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Abstract: Water is an invaluable resource quickly becoming scarce in many parts of the world.
Therefore, the importance of efficiency in water supply and distribution has greatly increased. Some
of the main tools for limiting losses in supply and distribution networks are leakage sensors that
enable real-time monitoring. With fiber optics recently becoming a commodity, along with the
sound advances in computing power and its miniaturization, multipurpose sensors relying on these
technologies have gradually become common. In this study, we explore the development and testing
of a multimode optic-fiber-based pipe monitoring and leakage detector based on statistical and
machine learning analyses of speckle patterns captured from the fiber’s outlet by a defocused camera.
The sensor was placed inside or over a PVC pipe with covered and exposed core configurations,
while 2 to 8 mm diameter pipe leaks were simulated under varied water flow and pressure. We found
an overall leak size determination accuracy of 75.8% for a 400 µm covered fiber and of 68.3% for a
400 µm exposed fiber and demonstrated that our sensor detected pipe bursts, outside interventions,
and shocks. This result was consistent for the sensors fixed inside and outside the pipe with both
covered and exposed fibers.

Keywords: speckle pattern; optic fiber sensor; machine learning (ML); leak detection

1. Introduction

The major problems for potable water supply worldwide are water availability and
quality and losses in the supply mains and distribution networks. Numerous studies
indicate water losses of 20–30%, while in developing countries, where the rarely maintained
pipes often serve for more than half a century, the losses could reach 50% [1,2]. According to
the World Bank, an amount of water worth $15 billion is lost worldwide each year. In Asia
alone, 29 billion cubic meters of water worth $2 billion are lost annually [3]. In addition
to the typical system losses, developing areas are often affected by illegal connections,
further reducing the efficiency and profitability of the water supply. This research focuses
on the development and testing of a laser-based multimode optic fiber sensor equipped
with machine learning (ML) software that allows for water supply monitoring, including
leak detection and quantification, evaluation of transient flows, and alerts for any illegal
interventions or sabotage.

A few types of sensors are viable for the detection of water pipe leakage, and they
range from very simple to complex and expensive. These sensors can be divided into active
and passive types. Active sensors are typically used to follow up on a known problem or
for maintenance. They use a probe signal to evaluate the state of the system and detect
anomalies. Conversely, passive sensors monitor continuously. They do not add energy to
the system and rely on leaks to provide detectable fluctuations. Our research focuses on a
passive sensor [4–6].

Detecting leaks in water pipelines is a challenging task, as a small leak may not produce
noticeable changes in the normal operation of the system. Moreover, the background noise
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in water transmission systems can be relatively high, resulting in a low signal-to-noise
ratio (SNR). Several leakage detectors are currently in use. Noise loggers sense the sound
propagating along a pipe and typically use a piezoelectric microphone fixed on a pipe or
valve. They are expensive to deploy, as the systems require the installation of numerous
sensors. The sensor detects a leak by comparing the recorded sound with a known baseline
using sophisticated filtering and detection algorithms. The system is most effective under
reduced noise, which is most commonly during nighttime, when water consumption is
minimal. For PVC pipes, the sensors need a longer time to gather data and need to be closer
together [1,7,8]. A smart meter can be composed of a water meter (usually a flow meter)
transmitting data to a centralized hub. While this is not a direct method for leak detection,
the data gathered can help to detect a leak. A smart meter is configured to flag water flow
that never reaches zero, and it is most effective at night, when the flow is minimal. A
pressure meter could also facilitate leak detection, alerting about any abnormal pressure
changes [7].

Pipe leaks can also be detected with the following procedures [1,7–9]:

• Listening sticks are placed above the pipes, allowing an operator to hear leak-
related sounds.

• Thermal imaging indicates a leak according to a difference in temperature around
the pipe.

• Tethers or robotic crawlers can be used with a sensor at their end.
• Satellite-based ground-penetrating radar can detect the chemical makeup of a large

portion of the soil around a pipeline.

