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Abstract: In the context of non-uniformity correction (NUC) within infrared imaging systems, current
methods frequently concentrate solely on high-frequency stripe non-uniformity noise, neglecting the
impact of global low-frequency non-uniformity on image quality, and are susceptible to ghosting
artifacts from neighboring frames. In response to such challenges, we propose a method for the
correction of non-uniformity in single-frame infrared images based on noise separation in the wavelet
domain. More specifically, we commence by decomposing the noisy image into distinct frequency
components through wavelet transformation. Subsequently, we employ a clustering algorithm to
extract high-frequency noise from the vertical components within the wavelet domain, concurrently
employing a method of surface fitting to capture low-frequency noise from the approximate com-
ponents within the wavelet domain. Ultimately, the restored image is obtained by subtracting the
combined noise components. The experimental results demonstrate that the proposed method, when
applied to simulated noisy images, achieves the optimal levels among seven compared methods
in terms of MSE, PSNR, and SSIM metrics. After correction on three sets of real-world test image
sequences, the average non-uniformity index is reduced by 75.54%. Moreover, our method does
not impose significant computational overhead in the elimination of superimposed noise, which is
particularly suitable for applications necessitating stringent requirements in both image quality and
processing speed.

Keywords: infrared image; non-uniformity correction; wavelet transform; cluster analysis;

surface fitting

1. Introduction

Infrared imaging systems possess robust diffraction penetration capabilities and oper-
ate effectively under all weather conditions. They have been widely employed in domains
such as fire monitoring, night vision, target reconnaissance, remote sensing, and guid-
ance [1]. In particular, the demand for civilian applications has been on the rise, encompass-
ing areas such as enhanced perception for autonomous driving and short-wave infrared
in vivo fluorescence imaging for medical purposes [2-4]. Nevertheless, infrared focal plane
detectors inevitably encounter non-uniformity noise issues, manifested in images as striped
artifacts and localized luminance non-uniformities. The principal factors contributing to
such noise stem from the inherent unevenness in individual pixel responses, inconsistencies
in signal readout circuit amplifier gains [5], and radiation effects stemming from detector
window thermal sources [6]. Given the current state of manufacturing technology, overcom-
ing non-uniformity noise entirely at the hardware level within a short timeframe remains
unfeasible. Therefore, non-uniformity correction (NUC) must be performed in engineering
applications where high imaging quality is required.

The purpose of NUC is to restore a clear image from a noisy image. This is a classic
ill-posed problem. To address this challenging issue, numerous calibration-based NUC
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(CBNUC) methods have been proposed [7], including two-point correction, multi-point
correction, and curve fitting correction. Additionally, scene-based NUC (SBNUC) methods
have been introduced to estimate fixed pattern noise in real time based on the correlations
between image sequences. These include temporal high-pass filtering methods [8-10], con-
stant statistical methods [11-14], neural network methods [15,16], and image registration
methods [17]. The aforementioned algorithms can yield satisfactory results in environ-
ments with limited temperature variations and ample field motion. However, they falter in
complex working conditions, such as aerospace and medical imaging scenarios, where one
must contend with uncertain external environmental changes and extended gaze exposure.
This precludes the attainment of temperature-adaptive single-frame image NUC.

In pursuit of a more effective means to eradicate non-uniformity noise from single-
frame images, researchers have endeavored to devise various correction methodologies
capable of directly estimating noise from degraded images. Given the high-frequency
attributes of stripe non-uniformity noise, frequency decomposition [18] techniques are
typically employed as a preprocessing step for stripe removal. Subsequently, noise removal
is achieved through corresponding noise suppression schemes [19]. In recent years, the
most prevalent approach has been the direction-sensitive enhancement of stripe noise
capture, predicated on one-dimensional guided filtering [20,21]. Furthermore, certain newly
introduced models, such as the wavelet principal component analysis [22] and weighted
least squares models [23], have been employed to refine noise estimation, facilitating single-
frame image NUC. Nevertheless, models based on high-frequency noise characteristics
have failed to account for non-uniformity noise induced by thermal radiation. Thermal
radiation non-uniformity noise exhibits smooth low-frequency characteristics. Surface
fitting and optimal estimation can effectively remove such noise [24-26]. However, these
fitting-based estimation methods lack reasonable prior information to guide noise structure
and often resort to the direct solving of optimal estimates through loss function construction.
This approach necessitates iterative parameter adjustments, which not only significantly
augment algorithm runtime but may also lead to parameter entrapment in local optima
or divergence. With the evolution of deep learning, numerous effective NUC networks
have been proposed [27,28]. However, owing to the scarcity of genuine paired training
samples, these learning-based approaches have struggled to attain robust generalization
performance in real-world NUC challenges.

Despite the significant progress achieved in the field of NUC, the aforementioned algo-
rithms fail to address a multitude of complex issues, including environmental temperature
variations, insufficient scene motion, low-frequency non-uniformity, and high-frequency
non-uniformity. In order to concurrently tackle these diverse challenges, this paper com-
bines the advantages of multi-scale wavelet transform and Bezier surface fitting to propose
a single-frame image NUC method based on wavelet domain noise separation. This method
defines the non-uniformity noise of the image as a combination of stripe non-uniformity
noise and thermal radiation non-uniformity noise. To address the stripe non-uniformity
noise, a clustering algorithm is employed for decomposition within the vertical component
of the wavelet domain. For the thermal radiation non-uniformity noise, a Bezier surface
fitting is applied to the approximated component in the wavelet domain. The proposed
method provides corrected output results for single-frame images without relying on ex-
tensive camera motion within the field of view, thus avoiding the occurrence of ghosting
artifacts.

The contributions of this paper are summarized as follows:

e  This paper introduces a noise model that accounts for the superposition of stripe non-
uniformity noise and thermal radiation non-uniformity noise. In contrast to previous
correction models, this model can effectively address the intricacies of non-uniformity
noise present in real-world scenarios;

e In order to remove high-frequency noise, this paper designs a scheme based on
cluster analysis in the wavelet domain for strip non-uniformity noise. This scheme
adaptively generates clusters according to the varying strengths of noise components.
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By categorizing the wavelet domain’s vertical components into noise information and
detail information, this approach effectively removes stripe noise while preserving the
utmost level of image detail;

e In order to remove low-frequency noise, this paper designs a scheme based on fitting
the approximated components in the wavelet domain for thermal radiation non-
uniformity noise. This approach capitalizes on the alignment between low-frequency
components in the wavelet domain and the thermal radiation noise. By employing
Bezier surface fitting, the scheme reconstructs a smoothed representation of the thermal
radiation noise, thereby enhancing the overall uniformity of the corrected image.

