our previously trained model
performed in this research. We evaluated the model’s efficacy in identifying instances of
network traffic by using a variety of assessment metrics, such as recall, precision, F1-Score,
accuracy, and confusion matrix. These evaluation measures were used to evaluate the
model’s performance.

This research compared the suggested DNDF method to the reference approaches of
2D-CNN, Xgboost, and RF (random forest) using the CICIDS 2017 dataset. On the CICIDS
2017 dataset, the accuracy delivered using the Xgboost approach was 99.7%, in contrast to
the accuracy delivered by the 2D-CNN strategy, which was 90.6%. There is an opportunity
for development in how the Xgboost technique handles intricate patterns and picks up
fine features in network traffic data. Although the Xgboost methodology is comparable to
the 2D-CNN method, there is room for improvement. When it was applied to the CICIDS
2017 dataset, RF outperformed the previous two algorithms with a level of accuracy that
was equal to 99.9 percent. Ensemble learning is utilized to achieve high accuracy in traffic
flow-based intrusion detection. It is accomplished by using many sensors.

This study has essential application implications for intrusion detection and network
security. With a remarkable precision rate of 99.96%, it ensures improved accuracy in intru-
sion detection and fewer false alarms, among other noteworthy benefits. The outstanding
performance of DNDF strengthens overall defenses by quickly identifying and mitigating
malicious network traffic. It can be adapted to network environments found in the real
world thanks to its resilience to noisy and unbalanced data. Moreover, the efficiency of
DNDF in identifying network traffic instances leads to faster responses to cybersecurity
threats. With its ability to be applied to a variety of real-world networks, this innovation
points to a bright future for advanced intrusion detection systems and is a valuable tool for
boosting cybersecurity across sectors and organizations.

The experimentation was extended to include the CICIDS2018 dataset for evaluating
the model’s performance. It was found that the model performed exceptionally well
compared to the CICIDS 2017 dataset, achieving 100% accuracy, while the accuracy for
the CIS1DS2017 dataset was 0.9993. Additionally, the loss for the 2017 dataset was 0.0027,
whereas the loss for the 2018 dataset was 6.2132 × 10−4.
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This study provides a promising intrusion detection technique but has several notable
shortcomings. Its primary reliance on a single dataset raises questions about how well it
can be applied to network traffic in the real world. The lack of a thorough discussion of
scalability and resource requirements may make it challenging to implement in large-scale
networks. The model’s interpretability is poor, and it is still unclear how well it can handle
real-time processing. There are few comparisons to cutting-edge solutions, and aspects of
security evaluation need more research. In conclusion, operational deployment factors such
as integration, scalability, and adaptability demand more focus. While DNDF demonstrates
promise, these drawbacks must be resolved to ensure that it can be used effectively in
various network security scenarios.

7. Conclusions

This study applied the DNDF model to analyze network data, introducing an in-
novative approach that combines deep neural networks with decision forests to achieve
accurate classification and interpretability in network traffic analysis. Our research yielded
significant contributions and insights into the DNDF model’s applicability. First, we carried
out comprehensive performance assessments utilizing the CICIDS 2017 and CICIDS 2018
datasets and a custom dataset. This was performed to showcase the DNDF model’s excep-
tional capability in precisely categorizing network data and detecting malicious or irregular
activities. Next, we focused on explaining and interpreting the DNDF model by analyzing
decision rules and feature importance generated with the decision forest component. This
capability is crucial for understanding network traffic patterns and identifying potential
threats. Additionally, this study comprehensively investigated the relevance of DNDF
model features, significantly improving categorization accuracy, particularly for network
assault or anomaly detection. We also conducted a comparative study, highlighting the
DNDF model’s advantages over other approaches for analyzing network traffic due to its
enhanced performance, durability, and efficiency. Moreover, we explored real-world appli-
cations, such as anomaly detection and network security enhancement, emphasizing the
DNDF model’s role in proactive network monitoring and response. Addressing scalability
and efficiency concerns, we examined the model’s computing requirements, memory usage,
and training/testing time, confirming its suitability for real-time and high-throughput
network settings.

Our study advances network traffic analysis using the DNDF model, showcasing
its superior performance, interpretability, and feature significance analysis. We suggest
potential improvements and offer findings that can guide the development of more efficient
network security solutions, enhancing proactive threat detection and mitigation.

Future research for the DNDF model in network traffic analysis involves exploring
scalability and efficiency in IoT and IIoT networks [47], enhancing robustness against adver-
sarial attacks through defense mechanisms [48], and investigating hardware acceleration
methods for real-time implementation in edge devices, ultimately improving network secu-
rity measures [49]. Additionally, considering detection overhead is crucial for expanding
upon this study and further advancing its findings. Precise measurements of detection
overhead serve as guiding metrics for creating security solutions that are both more ef-
fective and resource-efficient, effectively addressing the ever-evolving challenges within
the realm of network security. Furthermore, developing or leveraging real-world network
scenarios and specifying intrusion parameters for different data transmissions are crucial
steps in expanding the scope of the proposed DNDF approach. These steps will facilitate
comprehensive testing and seamless comparisons with other datasets, further enriching
the research’s depth and applicability.
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