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Abstract: Under low-illumination conditions, the quality of the images collected by the sensor is
significantly impacted, and the images have visual problems such as noise, artifacts, and brightness
reduction. Therefore, this paper proposes an effective network based on Retinex for low-illumination
image enhancement. Inspired by Retinex theory, images are decomposed into two parts in the
decomposition network, and sent to the sub-network for processing. The reconstruction network
constructs global and local residual convolution blocks to denoize the reflection component. The
enhancement network uses frequency information, combined with attention mechanism and residual
density network to enhance contrast and improve the details of the illumination component. A large
number of experiments on public datasets show that our method is superior to existing methods in
both quantitative and visual aspects.

Keywords: Retinex theory; low-illumination; decomposition network; reconstruction network;
enhancement network; frequency information

1. Introduction

With the advancement of technology, people now have access to a vast amount of
information from various sources, and the visual system is the main way. Images are the most
intuitive and commonly used source of information in the visual system [1]. They provide a
quick and easy way for people to understand and interpret the world around them. Images
contain a vast amount of information, and the quality of an image can greatly impact
the amount of information that can be obtained from it. However, when the illumination
conditions are poor or insufficient, it has a significant impact on the quality of the image
captured by the sensor. In such situations, images suffer from reduced contrast, loss of detail,
high levels of noise, and low overall brightness, this can make it difficult to extract meaningful
information from the image. Poor image quality can greatly impact the effectiveness of post-
processing [2,3]. Therefore, for the processing of low-illumination images, digital image
processing technology can be used to develop various enhancement algorithms that can
improve the quality of low-illumination images. From the perspective of image processing,
researchers propose many enhancement algorithms to solve the image quality problems [4,5].

In recent decades, many scholars have researched the enhancement of low-illumination
images, and there have been significant advancements in low-illumination image en-
hancement techniques. The traditional methods are mainly based on histogram equaliza-
tion(HE) [6] and Retinex theory [7]. Histogram equalization is a popular technique that
can improve contrast by spreading the intensity levels of an image over the entire available
range of values. This results in a more balanced distribution of brightness and contrast in
the output image. The goal of Retinex-based methods is to enhance the reflection image
by improving the influence of the brightness image on it. This is achieved by carefully
adjusting the relationship between the two components.
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In recent years, deep learning has gained significant popularity in the field of low-
light image enhancement [8,9]. This is primarily attributed to its remarkable ability to
capture powerful feature representations and perform nonlinear mappings. Among them,
Lore et al. [10] are the first to use deep learning in the field of low-light image enhancement.
The proposed method can adaptively enhance image brightness without oversaturation.
In addition, some researchers have explored the combination of traditional methods and
deep learning to enhance low-illumination images [11]. Among them, the most representa-
tive is the Retinex-based deep learning method [12,13]. These methods excel in enhancing
the brightness of low-illumination images by improving the estimation of both the reflection
component and the illumination component. Subsequent researchers have made advance-
ments in addressing the limitations, overfitting, and real-time problems associated with
deep learning methods in low-light image enhancement. These advancements improve the
practicality and applicability of deep learning techniques in this field.

While deep learning-based methods have made progress in low-illumination image
enhancement, there are still challenges and limitations that need to be addressed [14,15].
For instance, the enhancement effect of the fully supervised learning method is largely
affected by its training data set, so there are some common problems in the enhancement
effect. Consequently, there are common issues that can arise in the enhancement results,
including loss of image details, amplification of noise, and color distortion [16,17]. Hence,
there is a need for a more comprehensive approach that takes into account multiple factors
and provides a more accurate and realistic representation of the original scene in low-
illumination image enhancement. In this paper, we propose a novel fully supervised
learning algorithm for low-illumination enhancement. The algorithm consists of three
parts, Decom-Net, Recon-Net, and Ehance-Net. Decom-Net aims to enhance the input
low-illumination image by decomposing it into an illuminance map and a reflectivity map,
following the principles of the Retinex theory. Recon-Net utilizes the decomposition result
as input and utilizes the illumination component as a constraint. It employs a combination
of global down-sampling operation and local residual block feature extraction to effectively
suppress noise in the reflection component. Additionally, a color loss function is employed
to mitigate color fading in the reflection component, so as to obtain the decomposition result
with better visual quality. In Ehance-Net, spatial information and frequency information
are used to improve the image contrast under the attention mechanism, and the dense
residual connection network is employed to better preserve the details in the image. Our
contributions can be summarized as follows:

• We propose an effective end-to-end network based on Retinex theory. The network
decomposes the image in a data-driven manner, constructs global and local residual
convolution blocks for denoizing, and combines frequency information with spatial
information to improve brightness and contrast.

• Aiming at the color degradation in low-illumination image enhancement, we propose
color loss function to suppress color degradation.

• We conduct an extensive set of experiments to demonstrate the efficacy of our pro-
posed model. Experimental results serve as strong evidence for the effectiveness of
our approach.

The rest of this paper is organized as follows: In Section 2, we review the traditional
methods and low-illumination image enhancement methods based on deep learning. In
Section 3, we present the model proposed in this paper. Section 4 introduces the loss
function in detail. Section 5 gives the experimental results and evaluation, and the sixth
section summarizes the full text.

2. Related Work
2.1. Traditional Methods

The traditional method is mainly based on histogram equalization(HE) and Retinex
theory. On the basis of Histogram Equalization (HE), Zhu et al. [18] proposed Constrained
Local Histogram Equalization (CLHE). CLHE uses a sliding window to divide the image
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into smaller blocks, and then performs HE on each block individually. The size of the
sliding window can be adjusted to suit the specific image being processed. Compared with
the original HE, local details are significantly enhanced with CLHE. Wongsritong et al. [19]
proposed a method called Multipeak Histogram Equalization with Brightness Preserv-
ing (MPHEBP). The method uses local maximum values in the histogram to partition
the image into sub-regions. On the basis of subgraph equalization after histogram divi-
sion, the distribution range of each subgraph is redistributed according to the number
of pixels in each subgraph of each histogram. The partition value is the local maximum.
After equalization, it is normalized, and the whole image is multiplied by a proportional
coefficient to adjust the average brightness to the average brightness of the original image.
Ibrahim et al. [20] proposed a method called Brightness-Preserving Dynamic Histogram
Equalization (BPDHE). This method normalizes the acquired sub-regions after histogram
equalization of low-illumination images, ensuring the overall brightness of the image is
preserved. Finally, the whole image is multiplied by a proportional coefficient to adjust the
gain, and the brightness mean is adjusted to the brightness mean of the original image.