The remainder of this paper is organized as follows: In Section 2, related works
in this field are introduced. In Section 3, we provide a detailed derivation of the NUC
method proposed in this paper. Section 4 presents a comparative experiment involving
both simulated and real image sequences. Section 5 discusses the results of the study
and points out the limitations of the proposed algorithm. Finally, Section 6 summarizes
the article.

2. Related Work

Depending on the necessity of referencing sources such as blackbody radiation experi-
ments, algorithms for NUC can be categorized into calibration-based NUC and scene-based
NUC. Furthermore, scene-based NUC methods can be further subdivided into multi-frame
scene-based NUC and single-frame scene-based NUC.

2.1. Calibration-Based Non-Uniformity Correction

Extensive research has been conducted in the field of calibration correction the-
ory, yielding notable results. This approach is characterized by its simplicity and ease
of engineering implementation. Common techniques encompass single-point calibra-
tion, two-point calibration, and multi-point calibration. Presently, the primary focus lies
in the domain of temperature-adaptive models. In 2019, Chang et al. [7] proposed a
two-point non-uniformity correction algorithm based on a single-reference image, effec-
tively reducing the cost and complexity associated with traditional two-point algorithms.
In the year 2022, Lin et al. [29] introduced a novel no-shutter correction scheme based on
multi-variate polynomial correction, building upon the foundation of two-point calibration.
This innovative algorithm leverages temporal variations in measurements of multiple cam-
era temperatures to mitigate parameter perturbations induced by heating. Furthermore,
based on this calibration model, a multitude of real-time non-uniformity correction systems
implemented in hardware have been devised [30]. However, these methods, reliant on
stable or slow-changing working environments, still fail to prevent parameter drift after
prolonged continuous operation, necessitating recalibration that interrupts the normal
functioning of the equipment.

2.2. Multi-Frame Scene-Based Non-Uniformity Correction

In pursuit of mitigating the constraints of CBNUC methods, the initial proposition
was a scene-based non-uniformity correction approach reliant on the inherent relationships
within multiple frame images. Notable methods within this category encompass temporal
high-pass filtering algorithms, neural network algorithms, constant statistical algorithms,
and image registration-based algorithms. Qian et al. [8] enhanced the classical temporal
high-pass filtering NUC method through thresholding, rendering the management of
high-frequency noise components controllable. Building upon this foundation, Zuo [9] and
Zhang et al. [10] introduced bilateral filtering, guided filtering, and adaptive time constants,
achieving more precise detail extraction and improved ghosting suppression capabilities.
Lai et al. [15], building on neural network algorithms, introduced a novel adaptive filter
based on the variable-step normalized mean squared error, expediting algorithm conver-
gence. Rong et al. [16] proposed employing motion detection to determine the necessity
of recalibrating coefficients, effectively overcoming the blurriness issue inherent in neural
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network approaches, and successfully deploying this algorithm on FPGA-based hardware
platforms. Constant statistical methods assume that the average statistical data for each
pixel should remain constant over an extended period, necessitating ample target motion
within the image sequence. Harris et al. [11] suggested using thresholds to guide parame-
ter updates in constant statistical algorithms, offering a straightforward and universally
applicable strategy for scene-based correction. Various novel statistical strategies [13,14]
have been introduced to suppress ghosting in static scenes during the statistical process.
Zhang et al. [12] argued that statistical data for temporal domain signals may not be entirely
consistent across individual pixels but remain constant within a local region. By leveraging
local constant statistics, more effective noise removal can be achieved. Additionally, several
frame registration-based methods [17] have been proposed; however, they are only suitable
for minor non-uniformity noise and may introduce significant registration errors in cases
of substantial noise.

These aforementioned multi-frame image-based scene non-uniformity correction al-
gorithms are applicable solely within work environments characterized by ample field
motion and are ineffective in eliminating non-uniformity noise in long-duration static
image sequences.

2.3. Single-Frame Scene-Based Non-Uniformity Correction

In comparison to multi-frame scene-based non-uniformity correction algorithms,
single-frame image non-uniformity correction algorithms prove more effective in avoiding
ghosting and blurring issues, as they do not rely on guidance from adjacent frame correla-
tions. Noise suppression schemes following frequency decomposition effectively segregate
relevant image information from noise interference, commonly employed in various noise
removal tasks, including non-uniformity correction. For instance, Liu et al. [19] introduced
an image dehazing algorithm based on a unified variational model. This method decom-
poses the blurred image into a smooth illuminance component and a detail-rich reflection
component, permitting independent dehazing and contrast enhancement treatments for
each component. Yan et al. [18] devised a dual-module single-frame image denoising
algorithm, enhancing high-frequency texture information and suppressing low-frequency
glare and haze in a grayscale enhancement module to improve image quality. Zhang-T
etal. [22] proposed a non-uniformity correction algorithm based on wavelet transformation,
disassembling the degraded image into information of varying frequencies in the wavelet
domain, subsequently utilizing the primary component in the vertical high-frequency
domain for non-uniformity noise correction. Li et al. [20] employed a one-dimensional
guided filter to extract high-frequency non-uniformity noise, followed by linear regression
fitting to obtain correction coefficients for each pixel in high-resolution image processing,
resulting in significant speed enhancements. Cao et al. [21] and Li et al. [23] similarly
utilized guided filtering to acquire coarse noise images. However, Cao et al. separated
stripe noise by exploiting local linear relationships between infrared data and stripe noise,
while Li et al. improved stripe noise estimation using local weighted ridge regression.