Optic fiber sensors are being increasingly developed and applied, offering several
benefits, such as durability, corrosion resistance, multiplexing capabilities, light weight,
compactness, and their long-range deployment potential [10]. Several main mechanisms
are currently in use for optic-fiber-based leak detection by utilizing an optic fiber as an
acoustic or thermal sensor. Most of these sensors measure the light intensity variation or the
wavelength shift caused by the fiber bending. Existing acoustic detectors consist of a fiber
attached to or embedded in a concrete pipe. The fiber’s transmission efficiency changes with
its bending radius under vibration. By monitoring the intensity and frequency of the light
traveling through the fiber, a leak or fracture can be identified. These sensors are usually
sensitive to higher modes and are prone to fiber breakage due to macro-bending [11]. For a
thermal-based leak detector, a fiber is used to measure the soil temperature around a pipe.
Using a fiber Bragg grating (FBG), changes in the wavelength due to temperature variation
are measured, and rapid temperature changes can indicate a leak. These methods require
the installation of an optic fiber together with a pipe, however they cannot indicate a leak’s
location, with only acoustic based sensors being able to detect concrete pipe fractures. The
sensors are also relatively complex, with some requiring temperature control, sophisticated
detection methods, non-conventional fibers, and more [7,9,11–13]. Optic-fiber-based sen-
sors are separately used to detect pipeline damage by utilizing a variety of methods, such
as distributed acoustic sensing, fiber Bragg gratings, and specklegram monitoring. These
methods have increasingly adopted machine (ML) and deep learning (DL) techniques to
enhance their accuracy over the conventional statistical approaches [14–16]. We aim to de-
sign and test a multimode optic fiber (MMF)-based sensor able to detect and quantify pipe
leakage using ML to analyze the laser based speckle patterns emitted from the fiber outlet
and captured by a high-speed defocused camera, thus increasing the sensor’s sensitivity.
The novelty of our sensor relates to its ability to perform multiple functions, such as detect-
ing pipe bursts, damage, transient flow, and, notably, the leak flow rate. As we additionally
explore an exposed fiber version, future implementations may also be used to evaluate
water quality. The sensor can use low-power lasers, be fitted to various types of existing
pipes, and will enable leak and pipe burst localization in future work. We are currently
investigating such possibility. The sensor’s versatility and simplicity make it attractive as
an automated, comprehensive, and continuous monitoring system. Furthermore, the fiber
along the pipe can simultaneously serve as a data transmission medium.
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2. Theoretical Background
2.1. Speckle Pattern Analysis and Its Applications

A multimode fiber is an optical fiber with a wide enough core to accommodate multiple
modes of light for a given wavelength. Laser-based coherent light passing through a MMF
generates a speckle pattern at the fiber’s exit through a process of random reflections and
interference between different modes of light propagating through the fiber. Deformation
of the fiber can alter its reflective properties differently depending on the mode index,
causing a speckle pattern variation. The fiber far-field light speckle distribution (A0) is the
superposition of all of the modes’ amplitudes [17–22].

A0(x, y) =
M

∑
m=0

a0m(x, y)ejϕ0m(x,y) (1)

where M is the number of light modes inside the fiber, and a0m(x, y) and ϕ0m(x, y) are the
amplitude and phase of mode m of pixel (x, y), respectively.

The far-field speckle pattern intensity I(x, y) captured by a defocused camera from
the edge of the fiber is described as:

I(x, y) = |A0(x, y)|2 =
M

∑
m=0

M

∑
n=0

a0m(x, y)a0n(x, y)ej(ϕ0m(x,y)−ϕ0n(x,y)) (2)

where M is the number of light modes inside the fiber, a0m(x, y) and ϕ0m(x, y) are the
amplitude and phase of mode m of pixel (x, y), respectively, and a0n(x, y) and ϕ0n(x, y) are
the amplitude and phase of mode n of pixel (x, y), respectively [22,23].