The Retinex theory was first proposed by Land et al. [21]. Researchers make progress
in improving the Retinex algorithm and addressing some of its limitations. The single scale
Retinex algorithm (SSR) [21] was proposed as an improvement over the original Retinex
algorithm. The algorithm adjusts the intensity values of each layer to enhance the overall
appearance of the image. Jobson et al. [22] proposed the multi-scale Retinex algorithm
(MSR), which builds upon the single-scale Retinex (SSR) method. The MSR approach uses
a set of filters of varying sizes to capture information at multiple scales, which allows for
better preservation of both local and global contrast in images. Rahman et al. [23] proposed
the Multi-Scale Retinex with Color Restoration (MSRCR) method, which builds upon the
MSR algorithm by addressing the issue of color distortion that can arise when enhancing
contrast in local areas of an image. In addition, some scholars introduced variational
models into the Retinex algorithm and achieved good results. Kimmel et al. [24] first
proposed the variational Retinex model, which transforms the illumination and reflection
estimation into the optimal solution problem for the multi-objective function. By itera-
tively solving the objective function, the optimal illumination and reflection estimation are
obtained simultaneously.

2.2. Learning-Based Approach

In recent years, the field of low-illumination image enhancement has witnessed sig-
nificant progress owing to the rapid advancements in deep learning. Many techniques
such as deep convolutional neural networks and GAN are successfully employed in the
domain of low-illumination image enhancement. The earliest deep learning method pro-
posed for enhancing low-illumination images is LLNet, introduced by Lore et al. [10].
This technique involves training a stacked sparse denoizing autoencoder using synthetic
data, which enables it to perform simultaneous enhancement and denoizing of images.
Wei et al. [25] proposed the Retinex-Net method, which combines Retinex theory with deep
convolutional neural networks to achieve enhanced low-illumination images. Retinex-Net
employs a decomposition-enhancement structure to improve the contrast of the illumi-
nation component, and BM3D is used to remove noise from the reflection component.
The enhanced image is obtained by fusing the two components. MSR-Net was proposed by
Shen et al. [26]. In the MSR-Net, the multi-scale Retinex module is integrated into the net-
work architecture to capture and enhance the multi-scale information present in the input
images. By incorporating the multi-scale Retinex theory into the network, the MSR-Net can
effectively enhance the details and improve the visual quality of low-illumination images.
Lü et al. [27] proposed the Multi-branch Low Light Enhancement Network (MBLLEN),
which leverages convolutional neural networks to extract rich features from images at
different levels. The output results from the multiple subnets are fused together to obtain
the final enhanced image, therefore improving the overall image quality from various
aspects. Jiang et al. [28] were the first to propose applying unsupervised learning to
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low-illumination image enhancement, which they named EnlightenGAN. This method
successfully introduces unpaired training to low-illumination image enhancement for the
first time, enabling adaptive enhancement of local areas in images. Lim et al. [29] proposed
a novel technique called deep-stacked Laplacian restorer (DSLR) for recovering both global
illumination and local details from the original input in low-light image enhancement.
Guo et al. [30] proposed a lightweight network called Zero-DCE, which is capable of
no-reference training and avoids the risk of overfitting in low-light image enhancement.
Subsequently, Li et al. [31] introduced Zero-DCE++, an extension of the original Zero-DCE
method that effectively reduces the parameter count and improves the computational
efficiency of the network. Liu et al. [32] proposed the RUAS network, which leverages
knowledge injection of low-light images and a lightweight priority architecture, effectively
reducing the computational complexity of the network. Additionally, a structure search
method is employed to enhance the efficiency of the network’s overall structure.

3. Method

According to Retinex theory, the perceived color and brightness of an object by the
human eyes depend on the reflection characteristics of the object surface. The human
visual system perceives the reflectivity of the object under different illumination condi-
tions and maintains color constancy. This is because the human visual system takes into
account both the spectral content of the illumination and the reflectance properties of
the object being viewed. Based on this feature, Land et al. [21] constructed the following
mathematical model:

S = R ◦ I (1)

Among the Retinex theory, R represents the reflection component of an image, which
reflects the essential characteristics of the object being viewed and has nothing to do with
the light. I represents the illumination component of an image, which reflects the effect
of the illumination on the object. The illumination component varies depending on the
lighting conditions and can affect the perceived color and brightness of the object. ◦ denotes
multiplication by elements. S denotes the original image.

In the case of sufficient illumination, this image is called a normal-illumination image
(Snor), and the illumination distribution inside the image will change continuously. Such an
image excels at effectively preserving the image’s edges and intricate details. Nevertheless,
in cases where the light source’s brightness is insufficient, the resulting image exhibits
reduced overall luminosity, termed as a low-illumination image (Slow), often resulting in
the loss of image detail information. Because photographic equipment cannot capture the
reflected light information on the surface of an object perfectly, images often contain a large
amount of noise, which is mainly distributed in the reflection component. Therefore, when
enhancing low-illumination images, it is necessary to consider noise suppression of the
reflection component obtained in the decomposition network and enhance the illumination
component to improve the image brightness and contrast.

The network framework design of this paper is shown in Figure 1. The overall frame-
work of the network is divided into three parts: Decom-Net, Recon-Net, and Enhance-Net.
Initially, Decom-Net serves as the input layer for the entire network. During the training
phase, both the low-illumination image (Slow) and the normal-illumination image (Snor)
from the paired dataset [25] are used as inputs. However, only the low-illumination im-
age (Slow) is needed during the testing phase. The low-illumination image (Slow) and
the normal-illumination image (Snor) in Decom-Net share the same network parameters.
Following the principles of the Retinex theory, the image is decomposed into the reflection
component image (Rlow/nor) and the illumination component image (Ilow/nor). Subse-
quently, the reflection component (Rlow) is merged with the illumination component (Ilow)
to form the input for Recon-Net. Recon-Net employs both global and local residuals to
effectively reduce noise in the reflectance map. The frequency information from the illumi-
nation component (Ilow) acquired through Decom-Net, and the reflection component (Rrec)
obtained from Recon-Net are utilized as inputs for Enhance-Net. In Ehance-Net, spatial
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information and frequency information are combined, an attention mechanism is used to
highlight useful information, and a residual dense network is used to enhance detailed in-
formation. Finally, the reflection component (Rrec) and the illumination component (Ien) are
acquired through Recon-Net and Enhance-Net, followed by the generation of an enhanced
image with natural brightness through pixel-by-pixel multiplication.

Figure 1. The framework of the proposed model. Our network comprises three subnets: Decom-Net,
Recon-Net, and Enhance-Net.