The aforementioned algorithms predominantly target high-frequency non-uniformity
noise removal, exhibiting suboptimal performance on global low-frequency thermal ra-
diation non-uniformity noise. Limited research has been conducted on low-frequency
non-uniformity correction caused by thermal radiation. To effectively leverage the global
smooth property and local non-uniform characteristics of this noise, Liu et al. [24] adopted a
TV regularization model to estimate thermal radiation noise, mitigating its impact on image
details through weighted least squares filtering. Shi et al. [25] amalgamated spatial surface
fitting regularization and multi-scale iterative estimation, presenting a Chebyshev poly-
nomial rapid surface fitting-based multi-scale thermal radiation effect correction method,
enhancing the robustness of optimal estimates effectively. Hong et al. [26] introduced a
progressive thermal radiation noise correction method based on Bezier surface fitting. Com-
pared to traditional single-degradation model approaches, the progressive correction model
accurately fits noise deviation fields but incurs increased algorithmic time consumption.
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With the rapid advancement of deep learning technology, numerous effective single-
frame image non-uniformity correction networks have been proposed. For instance, Kuang
et al. [27] introduced a dual-network architecture comprising denoising networks and con-
ditional discriminators, utilizing the discriminator network to make the denoised output
image resemble the target more closely. Chang et al. [28] incorporated wavelet trans-
formation into convolutional neural networks, using wavelets to perceive the internal
directionality of stripes as prior guidance for CNN learning, resulting in more efficient
residual noise elimination. However, due to the scarcity of real paired training samples,
especially in cases involving complex superimposed noise, these learning-based meth-
ods struggle to achieve strong generalization performance in real-world non-uniformity
correction problems.

As previously elucidated, existing non-uniformity correction algorithms struggle to
address a multitude of complex issues, including varying environmental temperatures,
insufficient scene motion, and the amalgamation of low-frequency and high-frequency
non-uniformities. To simultaneously overcome these challenges, we propose a single-frame
image non-uniformity correction algorithm based on wavelet domain noise separation.
This method defines the image’s non-uniformity noise as a combination of stripe non-
uniformity noise and thermal radiation non-uniformity noise. For addressing stripe non-
uniformity noise, we employ a clustering algorithm within the vertical components of the
wavelet domain for noise separation. Concerning thermal radiation non-uniformity noise,
separation is achieved through Bezier surface fitting of the wavelet domain’s approximation
components. In this manner, the algorithm achieves simultaneous removal of both high-
frequency and low-frequency non-uniformity noise from a single-frame image.

3. Proposed Method
3.1. Non-Uniformity Model

In general, the response curve of infrared focal plane array detector pixels is ap-
proximated using a linear model [1,5], and the mathematical formula for this model is
represented as follows:

(i, j) = G, j) - f(i,]) + O, ]) )
where T(i, ) is the degraded image with non-uniformity noise, f(i,j) is the potentially
clear image, G(i, j) represents the gain of pixel response, and O(i, j) denotes the offset in
pixel response. It has been demonstrated by previous scholars [1,29] that in the majority of
infrared focal plane array detectors, the dominant factor contributing to non-uniformity is
bias non-uniformity. In fact, assuming that sensor parameters remain stable over a short
period when detector pixels receive input signals of varying intensities, bias non-uniformity
remains constant while only gain non-uniformity undergoes variation. The overall system’s
non-uniformity can be regarded as fluctuating along a fixed baseline of bias non-uniformity
as the reference. Furthermore, gain non-uniformity does not affect bias non-uniformity.
Consequently, we can simplify the system’s non-uniformity noise to bias non-uniformity
noise. The experimental section in Section 4 also validates that our simplification does not
compromise the effectiveness of non-uniformity correction.

This paper establishes a degraded image model encompassing high-frequency stripe
and low-frequency thermal radiation noise. The mathematical formulation of this degrada-
tion model is expressed as follows:

T(i,j) = f(i,j) + (i, j) +b(i,j) +n(i,j) e

where T is the degraded image with non-uniformity noise, f is the potentially clear image,
s is the stripe, b is the thermal radiation noise, and n represents the system noise.

The objective of NUC is to estimate the two types of non-uniformity noise, i.e., s and b,
from the degraded image T, and subsequently eliminate the corresponding noise compo-
nents to attain a clear image. Given the evident structural disparities between stripe and
thermal radiation noise, it becomes imperative to decompose the non-uniformity noise into
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two distinct entities for separate rectification endeavors. In the approach proposed in this
paper, a wavelet domain clustering analysis algorithm is employed for segregating stripe,
whereas thermal radiation noise is separated through a wavelet domain guided spatial
domain Bézier surface fitting technique. This process, assuming a negligible presence of
system noise, is elaborated in its entirety, as depicted in Figure 1.

Degraded image
T=f+s+b

T,(j+1D)

Algorithmic model used for calibration

Wavelet transform

Streak noise Noise segregation

Muti-scale

|
[
Inverse | |
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Figure 1. Framework of our proposed method.

3.2. Wavelet Transform of Images

Wavelet theory forms the fundamental basis of multi-resolution signal processing and
analysis. Employing wavelet decomposition in the domain of image processing allows for
the effective highlighting of localized characteristics within the problem, thus facilitating
a more focused examination of specific regions pertaining to the task at hand. In digital
image processing, the two-dimensional fast wavelet transform is commonly implemented
using digital filters and down-samplers, as depicted in Figure 2.

*w(n)

*o(n)

v (m) 4
o Zl |

H*p(n) H

Ay (m)
L zl |

H*p(n) H

(a)

(b)

Figure 2. Two-dimensional fast wavelet transform: (a) decomposition filter bank; (b) 1—scale wavelet

transform results.