3.1. Decom-Net

The key to Retinex-based methods is to obtain a high-quality illumination map and
reflectance map; the quality of the decomposition results also affects the subsequent
enhancement and denoizing processes. The approach proposed in this paper utilizes
data-driven learning to enhance the universality of the network. As shown in Figure 2,
the low-illumination image (Slow) and the normal-illumination image (Snor) are used as the
input of the Decom-Net, and they are decomposed into the reflection component (Rlow/nor)
and the illumination component (Ilow/nor).

Figure 2. The proposed Decom-Net architecture. The Decom-Net consists of two modules: The
Stacked Convolution Module (SCM) and the Encoding–Decoding Module (EDM). SCM primarily
emphasizes high-level semantic information. EDM focuses on global information and enhances the
flow of feature information.
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In contrast to series convolutional layers employed in Retinex-Net [25] that primar-
ily emphasizes high-level semantic information, our approach incorporates an encoder-
decoder network with hierarchical feature mapping to capture multiscale context informa-
tion. By incorporating skip connections, our method not only helps alleviate overfitting,
but also facilitates the integration of low-level visual features with high-level semantic
information.

To begin with, a 9 × 9 convolutional layer is applied to the input image to extract its
low-level features. The resulting feature maps are then fed into two separate branches for
further processing. The first branch includes 4 convolutional layers of 3 × 3. This branch
is designed to convert low-dimensional features into high-dimensional ones. The second
branch employs a shallow up-down sampling structure to process the global information of
the image. To address the issue of lost feature information caused by the lack of translation
invariance in the max pooling layer, we opt to use a 2 × 2 convolutional layer with a stride
of 2 for down-sampling instead. And to reduce the loss of features during this process, the
skip connection, which preserves the global context information, is introduced after the
image up-sampling.

Finally, to ensure that the reflection and illumination components are within the range
of [0, 1], the Sigmoid function is applied as a constraint. Additionally, in order to reduce
training time, weight sharing is introduced in the Decom-Net.

3.2. Recon-Net

Low-illumination images often contain a significant amount of noise in dark areas
due to factors such as shooting equipment and ambient light sources. The distribution
of noise on the reflection component is complex and highly dependent on the brightness
distribution of the illumination component. Unprocessed noise can significantly degrade
the quality of an enhanced image. To address this issue and better preserve details in the
reflected component (Rlow) image, we design the reconstruction network which removes
noise and achieves our desired outcome.

The Recon-Net is shown in Figure 3. The network consists of an encoding network
and a corresponding decoding network. Both the illumination component and reflection
component are used as input. Specifically, the spatial features are down-sampled to decrease
the feature dimension and achieve an effective feature representation. While our approach
is effective at removing pixels containing noise, it also leads to image blurring. To address
this issue, a skip connection, which compensates for the loss of detailed information, is
introduced during down-sampling. By introducing this information during up-sampling
and restoring the original image size, which preserves image sharpness and improves
overall image quality.

Figure 3. The proposed Recon-Net architecture. The network consists of encoding and decoding
network units. The encoding network unit performs feature extraction to obtain abstract features,
while the decoding network unit uses these abstract features to recover the original image size.
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Figure 4 illustrates the structure of encoding and decoding network units, which are
comprised of residual units. The encoding network unit is made up of several compo-
nents, including 3 × 3 convolutional layers, 1 × 1 convolutional layer, dilated convolution,
and identity mapping. Specifically, when a feature map is input into an encoding network
unit, two convolutions are applied to extract its features. Then the original feature map
and the extracted feature map are added by identity mapping, which helps to improve
the overall feature learning ability of the network. To increase the receptive field of our
encoding network unit without sacrificing resolution, the network uses dilated convolution.
This allows the network to capture more context information while avoiding the need for
additional network depth. After dilated convolution, the original feature map is added to
the extracted feature map features. Our decoding network unit is similar to our encoding
network unit, consisting of 3 × 3 convolutional layers. The use of identity mapping pro-
motes the flow of shallow features to deep features, helping to reduce the loss of valuable
feature map information and enhance model performance.

Figure 4. The proposed encoding and decoding network units architecture. (a) encoding network
unit (b) decoding network unit.

The reconstruction network takes in both the reflection and illumination components
as inputs. The encoding and decoding network extracts features from these components.
To restore the image size after down-sampling and to prevent image distortion during
decoding, the sub-pixel convolutional layer is employed in the decoding network to restore
the image size. Finally, the reflection component (Rlow) is reconstructed by decoding
network units.

3.3. Enhance-Net

The illumination component obtained from the Decom-Net may have low brightness
and poor detail. To enhance both the brightness and detail of this component in low-light
images, further processing is required. Therefore, combined with the detail information of
the reflection component, enhancement network is designed to solve the problem.

The structure of the brightness adjustment network is illustrated in Figure 5. The net-
work uses the frequency information of the illumination component of the decomposition
network (Ilow− f re) and the output of the reconstruction network (Rrec) as input to enhance the
brightness of Ilow. To obtain the final enhanced image output, the enhancement illumination
component(Ien) and the reconstruction component(Rrec) are combined. This combination is
used to enhance the overall image quality and produce the output image (Sen).

The module consists of two sub-networks. The first sub-network is the encoding and
decoding network with attention module (EDNA). To improve the illumination adjustment
process, an attention mechanism module is incorporated into the Enhance-Net. This module
reduces the feature response to irrelevant background information while enhancing the
processing ability of the algorithm for detail features. As illustrated in Figure 6, the input
to the attention mechanism module comprises the image features (xi/yi) obtained from the
lower and upper sampling layers, respectively. After processing by the attention module,
the response to brightness features is enhanced, allowing the output feature (zi) to carry
more brightness information.
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Figure 5. The proposed Enhance-Net architecture.The Enhance-Net consists of two modules: Encod-
ing and Decoding Network with Attention Module (EDNA) and Residual Dense Layer (RDL). EDNA
reduces the response of irrelevant features and enhances the network’s ability to adjust brightness
and RDL improves the utilization of feature information.

Figure 6. The proposed Attention Module architecture.

To process the inputs xi and yi in the attention mechanism module, each is passed
through an independent 1 × 1 convolutional layer. The resulting features are then added to-
gether before being activated by the LeakyReLU activation function. After passing through
the 1 × 1 convolutional layer and the Sigmoid function, the resulting features are interpo-
lated using bicubic interpolation to restore the original size of the feature map. The final
output feature (zi) is obtained by multiplying the interpolated feature map with xi. The at-
tention mechanism in this propagation process can effectively fuse image information from
different scales, reduce the response of irrelevant features, and enhance the network’s
ability to adjust brightness.

The second sub-network of the Enhance-Net consists of a residual dense layer com-
prised of residual dense blocks (RDB); the structure is shown in Figure 7. The connection
structure used in the residual dense blocks (RDB) allows the features from all previous
convolutional layers to be combined before transmitting the features backward through
the network. This leads to the formation of a contiguous memory (CM) mechanism, which
helps to improve the learning and utilization of feature information during the illumination
adjustment process. To address issues such as overfitting and gradient disappearance,
the result from the feature extraction from the previous layer is used as the input to each
residual block. Each residual block within the RDB comprises three 3 × 3 convolutional
blocks, a 1 × 1 convolution, and LeakyReLU activation function. After several convolu-
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tional and LeakyReLU activation function operations, the extracted feature information
is concatenated and added to the input of the current residual block using an addition
operation. The output of each residual block is then passed as input to the next layer.

Figure 7. The proposed Residual Dense Block architecture.

The high-frequency information of the image has more and more obvious brightness
changes, and the low-frequency information represents a general overview and contour.
Therefore, it is combined with the reflection component (Rrec) as the network input.the
output structures of the two sub-networks are concatenated, the enhancement illumination
component (Ien) is obtained by merging 1 × 1 convolutional layer.

3.4. Loss Function

To train the network effectively, an appropriate loss function must be established
to estimate the weights of the network and improve the accuracy of learning. This loss
function should take into account the desired properties of the output image, such as
brightness and detail enhancement, while also minimizing artifacts and noise in the image.

3.4.1. Decom-Net

The Decom-Net is designed to tackle the task of separating the illumination and
reflection components from input low-illumination images. The loss function of the Decom-
Net consists of four components:

LDecom = Lrec + λrLR + λisLis + λvggLvgg (2)

Among them, λr, λis, and λvgg are the weight coefficients of consistency loss, illumi-
nance smoothness, and perceptual loss.

Retinex theory suggests that the reflection component of an image should preserve
its intricate texture features, while the illumination component ought to exhibit a smooth
and uniform appearance. As a result, the reconstruction loss function of the constrained
Decom-Net takes the following form:

Lrec = ‖Rlow ◦ Inor− Slow‖1 + ‖Rnor ◦ Ilow− Snor‖1 (3)

Using the Decom-Net to output the results of different illuminations for pixel multipli-
cation, the results of Decom-Net are closer to the real image effect.

Retinex theory’s color constancy dictates that the reflection component (Rnor/low)
of a paired low-illumination image (Slow) and normal-illumination image (Snor) should
exhibit maximum consistency. To achieve this, consistency loss is introduced for reflection
components, as per the following formula:

LR = ‖Rnor − Rlow‖1 (4)

In natural settings, images are expected to have smooth illumination. Hence, it
becomes crucial to limit the horizontal and vertical gradients of every pixel in the image to
avoid excessively large variations. The loss function uses the gradient term of the reflection
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component as the gradient map of the illumination component to assign weights, so as to
better preserve the texture details and boundary information in the brightness smoothness
of the illumination map. The loss function is as follows:

Lis = ∑
n=low,normal

‖∇In • exp(−λs∇Rn)‖1 (5)

∇ represents the sum of horizontal and vertical gradient in the image, while λs refers
to the perceptual gradient balance coefficient. Notably, exp(−λs∇Rn) helps to ease the
smoothing constraint at steeper gradients of the reflection component.

The addition of perception loss [33] to the Decomposition Network aims to align its
output with the perceptual effect observed by human eyes. The corresponding loss function
is as follows:

Lvgg =
1

Cj HjWj
∑

n=low,normal
‖Rn ◦ In − Sn‖2

2 (6)

Among them, Cj, Hj, Wj represent the size of the feature map of the j layer.

3.4.2. Recon-Net

The Reconstruction Network is designed to retain the texture detail information of
the reflection component while simultaneously suppressing noise. However, during the
up- and down-sampling process, images may lose details and experience color fading.
Therefore, a well-designed loss function is necessary to constrain the final enhancement
outcome and guide the network toward convergence in the right direction. The following
loss function is employed for this purpose in the Recon-Net:

LRecon = λmLMix + λcol Lcolor + λtvLtv (7)

In this context, λm, λcol and λtv denote the weighting coefficients for consistency loss,
color loss, and total variation loss, respectively.

To enhance the detail expression ability of the Reconstruction Network and ensure
consistency in structure between the enhanced reflection component (Rrec) and the de-
composition network’s decomposed reflection component (Rnor), we use a loss function,
such as:

LMix = α • LMS−SSIM + (1− α) • GσM
G
• Ll1 (8)

Although MS-SSIM may cause changes in brightness and color accuracy, it is effective
in retaining the edge details of the image. The Ll1 loss function can maintain the invariance
of brightness and color. By combining these two loss functions using a weighted sum,
the mixing loss aims to balance the importance of structural information with the need to
minimize the absolute error.

Among them, LMS−SSIM = 1− [MS− SSIM(Rnor, Rrec)], Ll1 = ‖Rnor − Rrec‖1.
In this context, the parameter G represents the Gaussian distribution, while α is a

constant that has been set to 0.84. The mixing loss function is a combination of two other
loss functions: MS-SSIM and Ll1 . The weights assigned to each of these loss functions are
determined by the value of α.

The Rlow contains color information for the low-illumination scenario, and it is ex-
pected to have consistent color information with Rnor. Therefore, using Rnor as the reference
image, the color loss function is designed to make Rlow restore the normal color information:

Lcolor =
1

CjHjWj
∑

i=R,G,B
sim(Ri

nor, Ri
low) (9)

The cosine similarity [34] is more to distinguish the difference from the direction,
and is not sensitive to the absolute value, so it is impossible to measure the difference in
the value of each dimension. Therefore, the color loss is reduced by adjusting the cosine
similarity. sim(·, ·) represents the adjusted cosine similarity. The calculation of the adjusted
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discrete cosine similarity between the fused image and the original visible image in the R,
G, and B channels.

Rudin et al. [35] pointed out that images affected by noise typically have a higher total
variation compared to noise-free images. By limiting the total variation, it is possible to
suppress the effect of noise in the image. To promote spatial smoothness of network output
results and remove noise, a TV (Total Variation) Loss is used as a regularization term to
constrain network learning in the population function. The loss function is formulated
as follows:

Ltv = ‖∇ f (x)‖1 (10)

∇f (x) represents the gradient of the output image f (x).
By minimizing the TV Loss, the model is encouraged to produce output images with

smoother transitions between pixel values, which can help reduce the amount of noise
present while preserving important features and details in the image.