In the diagram, T, (j + 1) represents the wavelet transform’s approximation coeffi-
cients. Here, j signifies the number of scale decomposition levels. The initial decomposition
typically employs the original high-resolution image as input. (1) denotes the scale
coefficient, ¢(n) stands for the wavelet coefficient, and m and n serve as variables in the
convolution process, essentially representing the image’s resolution. | represents the down-
sampling process, and * signifies convolution operations. Upon a single wavelet transform,
an image yields an approximate image with low-frequency components and three detailed
images containing high-frequency components in the horizontal, vertical, and diagonal
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directions, respectively. Following j iterations of wavelet transform, the input image can be
represented as

To={ T06), TG TG, PG, TG =1 L TP ©

To compute the specific numerical values of the individual wavelet coefficients
in Equation (2), we provide here the calculation process for the two-dimensional dis-
crete wavelet vertical component coefficients in the j-th scale space, as described in the
following equations:

Vs 1 = : Vv
Ty (j) = m; mZ:;O Ty(j+1) 9; (n,m) (4)
gy (n,m) = ;(n) g;(m) (5)
pi(x) = 229 (2x — k) ©)
pi(x) = 28 (2x k) @)

In these equations, T(},/ (j) represents the wavelet coefficients of the vertical component,
M and N denote image dimensions, T,,(j + 1) signifies the input image from the previ-
ous level, tp]V (n, m) stands for the two-dimensional vertical component wavelet function,
¢;(x) represents the one-dimensional scaling function, §;(x) denotes the one-dimensional
wavelet function, j represents the scaling parameter, and k is the translation parameter. By
scaling and translating the wavelet basis functions, a complete set of scaling functions and
wavelet functions can be obtained. Likewise, one can calculate the wavelet coefficients
Tq’;‘ (j) on the approximation component, the wavelet coefficients TQI;{ (j) on the horizontal

component, and the wavelet coefficients Tq,D () on the diagonal component.

This process necessitates the determination of two parameters: the wavelet basis
function and the decomposition level j. The specific values for these parameters will be
provided in the experimental section.

3.3. Stripe Removal

The primary cause of stripe in infrared images is the inconsistency in amplification
parameters among the columns of the imaging device. This noise predominantly manifests
in the form of columnar or horizontal striped noise within the image. Furthermore, this
noise exhibits characteristics of global stationarity and subtle amplitude variations in the
spatial domain. A significant advantage of wavelet decomposition lies in its directional
sensitivity, as depicted in Figure 3, and post wavelet decomposition, as the striped noise is
primarily concentrated in the vertical component. This paper assumes that all instances of
stripe are situated within the vertical component, thereby minimizing potential disruptions
to the intricate details present in the original image.

Figure 3b depicts the spatial three-dimensional distribution of this vertical component.
It can be observed that the vertical component includes not only globally flat regions with
evident directionality but also local sharp information. To reduce the influence of residual
image details on noise estimation, we attempt to separate the image detail information
from the vertical component. The simplest approach is to use wavelet thresholding seg-
mentation [31], where values greater than the threshold are retained, while values below
the threshold are set to zero. This approach can somewhat extract stripe noise, but the
choice of threshold often exhibits significant fluctuations with changing scenes, leading to
unstable segmentation results.
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Noises
Image Edge

Gray value (normalized)

Columns
(b)

Figure 3. Vertical component in wavelet domain: (a) Two-dimensional; (b) Three-dimensional.

This paper proposes the utilization of the K-means clustering algorithm to adaptively
segregate the stripe based on the scene context. Initially, the entities to be separated
consist of grayscale values of different intensities, independent of their spatial distribution.
Consequently, the two-dimensional wavelet domain’s vertical component is sequentially
extracted by column, reducing it to a one-dimensional representation. This transformation
facilitates the conversion of the problem into a one-dimensional clustering task, as shown
in Equations (8) and (9).

B Hp s - 1,
t9 Y t9 A £
21 b fy3 2n
Tymmn)=|7 7 T 7 ®)
twa tma tws o b
T&,’(l,m X n) = reshape { Tl},/(m,n) } = [tzflltg,ltgll SRR SO ] 9)

where Tz‘p/ (m,n) denotes the vertical component of the wavelet domain of the degraded
image, t* is the element in the component, and reshape denotes a descending transformation
of the matrix read by columns.

Performing one-dimensional clustering analysis on the elements in set TJ{ (1,m x n),

the process begins by selecting k elements from set TJP/ (1,m x n) to serve as initial cluster

centers, denoted as y. The distances between each sample t in set Tl},/ (1,m x n) and each
centroid y; are computed. Utilizing Equation (10), the clustering results for individual
elements are determined, thus defining clusters C;. Subsequently, recalculating centroids
p; for all sample points in set C; follows, as depicted in Equation (11). This sequence of
operations is iterated until all centroids cease to undergo changes, thereby producing the
final classification outcome C. The clusters are then arranged based on the absolute values
of their cluster centers, as described in Equation (12).

k
E=Y Y I —uil (10)

i=1teCi
1 v
M=E ) i (11)
thECz
Ty(1,mxn)={C1Cy -+~ Cc} (12)

In Equation (10), k represents the number of clusters to be formed, C; signifies the
resulting clusters after clustering, and t” represents the elements of the vertically reduced
components. u corresponds to the cluster centers of each cluster. For all subsequent
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iterations, apart from the initialization, the cluster centers y are determined as the average
of elements within each cluster. By iteratively minimizing Equation (10), the division of
various clusters is achieved.

Upon the completion of clustering, the collection of clusters with relatively smaller
absolute cluster centers is designated as stripe Tl/‘}/ *(m,n), while the collection of clusters
with relatively larger absolute cluster centers is defined as residual image detail information
Tl)}/ "(m,n), as illustrated in Equation (13).

Tl‘p/(m,n) = reshape { C; C,0 --- 0} +reshape {00C3 --- C }
= Tg's(m,n) —|—Tl})/'r(m,n)

(13)

At this point, we have completed the initial separation of the stripe non-uniformity
noise, and the framework of the separation process is shown in Figure 4.

reshape
| Ho | oo |t | Ha Hi | 81 [oo0 | o | #a | B2 | 000 | fna | 000 |t | Ba | *0 | fun Hi |ty | ** |ta | Ha
v v v v , - v v v v
t2,1 tiyz oo tﬁ,:H tz,n T,/f (1,mxn) ‘ Cluster 1 t2,1 tz,z i t2,n—1 tz,n
m - 1
9 3 . 3
8 H H : : I K—means |~ Cluster2 - - s H H : :
: : H | | image details
e S Cluster 3
v 0 ) v v 0 i v
bt Bni2| 222 [retnilbmn reshape b tn12| *** Bntniffmetn
b || B || °° ||| e Gl o | e [NERN| £ [REEN e [REAZN| oo [RATRMNLEN e (NG o || s | A
Vv v ’ v ’
T (m,m) T (1,mxn) T (m,m)

Figure 4. Framework of the striped noise separation.