3.4.3. Enhance-Net

To capture more comprehensive brightness information and achieve a brightness
enhancement effect that closely resembles that of a normally illuminated image, we have
designed the following loss function:

LEnhance = Lrelight + λiLi (11)

λi is the weight coefficient of light loss.
Based on the Retinex theory, the product of the two is consistent with the input image.

By using a loss function, the enhancement effect of the illumination component on the
low-illumination image becomes more similar to that of a normally illuminated image:

Lrelight = ‖Rrec ◦ Ien − Snor‖1 (12)

To constrain the illumination component, the input image guides the illumination
component, and there are significant changes in illumination at strong edges of the input
image. This means that in regions where the illumination change in the input image is
small, the corresponding illumination change in the enhanced image should also be small.
The loss function is formulated as follows:

Li = ∑
i=en,nor

∥∥∥∥ ∇In

max(|∇Sn|, E)

∥∥∥∥
1

(13)

In represents the illumination component of the enhanced/normal-illumination image,
and Sn represents the enhanced/normal-illumination image. The symbol ∇ represents
the sum of the first derivatives in both horizontal and vertical directions. To avoid a zero
denominator, we introduce a small positive constant E (set to 0.01 in this study).

4. Experimental Results and Analysis

The algorithm presented in this paper leverages the training set from the LOL
dataset [25] and a synthetic datase [25] to effectively train the network and achieve model
fitting. To assess the model’s fitting performance, evaluation metrics are applied to the
test set result evaluation of the LOL dataset [25] to validate its effectiveness in achieving
model fitting. Then, in order to ascertain the model’s universality, DICM dataset [36], MEF
dataset [37], NPE dataset [38], and LIME dataset [39] are employed, accompanied by vari-
ous evaluation metrics to assess its applicability. The training and testing experiments of
the network are completed on the Nvidia RTX A6000 GPU device, and the implementation
code is based on the Pytorch framework. During the training process, the network uses
image pairs for training, the Batch Size is set to 32, and the Patch Size is set to 96 × 96.
The methods selected for comparison include MSRCR [23], DRBN [40], RRDNet [41], Zero-
DCE++ [31], Retinex-Net [25], DSLR [29], RUAS [32], URetinex-Net [12], and the results of
all comparison methods are reproduced from their official code.
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In all experiments, after numerous rounds of training and validation, we empirically
set λr = 0.1, λis = 0.01 and λvgg = 0.05 in Decom-Net. λm = 0.0001, λcol = 0.03 and
λtv = 0.0005 in Recon-Net. Then, λi = 0.1 in Enhance-Net. After experimental testing,
the number of parameters of the Decom-Net is 1.24 M, the number of parameters of
the Recon-Net is 5.34 M, and the number of parameters of the Enhance-Net is 0.43 M.
The parameter of the total network is 19.92 M.

4.1. Ablation Experiment

To investigate the effectiveness of different components in the model and the loss
function settings, we conduct a quantitative evaluation of our network using the LOL
dataset. We use PSNR to measure the noise level, and SSIM to evaluate overall image
quality, including brightness, contrast, and structure. The results of this evaluation are
summarized in Table 1.

Table 1. Ablation experiment results of improved modules and loss.

Conditions PSNR SSIM

default 18.137 0.795
En/De-Unit→Conv-Unit 17.294 0.711
Recon-Net+Ehance-Net 15.315 0.571

w/o EDNA 15.581 0.627
w/o Residual Dense Net 16.791 0.673

w/o Perception Loss 17.387 0.722
Ll1 -MS-SSIM Loss→Ll1 17.475 0.727

Numbered lists can be added as follows:

1. To assess the effectiveness of the encoding and decoding network unit (En/De-Unit)
in Recon-Net, we replaced it with four 3 × 3 convolutional layers to form a standard
unit (Conv-Unit). The PSNR and SSIM values obtained using the standard unit were
17.157 and 0.704, respectively, indicating that the encoding and decoding network
unit performs better than the standard unit. Experimental results demonstrate that
our architecture yields better performance overall.

2. The Recon-Net and Enhance-Net networks have been integrated into a single network,
and the loss function is jointly trained, which has verified the necessity of the existence
of the two networks. The experiments reveal a notable decrease in both PSNR and
SSIM indicators. This outcome serves as evidence for the indispensability of the two
subnetworks’ existence.

3. To evaluate the effectiveness of the two sub-networks in Ehance-Net, we removed
them and tested the modified network. The experimental results show that combining
the two sub-networks can achieve better performance than using either network alone.

4. To validate the effectiveness of our loss function, we conducted experiments by
removing the perceptual loss and replacing the Ll1 -MS-SSIM mixed loss function with
an Ll1 loss function. After removing the perceptual loss, the PSNR was 17.324 and
SSIM was 0.719. After replacing the Ll1 -MS-SSIM mixed loss function, the PSNR was
17.460 and SSIM was 0.721. The removal or replacement of the loss function resulted
in a degradation of network performance. These experimental results provide strong
evidence for the rationality of our loss function setting.

4.2. Subjective Evaluation

We show the enhancement effects of various algorithms in figures obtained from
DICM [36] and LOL [25] datasets, respectively, showcasing the enhancement effects of
various algorithms. Some details are enlarged to facilitate subjective visual evaluation.
Among these Figures 8–11, MSRCR shows a better visual brightness improvement effect,
but the overall clarity of the enhanced image is lacking, and there are some defects in
color retention. DRBN effectively enhances image details, but the improvement in image
brightness is somewhat limited, and the color restoration effect is poor. RRDNet performs



Sensors 2023, 23, 8442 13 of 18

well on brighter original images, but its performance is relatively poor on darker images
with no significant brightness improvement, making it difficult to achieve satisfactory
visual effects. While DSLR provides some improvement in the brightness enhancement
effect of certain areas in the original image, there is a noticeable stacking occlusion in
the enhancement effect. Zero-DCE++ can effectively preserve the detailed features of
an image, but its brightness enhancement effect is not very pronounced. Additionally,
the color contrast of the image is significantly reduced. The Retinex-Net greatly enhances
the brightness; however, it also leads to color fading and significant noise in certain areas.
However, it is prone to producing artifacts in the enhanced image. The RUAS algorithm
exhibits superior image enhancement results in regions with gradual illumination changes.
However, it may lead to overexposure in areas characterized by significant variations in
illumination. While the URetinex-Net method has shown promising results in terms of
color consistency and detail enhancement. However, in the environment with a strong
illumination background, there will be overexposure problems, resulting in the loss of
some details in the region. Compared to other methods, our approach effectively avoids
common issues such as color distortion, detail loss, and artifacts, while improving the
brightness of the original image overall without underexposure. Although our method
may produce overexposure in regions with high brightness in the original image, this is a
minor drawback in comparison.