The aforementioned separated non-uniformity noise Tl}f #(m,n) does not directly
represent the actual imaging device response deviation. However, its overall trend re-
flects the fundamental characteristics of true non-uniformity noise. To quantitatively
compare the changing trend of this bias, Figure 5 illustrates the variations in the mean
values of image columns. Evidently, the mean values of columns in the original im-
age exhibit excessive smoothing. Following the introduction of striped noise, the neigh-
boring column’s mean values experience distinct fluctuations, and the column mean of
the image increases only locally after the introduction of thermal radiation noise, which
shows a strong correlation between the fluctuations in the column means and the noise of
streak-shaped inhomogeneity.

Consequently, it becomes plausible to employ the suppression of fluctuations in
the mean values of columns within the vertical component to achieve the mitigation of
striped noise. In this method, this corresponds to the suppression of the mean values of
the separated striped noise image TIX ** columns, with the specific calculation outlined as
depicted in Equation (14):

% TV,f) y Ty % T
Ty (corrected) = T)) — = i=1 — (14)
P P
%(T”#m%(T”#m L (1% £0)

i=1 i=1 i=1
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Figure 5. Column means of five sets of image gray values.

In Equation (14), Tl/‘J/ (corrected) represents the corrected vertical component, and
the parentheses encompass the calculation of the non-zero mean values of columns in
TJJ/ #(m,n). With this step, the correction of stripe within the wavelet domain vertical
component concludes. Through the inverse wavelet transform, an image devoid of stripe
can be obtained. By analyzing Figure 5, it becomes evident that the aforementioned process
significantly suppresses fluctuations in the mean values of columns. The post-processed
mean values of columns closely resemble those of the original image, and specific image-
processing effects will be showcased in subsequent experimental stages.

3.4. Thermal Radiation Noise Removal

Reconstructing a new image using the low-frequency component of the wavelet
domain transform can effectively remove all the high-frequency information of the image.
As shown in Figure 6a, the reconstructed image mainly contains thermal radiation noise as
well as low-frequency information of potentially clear images, as shown in Figure 6b.

=
[
£

Reconstruct
[ ] Thermal radiation

2 o
S o
of

Gray value (normalized)
o
o

o

500

Rows 0 0

(a) (b)

Figure 6. Reconstructed image with low-frequency components after wavelet transform: (a) 2D;
(b) 3D.
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Based on the global smoothness characteristics of the thermal radiation noise [32,33],
this paper uses the Bezier surface fitting algorithm to estimate its approximation. The
process of Bézier surface fitting is expressed as follows:

b(u,v) = Z Zpi,j X Bi,m(“>Bj,n(U) (15)
i=0j=0
Bin(t) = Chi(1—1)"",t € [0,1] (16)

where m and n signify the degrees of the surface, and P, j represents the coordinates of

the Bézier surface control points. B; , (t) designates the Bernstein polynomial. The afore-
mentioned system of equations can be transmuted into a matrix equation representation
as follows:

Bom(u1)Bou(v1)  Bom(u1)Bin(v1) -+ Buwum(u1)Bun(v1) 7 [Pro0)
Bom(42)Bon(v2)  Bom(u2)Brn(v2) -+ Bum(u2)Bun(v2) | | Pogy | b )
Bom (ttr,s)Bon(0rs)  Bom(trs)Bru(Vrs) -+ Bum(hr,s)Bun(vrs) P(m,n)

The pivotal steps of Bezier surface fitting reside in the judicious selection of control
points, wherein we utilize Equation (17) for the inverse determination of a set of control
point coordinates. The sparsity matrix B within Equation (17) can be directly computed
and acquired. Therefore, by defining the post-wavelet-transform low-frequency image as
the Bezier surface b within Equation (17), it becomes immediately feasible to ascertain a set
of requisite control points through the process of solving Equation (17) within the realm of
least squares. The solved control points are shown in Figure 7.
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Figure 7. Schematic representation of Bezier surface control points: (a) 3D reconstructed image;
(b) 3D Bezier surface control points.

Because the control point computation process employs an approximation of the
low-frequency image as the fitted Bezier surface, the fitted surface not only incorporates
thermal radiation noise but also encompasses the overall low-frequency information of
the image. Directly subtracting the surface controlled by these control points for non-
uniformity correction results in an issue of excessive darkness within the image scene due
to this approach. In order to harmonize the luminosity information of the post-correction
image and attain a judicious thermal radiation noise parameter b, this manuscript employs
a coefficient A to attenuate the noise image b generated through the resolution of control
points, as illustrated in Equation (18). The coefficient A is realized by minimizing the
energy function.
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b=Axb (18)

A = argmin[J(A)] (19)

J(A) = {std[mean(I — Ab)| — grad(I — Ab)} (20)

In Equation (20), mean denotes the computation of the average value for each column
of the image, yielding a one-dimensional array. Meanwhile, std signifies the calculation of
the standard deviation for this array. The term grad pertains to the derivation of the image’s
gradient. Within the context of this study, the Sobel operator is employed to compute the
first-order gradient of the image.

Within the energy function J(A), the first term corresponds to the level of uniformity
across the image. A smaller value for this term signifies a higher degree of overall image
uniformity. The second term represents the fidelity of gradients within the post-corrected
image. This term is employed to mitigate issues such as contrast reduction and excessive
dimness caused by the excessive attenuation of low-frequency components. The noise
intensity coefficient A can be dynamically adjusted based on the magnitude of thermal
radiation noise, thus facilitating the regulation of image luminosity. In order to solve the
energy function, a direct search method with a step size of 0.1 within the range of [0-1] is
employed to acquire the optimal thermal radiation intensity coefficient. Subsequently, this
parameter is applied to Equation (18), yielding the corrected image. The thermal radiation
noise images obtained using coefficients A of varying magnitudes are depicted in Figure 8.

4
©

Surface fitting
O  Control points

o o
ES =)

o
N}

Gray value (normalized)

=)
%

500

200

0 Columns Rows g

(a) (b)

Columns

Figure 8. Optimal thermal radiation noise search process: (a) original thermal radiation noise;
(b) thermal radiation noise under different degrees of attenuation. The light blue color at the top uses
a coefficient A of 1, the dark blue color at the bottom uses a coefficient A of 0.2, and in the middle,
from lighter to darker, the coefficients used are 0.8, 0.6, and 0.4 in that order.

4. Experimental Results

In this section, we evaluate the performance of the proposed method and compare it
with the methods proposed by Zhang et al. [22], Li et al. [20], Cao et al. [21], Li-F et al. [23],
Shi et al. [25], and Hong et al. [26]. All seven methods, including ours, are capable of
achieving non-uniformity correction based on single-frame images. For our experiments,
the non-uniformity correction for the simulated images was performed using the NWPU
VHR-10 dataset [34-36], and the addition of thermal radiation noise was referenced to
the degradation model of Shi et al. [25]. The BU-TIV dataset [37] was used for the non-
uniformity correction of the real images. The parameters that need to be predetermined
within the method are the number of wavelet transform iterations, denoted as j, and the
number of clusters in the k-means clustering, denoted as k. Upon validation through
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experimental outcomes, we establish the parameter values as j = 5 and k = 4 and use sym5
as the wavelet basis function for this experiment.

4.1. Simulated Image Correction
To validate the performance of the proposed correction method, we employ PSNR,

MSE, and SSIM to compare the denoising efficacy of the seven contrasting methods. The
PSNR between two images x and y of size m x n is calculated as

2
PSNR(x,y) =10- 10g10< MAX, >

MSE(x,y) @b

where MAX is the maximum value that represents the grayscale of an image, which is 255
if the sampling point is represented by 8 bits. MSE denotes the mean square error, and for
two grayscale images x and y of dimensions m x n, the mean squared error is defined as

m—1n—1

MSE(ry) = - T [x(i, ) — y(i,))] 2)

i=0 j=0
The SSIM between two images x and y of size m x n is calculated as

(2uxpy + C1) (20vy + Ca)

SSIM(x,y) = (y%+y§+cl> <U§+Uy2—|—C2>

(23)

where py, py, 0y, Oy and oy, respectively, stand for the local mean, standard deviation,
and covariance of the image. The correction outcomes from the three sets of simulation
experiments are illustrated in Figure 9 and Table 1.
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Figure 9. Comparative analysis of correction efficacy across seven distinct methods on simulated
images: (a) clear image; (b) degraded image; (c) Zhang et al. [22]; (d) Li et al. [20]; (e) Cao et al. [21];
(f) Li-F et al. [23]; (g) Shi et al. [25]; (h) Hong et al. [26]; (i) proposed. The red box in the figure indicates
a localized zoomed-in view of the selected area, and the green box labels the method proposed in
this paper.
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Table 1. Comparative assessment of the performance of seven methods on simulated images.

Image Index  Degraded Zhang. [22] Li. [20] Cao. [21] Li-F. [23] Shi. [25] Hong. [26]  Proposed
MSE 1475 1483 1445 1492 3989 335.62 324.08 162.25
Street PSNR 16.44 16.49 16.53 16.39 12.12 22.87 23.02 26.03
SSIM 0.71 0.80 0.81 0.77 0.80 0.74 0.75 0.94
MSE 1917 1877 1887 1894 5069 339.25 339.48 234.70
Residence PSNR 15.31 15.39 15.37 15.36 11.08 22.83 22.18 24.43
SSIM 0.66 0.76 0.76 0.77 0.76 0.71 0.71 0.93
MSE 1737 1722 1712 1752 4373 373.94 422.04 180.27
Plants PSNR 15.73 15.76 15.79 15.70 11.72 22.40 21.88 25.57
SSIM 0.70 0.78 0.79 0.77 0.81 0.74 0.74 0.93

The simulated experiments demonstrate that Zhang'’s, Li’s, Cao’s, and Li-F’s methods
perform well in removing stripe non-uniformity noise, and the most effective of these is
Cao’s method. However, when confronted with the superimposed global thermal radiation
non-uniformity noise, they struggle to eliminate the residual non-uniformity stripes com-
pletely, resulting in lingering non-uniformity stripe noise in detail regions. Furthermore,
there remains an evident global luminosity non-uniformity, as illustrated in Figure 9c—f,
and LI-F’s method even amplifies the original thermal radiation noise. While this enhance-
ment leads to improved SSIM scores, the improvement in PSNR metrics is not significant.
Shi’s and Hong’s methods exhibit distinct efficacy in the removal of thermal radiation
non-uniformity noise. However, the corrected images from these methods still contain
conspicuous remnants of stripe non-uniformity noise, as illustrated in Figure 9g h, thereby
impacting the SSIM scores. In contrast, the proposed method in this paper effectively
addresses both stripe non-uniformity noise and thermal radiation non-uniformity noise,
yielding images with minimal residual non-uniformity noise. This results in significant
improvements in both PSNR and SSIM metrics. In addition, the MSE index is more
effective in responding to the variability of all pixels before and after correction, and the
algorithm proposed in this paper has the smallest MSE among the seven methods, which
demonstrates the excellent recovery performance of this algorithm.

Additionally, the introduction of a noise intensity parameter in the process of thermal
radiation non-uniformity removal in this paper allows for adaptive adjustments based
on the thermal radiation noise characteristics. This facilitates an improved preservation
of image contrast, causing the corrected image to more closely resemble the original
image. In contrast, the methods by Shi and Hong tend to yield corrected images that are
globally brighter.

4.2. Real Image Correction

In this section, three sets of real infrared image sequences containing authentic non-
uniformity noise are employed. Figure 10 displays the correction outcomes achieved
by these seven methods on the three image sequences. To conduct a further objective
performance comparison of different correction methods, the column variance index Var,
is employed to evaluate stripe non-uniformity noise, while the national standard non-
uniformity index NUES is used for thermal radiation non-uniformity noise [38]. Figure 11
presents the correction outcome metrics for the three image sequences.
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Figure 10. Comparative analysis of correction efficacy across seven distinct methods on real images:
(a) degraded image; (b) Zhang et al. [22]; (c) Li et al. [20]; (d) Cao et al. [21]; (e) Li-F et al. [23]; (f) Shi
et al. [25]; (g) Hong et al. [26]; (h) proposed. The red box in the figure indicates a localized zoomed-in
view of the selected area, and the green box labels the method proposed in this paper.