In Figures 8–11. Some areas in the picture are marked with red frames and enlarged.
Based on the magnified area, it is evident that the algorithm proposed in this paper excels
in preserving details, restoring colors, and enhancing brightness.

Input MSRCR DRBN RRDNet DSLR

Zero-DCE++ Retinex-Net URetinex-Net RUAS Ours

Figure 8. Visual comparison with state-of-the-art low-illumination image enhancement methods on
the LOL dataset.

Input MSRCR DRBN RRDNet DSLR

Zero-DCE++ Retinex-Net URetinex-Net RUAS Ours

Figure 9. Visual comparison with state-of-the-art low-illumination image enhancement methods on
the LOL dataset.
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Input MSRCR DRBN RRDNet DSLR

Zero-DCE++ Retinex-Net URetinex-Net RUAS Ours

Figure 10. Visual comparison with state-of-the-art low-illumination image enhancement methods on
the DICM dataset.

Input MSRCR DRBN RRDNet DSLR

Zero-DCE++ Retinex-Net URetinex-Net RUAS Ours

Figure 11. Visual comparison with state-of-the-art low-illumination image enhancement methods on
the DICM dataset.

4.3. Objective Evaluation

In terms of objective evaluation, this paper utilizes four indicators to assess the perfor-
mance of the algorithm: PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity
Index Measure), NIQE (Natural Image Quality Evaluator), and LOE (Lightness Order
Error). PSNR is a widely used index for measuring the effectiveness of image enhancement
algorithms. It indicates the ratio of the peak signal in an image to the noise signal. Generally,
a higher PSNR value indicates a better image enhancement effect. SSIM is a metric that
is not affected by changes in brightness or contrast, and it reflects the degree of similarity
between the enhanced image and the original input image. The SSIM value ranges between
0 and 1, with higher values indicating greater similarity between the processed image and
the original input image. NIQE is a metric that is based on the construction of a series of
features for measuring image quality, which are then used to fit a multivariate Gaussian
model. The smaller the value, the better the visual effect. LOE reflects the naturalness of
the enhanced image. For LOE, the smaller the value, the better the brightness order is pre-
served. The evaluation of an image using this model essentially measures the difference in
the multivariate distribution of the image being tested. As shown in Table 2, the proposed
method ranks second and first in PSNR and SSIM metrics. In tests conducted on DICM,
LIME, MEF, and NPE datasets, our method has achieved first and third results in NIQE and
LOE indicators. Combining these indicators, the performance of this algorithm is improved
compared with other algorithms. Tables 2–4 show the effectiveness and applicability of the
proposed method.

In Table 5, we utilize the data set VE-LOL-H [42] to compare the running times of
various algorithms and test them on the NVIDIA RTX A6000 device. When compared
with MSRCR, RRDNet, and DRBN, this algorithm demonstrates superior performance on
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high-resolution images. In comparison to Zero-DCE++, Retinex-Net, RUAS, and DSLR,
although this algorithm is slower in running speed, it takes into account the impact of noise,
texture details, and color fading comprehensively, resulting in superior processing results.

Table 2. The LOL dataset (paired dataset) was quantitatively evaluated according to PSNR and SSIM.
The best results are shown in bold, the second is italic, and the third is underlined.

Method PSNR↑ SSIM↑

MSRCR 12.342 0.423
DRBN 15.141 0.514

RRDNet 11.365 0.505
DSLR 14.976 0.612

Zero-DCE++ 14.914 0.561
Retinex-Net 16.013 0.663

RUAS 17.870 0.724
URetinex-Net 18.314 0.781

Ours 18.137 0.795

Table 3. NIQE scores on the DICM, LIME, MEF, NPE datasets. The best results are shown in bold,
the second is italic, and the third is underlined.

Method DICM LIME MEF NPE AVG↓

MSRCR 3.878 4.462 4.312 4.552 4.301
DRBN 4.090 4.079 4.276 4.007 4.113

RRDNet 3.315 3.921 3.861 3.754 3.713
DSLR 4.112 4.017 4.239 3.965 4.083

Zero-DCE++ 3.094 3.588 3.796 3.838 3.579
Retinex-Net 4.412 4.112 4.316 4.534 4.344

RUAS 5.217 4.026 3.834 5.534 4.653
URetinex-Net 3.386 5.518 2.932 6.570 4.602

Ours 2.917 3.591 3.416 4.071 3.499

Table 4. LOE scores on the DICM, LIME, MEF, NPE datasets. The best results are shown in bold,
the second is italic, and the third is underlined.

Method DICM LIME MEF NPE AVG↓

MSRCR 493.650 535.915 439.523 426.563 473.913
DRBN 423.548 459.371 435.135 401.619 429.918

RRDNet 85.742 67.722 114.117 65.487 83.267
DSLR 316.626 228.757 289.323 376.970 302.919

Zero-DCE++ 377.611 306.983 385.201 325.357 348.788
Retinex-Net 457.657 621.855 444.695 451.971 494.045

RUAS 260.419 121.855 314.289 555.280 312.961
URetinex-Net 216.671 138.746 154.144 225.101 183.666

Ours 307.181 289.754 260.310 250.551 276.949

Table 5. Average runtime (RT) comparison (in seconds).

Method Runtime

MSRCR 4.328
DRBN 0.843

RRDNet 56.365
DSLR 0.576

Zero-DCE++ 0.316
Retinex-Net 0.491

RUAS 0.547
URetinex-Net 0.703

Ours 0.691
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5. Conclusions

In this paper, we propose a low-illumination image enhancement algorithm based
on the Retinex theory, which consists of three sub-networks: Decom-Net, Recon-Net, and
Enhance-Net. Our proposed method yields enhanced images that exhibit superior visual
quality compared to those produced by existing methods. Experimental results on public
datasets demonstrate that our approach can effectively improve image contrast while
suppressing noise more effectively than other methods. Overall, our proposed method
outperforms existing techniques for low-illumination image enhancement.

In general, the main contributions of this paper are as follows:

1. In this study, we propose a novel end-to-end neural network aimed at converting low-
illumination images into normal-illumination images. In order to solve the problem
of noise and low brightness in low-illumination images, we combine global and local
residual connections, and use spatial information and frequency information to design
a new network structure.