The column variance Var, for evaluating stripe non-uniformity noise is defined as

Var, = —1_y (ﬁ .y )2 (24)
j_
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Figure 11. Performance evaluation of five methods across three distinct real-world scenarios:
(a) Scenario 1—street; (b) Scenario 2—indoors; (c) Scenario 3—skyscape.

In these equations, I? represents the first-order difference of the column means, reflect-
ing the changes in grayscale values between adjacent columns in the image. The column
variance metric assesses the non-uniformity of image gains and biases across different
channels. A smaller value of this metric indicates a higher degree of image uniformity.

NUES is defined as follows:

1 1 =2

NUES = N —d h;};(lw I) (27)
M N
I= ZZL-,,-/(M'N) (28)

In these equations, I; j represents the grayscale value at the pixel position (i, j), and
I signifies the global average grayscale value of the image. The image non-uniformity
index reflects the degree of uniformity in the overall grayscale values of the image. In the
computed results, a smaller value of NUES indicates a lower level of non-uniformity noise
in the image.

Three sets of image sequences were each processed with 100 frames for correction.
The results depicted in Figure 10 show the outcomes of processing the first frame of
each sequence. It is evident that the performance of the proposed method in this paper
surpasses that of the comparative methods. The correction methods by Zhang, Li, Cao,
and Li-F exhibit unsatisfactory performance in removing thermal radiation non-uniformity
noise, leading to pronounced global brightness non-uniformity in the images. Notably,
Li’s method results in a ghosting phenomenon in localized regions of the noisy image,
as illustrated in Figure 10c. LI-F’'s method causes part of the effective information to be
submerged in the image background due to the amplified thermal radiation noise, as
shown in Figure 10e. The methods by Shi and Hong are effective in ameliorating the



Sensors 2023, 23, 8424

17 of 22

presence of thermal radiation non-uniformity noise in images. However, they struggle to
effectively suppress high-frequency stripe noise, as evident in the corrected images shown
in Figure 10f,g, where residual stripe noise remains conspicuous.

In contrast, the proposed method in this paper renders high-frequency non-uniformity
noise virtually imperceptible, significantly curtails low-frequency thermal radiation non-
uniformity noise, and, upon visual inspection, yields the clearest corrected images with
minimal apparent residual noise.

In Figure 11, the trends in the statistical metrics align with the expected processing
outcomes. Specifically, the methods proposed by Zhang, Cao, and Li-F exhibit notable sup-
pression effects on high-frequency stripe non-uniformity noise, as illustrated in the first row
of Figure 11. Cao’s method closely approximates the performance of the proposed method
in this paper. Li’s method performs well in Scenario 1 but exhibits poor performance with
notable fluctuations in Scenarios 2 and 3. This fluctuation is attributed to the presence of
significant vignetting in Scenarios 2 and 3, where Li’s method tends to generate ghosting
artifacts in dark corner regions. Shi’s and Hong’s methods display distinct efficacy in
suppressing low-frequency thermal radiation non-uniformity noise, as shown in the second
row of Figure 11. The results from these two methods are comparable to the proposed
method in this paper, with Hong’s method slightly outperforming the proposed method
in Scenario 2. However, Hong’s method exhibits pronounced fluctuation in correction
efficacy across different image scenarios, whereas the proposed method demonstrates
stable correction performance across diverse scenarios.

In contrast to the comparative methods, which excel in addressing specific types of
noise but significantly compromise correction efficacy when handling combined noise,
the proposed method in this paper effectively achieves the joint correction of both high-
frequency and low-frequency non-uniformities.

Table 2 presents the average column variance index Var, for 100 frames of each image
sequence. Table 3 provides statistics on the average non-uniformity index NUES for
100 frames of each image sequence. Lower values in both tables indicate better image
consistency. From Table 2, it is evident that the proposed method yields the lowest column
variance index for all three image sequences after correction. Table 3 highlights that the
proposed method significantly enhances the non-uniformity index for all three image
sequences after correction while maintaining a stable correction performance. The average
non-uniformity index for the three image sequences decreases by 75.54%.

Table 2. Assessment of roughness metrics for the seven methods.

Image Index Input Zhang. [22] Li. [20] Cao. [21] Li-F. [23] Shi. [25] Hong. [26]  Proposed
Sce?ano Vare 5.946 1.166 1.658 0.762 1.517 3.548 3.579 0.914
Scer;a“" Vare 5.954 1.156 4.019 0.789 1.098 3.504 3.221 0.629
Scega“" Vare 6.491 0.872 5.295 0.451 0.771 4.021 4.055 0.444

Table 3. Assessment of NUES metrics for the seven methods.

Frames . . .

1-100 Index Input Zhang. [22] Li. [20] Cao. [21] Li-F. [23] Shi. [25] Hong. [26]  Proposed
Scenariol ~ NUES 0.391 0.385 0.391 0.384 0.478 0.098 0.179 0.142
Scenario2  NUES 0.477 0.475 0.475 0.473 0.533 0.119 0.087 0.102
Scenario3  NUES 0.466 0.462 0.463 0.461 0.476 0.079 0.081 0.073

Table 4 provides statistics on the average processing time for one frame of each
image sequence using the seven processing methods. From the table, it is evident that the
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methods by Zhang, Li, Cao, and Li-F outperform the others in terms of processing time.
Shi’s and Hong’s methods exhibit significantly longer processing times, primarily due to
the substantial computational effort required to solve the optimal function when estimating
the thermal radiation noise. The processing time of the proposed method in this paper is
slightly higher than that of the first four methods. This can be attributed to the clustering
method involved in this paper’s approach, which incurs noticeable increases in processing
time with changing input image scales.

Table 4. Evaluation of average time consumption for the seven methods.