2. To constrain the neural networks, we propose and introduce several loss functions.
By leveraging these loss functions, we are able to enhance image brightness, suppress
noise and color fading issues, and more effectively preserve the texture details of
the image.

3. The public experimental results show that our method has improved most of the
indicators compared with the existing technology. The enhancement results produced
by our approach are better equipped to handle the noise issues that inevitably arise
during the process of brightness enhancement, while also effectively fulfilling the task
of improving brightness and reducing noise simultaneously.

In our future research, we plan to refine the network structure and loss function to
develop a more advanced low-illumination image enhancement method. We also aim
to apply this method to more complex visual tasks, such as target detection and face
recognition in low-light environments.
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M.L.; validation, X.W. and M.L.; writing—original draft preparation, C.W.; writing—review and
editing, X.W., T.N., M.L. and L.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No. 62105328).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable

Data Availability Statement: The data presented in this study are openly available at https://
daooshee.github.io/BMVC2018website/, accessed on 10 August 2018.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hunt, B.R. Digital image-processing. Adv. Imaging Electron Phys. 1983, 60, 161–221.
2. Jiang, Y.L.; Li, L.L.; Zhu, J.H.; Xue, Y.; Ma, H.B. DEANet: Decomposition Enhancement and Adjustment Network for Low-Light

Image Enhancement. Tsinghua Sci. Technol. 2023, 28, 743–753. [CrossRef]
3. Huang, S.C.; Yeh, C.H. Enhancement estimation network for flexibly enhancing low-light images via lighting level estimation.

J. Electron. Imaging 2023, 32, 023005.
4. Kim, W. Low-Light Image Enhancement: A comparative review and prospects. IEEE Access 2022, 10, 84535–84557. [CrossRef]
5. Ren, W.Q.; Liu, S.F.; Ma, L.; Xu, Q.Q.; Xu, X.Y.; Cao, X.C.; Du, J.P.; Yang, M.H. Low-light image enhancement via a deep hybrid

network. IEEE Trans. Image Process. 2019, 28, 4364–4375. [CrossRef]
6. Abdullah-Al-Wadud, M.; Kabir, M.H.; Dewan, M.A.A.; Chae, O. A dynamic histogram equalization for image contrast enhance-

ment. IEEE Trans. Consum. Electron. 2007, 53, 593–600. [CrossRef]
7. Land, E.H. The Retinex Theory of Color Vision. Sci. Am. 1977, 237, 108–128. [CrossRef]
8. Ko, S.; Park, J.; Chae, B.; Cho, D. Learning Lightweight Low-Light Enhancement Network Using Pseudo Well-Exposed Images.

IEEE Signal Process. Lett. 2022, 29, 289–293. [CrossRef]

https://daooshee.github.io/BMVC2018website/
https://daooshee.github.io/BMVC2018website/
http://doi.org/10.26599/TST.2022.9010047
http://dx.doi.org/10.1109/ACCESS.2022.3197629
http://dx.doi.org/10.1109/TIP.2019.2910412
http://dx.doi.org/10.1109/TCE.2007.381734
http://dx.doi.org/10.1038/scientificamerican1277-108
http://dx.doi.org/10.1109/LSP.2021.3134943


Sensors 2023, 23, 8442 17 of 18

9. Wang, Y.; Xie, W.J.; Liu, H.Q. Low-light image enhancement based on deep learning: A survey. Opt. Eng. 2022, 61, 040901.
[CrossRef]

10. Lore, K.G.; Akintayo, A.; Sarkar, S. LLNet: A deep autoencoder approach to natural low-light image enhancement. Pattern
Recognit. 2017, 61, 650–662. [CrossRef]

11. Li, C.Y.; Guo, C.L.; Han, L.H.; Jiang, J.; Cheng, M.M.; Gu, J.W.; Loy, C.C. Low-Light Image and Video Enhancement Using Deep
Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 9396–9416. [CrossRef] [PubMed]

12. Wu, W.H.; Weng, J.; Zhang, P.P.; Wang, X.; Yang, W.H.; Jiang, J.M. URetinex-Net: Retinex-based Deep Unfolding Network for
Low-light Image Enhancement. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR 2022), New Orleans, LA, USA, 18–24 June 2022; pp. 5891–5900.

13. Gao, X.J.; Zhang, M.L.; Luo, J.M. Low-Light Image Enhancement via Retinex-Style Decomposition of Denoised Deep Image Prior.
Sensors 2022, 22, 5593. [CrossRef] [PubMed]

14. Zhu, Y.; Feng, K.; Hua, C.; Wang, X.; Hu, Z.; Wang, H.; Su, H. Model analysis and experimental investigation of soft pneumatic
manipulator for fruit grasping. Sensors 2022, 22, 4532. [CrossRef]

15. Hao, P.C.; Yang, M.; Zheng, N.N. Subjective Low-light Image Enhancement Based on A Foreground Saliency Map Model.
Multimed. Tools Appl. 2022, 81, 4961–4978. [CrossRef]

16. Tang, H.; Zhu, H.Y.; Fei, L.F.; Wang, T.W.; Cao, Y.C.; Xie, C. Low-Illumination Image Enhancement Based on Deep Learning
Techniques: A Brief Review. Photonics 2023, 10, 198. [CrossRef]

17. Xu, B.; Zhou, D.; Li, W.J. Image Enhancement Algorithm Based on GAN Neural Network. IEEE Access 2022, 10, 36766–36777.
[CrossRef]

18. Zhu, H.; Chan, F.H.Y.; Lam, F.K. Image contrast enhancement by constrained local histogram equalization. Comput. Vis. Image
Underst. 1999, 73, 281–290. [CrossRef]

19. Wongsritong, K.; Kittayaruasiriwat, K.; Cheevasuvit, F.; Dejhan, K.; Somboonkaew, A. Contrast enhancement using multipeak
histogram equalization with brightness preserving. In Proceedings of the IEEE Asia-Pacific Conference on Circuits and Systems,
Chiang Mai, Thailand, 24–27 November 1998; pp. 455–458.

20. Ibrahim, H.; Kong, N.S.P. Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans.
Consum. Electron. 2007, 53, 1752–1758. [CrossRef]

21. Jobson, D.J.; Rahman, Z.U.; Woodell, G.A. Properties and performance of a center/surround retinex. IEEE Trans. Image Process.
1997, 6, 451–462. [CrossRef]

22. Jobson, D.J.; Rahman, Z.U.; Woodell, G.A. A multiscale retinex for bridging the gap between color images and the human
observation of scenes. IEEE Trans. Image Process. 1997, 6, 965–976. [CrossRef]

23. Rahman, Z.; Jobson, D.J.; Woodell, G.A. Multi-scale retinex for color image enhancement. In Proceedings of the International
Conference on Image Processing, Lausanne, Switzerland, 16–19 September 1996; pp. 1003–1006.

24. Kimmel, R.; Elad, M.; Shaked, D.; Keshet, R.; Sobel, I.; Rogowitz, B.E.; Pappas, T.N. A variational framework for retinex. Int. J.
Comput. Vis. 2003, 52, 7–23. [CrossRef]

25. Wei, C.; Wang, W.; Yang, W.; Liu, J. Deep retinex decomposition for low-light enhancement. arXiv 2018, arXiv:1808.04560.
26. Wang, W.J.; Wei, C.; Yang, W.H.; Yang, W.H.; Liu, J.Y. GLADNet: Low-light enhancement network with global awareness. In

Proceedings of the 13th IEEE International Conference on Automatic Face & sture Recognition (FG), Xi’an, China, 15–19 May
2018; pp. 751–755.

27. Lv, F.; Lu, F.; Wu, J.; Lim, C. MBLLEN: Low-light Image/Video Enhancement Using CNNs. In Proceedings of the British Machine
Vision Conference (BMVC), Newcastle, UK, 3–6 September 2018.

28. Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.H.; Yang, J.C.; Zhou, P.; Wang, Z.Y. Enlightengan: Deep light enhancement
without paired supervision. IEEE Trans. Image Process. 2021, 30, 2340–2349. [CrossRef] [PubMed]

29. Lim, S.; Kim, W. Deep stacked laplacian restorer for low-Light image enhancement. IEEE Trans. Multimed. 2021, 23, 4272–4284.
[CrossRef]

30. Guo, C.L.; Li, C.Y.; Guo, J.C.; Loy, C.C.; Hou, J.H.; Kwong, S.; Cong, R.M. Zero-Reference Deep Curve Estimation for Low-Light
Image Enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle,
WA, USA, 13–19 June 2020; pp. 1777–1786.

31. Li, C.Y.; Guo, C.L.; Loy, C.C. Learning to enhance low-light image via zero-reference deep curve estimation. IEEE Trans. Pattern
Anal. Mach. Intell. 2021, 44, 4225–4238. [CrossRef] [PubMed]

32. Liu, R.S.; Ma, L.; Zhang, J.A.; Fan, X.; Luo, Z.X. Retinex-inspired Unrolling with Cooperative Prior Architecture Search for
Low-light Image Enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Nashville, TN, USA, 20–25 June 2021.

33. Johnson, J.; Alahi, A.; Li, F.F. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In Proceedings of the 14th
European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 694–711.

34. Tang, L.F.; Xiang, X.Y.; Zhang, H.; Gong, M.Q.; Ma, J.Y. DIVFusion: Darkness-free infrared and visible image fusion. Inf. Fusion
2022, 91, 477–493. [CrossRef]

35. Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear Total Variation Based Noise Removal Algorithms. In Proceedings of the 11th Annual
International Conference of the Center for Nonlinear Studies on Experimental Mathematics: Computational Issues in Nonlinear
Science, Santa Monica, CA, USA, 1–4 August 1992; pp. 259–268.

http://dx.doi.org/10.1117/1.OE.61.4.040901
http://dx.doi.org/10.1016/j.patcog.2016.06.008
http://dx.doi.org/10.1109/TPAMI.2021.3126387
http://www.ncbi.nlm.nih.gov/pubmed/34752382
http://dx.doi.org/10.3390/s22155593
http://www.ncbi.nlm.nih.gov/pubmed/35898096
http://dx.doi.org/10.3390/s22124532
http://dx.doi.org/10.1007/s11042-021-11590-9
http://dx.doi.org/10.3390/photonics10020198
http://dx.doi.org/10.1109/ACCESS.2022.3163241
http://dx.doi.org/10.1006/cviu.1998.0723
http://dx.doi.org/10.1109/TCE.2007.4429280
http://dx.doi.org/10.1109/83.557356
http://dx.doi.org/10.1109/83.597272
http://dx.doi.org/10.1023/A:1022314423998
http://dx.doi.org/10.1109/TIP.2021.3051462
http://www.ncbi.nlm.nih.gov/pubmed/33481709
http://dx.doi.org/10.1109/TMM.2020.3039361
http://dx.doi.org/10.1109/TPAMI.2021.3063604
http://www.ncbi.nlm.nih.gov/pubmed/33656989
http://dx.doi.org/10.1016/j.inffus.2022.10.034


Sensors 2023, 23, 8442 18 of 18

36. Lee, C.; Lee, C.; Kim, C.S. Contrast Enhancement Based on Layered Difference Representation. In Proceedings of the 2012 19th
IEEE International Conference on Image Processing, Lake Buena Vista, FL, USA, 30 September–3 October 2012; pp. 965–968.

37. Ma, K.; Zeng, K.; Wang, Z. Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 2015, 24,
3345–3356. [CrossRef]

38. Wang, S.H.; Zheng, J.; Hu, H.M.; Li, B. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE
Trans. Image Process. 2013, 22, 3538–3548. [CrossRef]

39. Guo, X.J.; Li, Y.; Ling, H.B. Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 2017, 26,
982–993. [CrossRef]

40. Yang, W.H.; Wang, S.Q.; Fang, Y.M.; Wang, Y.; Liu, J.Y. From fidelity to perceptual quality: A semi-supervised approach for
low-light image enhancement. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3060–3069.

41. Zhu, A.Q.; Zhang, L.; Shen, Y.; Ma, Y.; Zhao, S.J.; Zhou, Y.C. Zero-shot restoration of underexposed images via robust retinex
decomposition. In Proceedings of the 2020 IEEE International Conference on Multimedia and expo (ICME), London, UK, 6–10 July
2020; pp. 1–6.

42. Liu, J.Y.; Xu, D.J.; Yang, W.H.; Fan, M.H.; Huang, H.F. Benchmarking Low-Light Image Enhancement and Beyond. Int. J. Comput.
Vis. 2021, 129, 1153–1184. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIP.2015.2442920
http://dx.doi.org/10.1109/TIP.2013.2261309
http://dx.doi.org/10.1109/TIP.2016.2639450
http://dx.doi.org/10.1007/s11263-020-01418-8

	Introduction
	Related Work
	Traditional Methods
	Learning-Based Approach

	Method
	Decom-Net
	Recon-Net
	Enhance-Net
	Loss Function
	Decom-Net
	Recon-Net
	Enhance-Net


	Experimental Results and Analysis
	Ablation Experiment
	Subjective Evaluation
	Objective Evaluation

	Conclusions
	References