Frames Index Zhang. [22] Li. [20] Cao. [21] Li-F. [23] Shi. [25] Hong. [26] Proposed
Scenario 1 Time/s 0.425 0.211 0.328 0.344 12.870 22.795 1.064
Scenario 2 Time/s 0.432 0.214 0.3162 0.382 6.472 65.664 1.049
Scenario 3 Time/s 0.428 0.222 0.3326 0.353 6.591 29.548 1.038

By considering the results from Tables 2—4 collectively, it becomes apparent that the
proposed method in this paper outperforms the comparative methods in terms of image
correction efficacy, with processing times comparable to those of similar correction methods.
Consequently, the proposed method is better suited to applications demanding both real-
time image quality and processing speed.

To further illustrate the effectiveness of the algorithm proposed in this paper, Figure 12
shows more examples of corrections based on real noisy images [39].

A - : . 8

Figure 12. Comparative analysis of correction efficacy across seven distinct methods on images
from a wider range of scenes: (a) degraded image; (b) Zhang et al. [22]; (c) Li et al. [20]; (d) Cao
et al. [21]; (e) Li-F et al. [23]; (f) Shi et al. [25]; (g) Hong et al. [26]; (h) proposed. The red box in the
figure indicates a localized zoomed-in view of the selected area, and the green box labels the method
proposed in this paper.
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5. Discussion

To surmount the challenges posed by various adverse conditions, such as insufficient
scene motion and the amalgamation of high-frequency and low-frequency noise, we have
proposed a single-frame image non-uniformity correction algorithm grounded in wavelet
domain noise separation. This approach obviates the need for calibration experiments,
enabling the simultaneous removal of both stripe noise and thermal radiation noise from
images. Its capacity to execute correction with a sole image implies operability even in
entirely static scenes. Comparative experiments were conducted against six representative
single-frame image non-uniformity correction algorithms, yielding exceptional results.

5.1. Interpretation of Results

In the experimental section, as outlined in Section 4, it was observed that the methods
proposed by Zhang, Li, Cao, and Lif effectively eliminate high-frequency stripe noise
while exhibiting limited effectiveness in removing low-frequency noise, as depicted in
Figure 9c—i, along with Figures 10 and 11, which share a similar trend. Among them, Cao’s
method demonstrated the most favorable performance. The approach presented in this
paper exhibits similar high-frequency noise removal efficacy to Cao’s approach. On the
other hand, the methods developed by Shi and Hong exhibit proficiency in removing low-
frequency thermal radiation noise while showing limited effectiveness in high-frequency
noise removal. Both exhibit similar denoising capabilities, yet these two methods differ
significantly in terms of processing speed. As revealed in Table 4, Hong’s method incurs
the longest computational time, primarily due to its employment of progressive iterative
parameter updates to enhance fitting precision. The approach presented in this paper aligns
with the subjective visual results of these two methods in terms of low-frequency noise
removal, as evident in Figure 9g—i, along with Figures 10 and 11. Notably, the proposed
method results in corrected images that closely approximate the overall brightness of the
original reference image. This is primarily attributed to the introduction of a noise intensity
parameter during the thermal radiation non-uniformity elimination process in this paper,
enabling adaptive adjustments based on thermal radiation noise characteristics. In contrast,
the methods by Shi and Hong tend to produce overall brighter correction images.

The experimental results affirm the efficacy of our approach in concurrently addressing
both stripe noise and thermal radiation noise. This effectiveness is chiefly ascribed to the
deployment of wavelet transform for the differentiation of various noise types within our
scheme. Denoising is accomplished through the utilization of distinct modules for stripe
noise extraction and thermal radiation fitting, distinguishing our approach from the typical
focus on the removal of a singular type of noise. It is imperative to emphasize that our
proposed scheme is not a mere amalgamation of existing approaches but represents a
novel solution for distinct noise types. Table 4 serves as a corroboration of this assertion,
demonstrating that our proposed scheme achieves both low-frequency and high-frequency
noise reduction without a significant escalation in computational time.

5.2. Limitations

The single-frame image-based non-uniformity correction algorithm that we have
proposed yields satisfactory results in most scenarios. However, our approach remains
subject to certain limitations.

Figure 13 illustrates a case in which our proposed algorithm fails. In scenarios involv-
ing image edge details with structures and grayscale values resembling non-uniformity
noise, our method may make incorrect assessments. As shown within the rectangular
box in Figure 13a, in this localized area, there is a window’s frame edge. After processing
with our algorithm, the frame’s width reduces from six pixels, as shown in Figure 13a, to
three pixels, as seen in Figure 13b. The reason for this discrepancy lies in the fact that the
detailed information is vertically distributed and has an overall width of only a few pixels.
Upon closer examination of the enlarged image, it becomes apparent that this pertinent
information closely resembles non-uniformity noise. Wavelet transformation and clustering
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algorithms are unable to accurately separate the Striped non-uniformity noise from this
valuable information, leading to a misjudgment of the non-uniformity noise. In future
endeavors, we will propose an enhancement algorithm based on prior information from
the original image’s detail to further enhance the accuracy of non-uniformity correction.

!’ntmﬁnlﬁ?" :

(b)

Figure 13. Failure case of the proposed non-uniformity correction method: (a) input noisy image;

(b) non-uniformity correction result provided using our method. The red box in the figure indicates a
localized zoomed-in view of the selected area.

6. Conclusions

In this paper, we propose a method for the correction of non-uniformity in single-frame
infrared images based on noise separation in the wavelet domain. More specifically, we
commence by decomposing the noisy image into distinct frequency components through
wavelet transformation. Subsequently, we employ a clustering algorithm to extract high-
frequency noise from the vertical components within the wavelet domain, concurrently
employing a method of surface fitting to capture low-frequency noise from the approximate
components within the wavelet domain. This approach, devoid of inter-frame correla-
tion dependencies, ensures the efficacious removal of stripe noise and thermal radiation
noise, simultaneously mitigating the issue of ghosting artifacts. Experimental outcomes
corroborate that, when compared with other cutting-edge single-frame non-uniformity
correction techniques, our proposed methodology excels in the reduction of superimposed
noise while preserving the fidelity of post-correction image details, with no conspicuous
issues regarding ghosting artifacts. Moreover, our algorithm does not impose significant
computational overhead in the elimination of superimposed noise, thereby underscoring
the practicality of the proposed approach, especially in applications demanding both im-
age quality and processing speed. In future research endeavors, our emphasis will pivot
towards the development of real-time non-uniformity correction algorithms tailored for
engineering applications.
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