When portions of coating and cladding are locally removed, the propagating light
partially leaks from the fiber and interacts with the environment, affecting the speckle
pattern at the fiber’s exit. A speckle pattern is very sensitive to tiny vibrations; a small fiber
deformation can significantly affect the resulting scattering of the light and the speckle
pattern at the fiber’s outlet [18,22,24]. Due to the high sensitivity, speckle pattern analysis
is useful for the detection of micro-vibrations. A speckle pattern is observed when a
digital camera captures a laser beam exiting the fiber’s outlet. Cross-correlation of the
subsequently recorded video frames containing the speckle patterns can be used to obtain
a displacement graph reflecting the fiber vibrations, as well as the light and water flow
interactions in the case of an exposed fiber [22,23]. The use of speckle pattern analysis
can be further improved with a defocused imaging camera, thus increasing amplitude
sensitivity [25].

We intend to develop and test an MMF-based optical sensor for the detection and
quantification of pipe leakage. A MMF inserted into a pipe will be affected by the liquid flow,
and the defocused speckle patterns will undergo variation. We assume that the processing
of the recorded video may allow continuous leak monitoring or pipe burst detection.

2.2. Water Pipes and Flow Characteristics

A pipe flow can be subdivided into two principal categories: laminar and turbulent,
with the Reynolds number (Re) as the determining criterion. When Re exceeds 2500, the
flow becomes turbulent, and the pipe head loss is increased. In the area of a leak, the flow
undergoes significant local turbulence. The pipe flow is non-uniform in most real-world
applications due to the variations in conduit flow systems. In the center of a pipe, the flow
velocity is at a maximum, but near a pipe’s wall, it is close to zero [26–28]. When a pump
starts, stops or a valve is suddenly closed, the flow becomes transient, creating a water
hammer effect. A water hammer is a phenomenon in conduit flow systems in which a
pressure surge forms due to flow variation. The forming transient-flow shockwave can
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cause several problems, including the rupture or collapse of a pipe [29]. Using Jukowsky’s
equation, the water-hammer-related pressure variation (∆P) is expressed as:

∆P = ±ρa∆V (3)

where ∆P is the pipe pressure variation, ρ is the fluid density, a is the acoustic wave speed,
and ∆V is the cross-sectional average water velocity variation [29].

For a steel pipe, a = 1200 [m/s], and for an HDPE pipe, a = 200–400 [m/s]. Therefore,
a rapid change in the water velocity by 1 m/s causes the pressure to rise by 12 bar in a steel
pipe and by around 2–4 bar in a plastic pipe.

We expect that our fiber-based sensor can detect the transient flow related to pump
starting and stopping, as well as the water hammer effect.

2.3. Pipe Leak Hydraulics

Pipe leaks are mostly associated with high pressure and its temporal variation in
a system. Lower piezometric points (resulting in high static pressure) have a higher
probability of a pipe burst. In combination with the occurrence of a water hammer, which
induces a short pressure surge, a critical pressure can be reached. Additional factors of an
eventual pipe burst are material corrosion, pipe deformation under heavy external pressure
or surge collapse, and illegal connections [30]. A simple hydraulic model of a pipe leak is
described as flow through an orifice under particular pressure:

Q = Cd A
√

2gh (4)

where Q is the leak flow, Cd is the discharge coefficient, A is the area of the leak, h is the
pressure head, and g is the acceleration due to gravity [30].

We assume that the turbulent flow occurring in the leak area affects the MMF sensor,
allowing the detection of a leak using ML methods for data analysis.

2.4. Methods of ML Analysis

The traditional methods of speckle pattern analyses include cross-correlation of the
recorded video frames or contrast imaging. When transformed into a displacement graph,
the captured video can be further analyzed in the frequency domain, as well as with statis-
tical analyses of the signal amplitude variation. In recent years, machine and deep learning
applications for optical sensors have grown in prominence, particularly in the enhancement
of monitoring and detection accuracy. ML algorithms process sample data—referred to
as training data—to make predictions on new unclassified data without being explicitly
programmed to achieve the intended goal. Classification algorithms are efficient at placing
boundaries between different classes by using features that show significant separation [31].
After preliminary testing of different ML algorithms, we selected and applied the Support
Vector Machine (SVM) and K-Nearest Neighbor (KNN) algorithms. These two algorithms
are very adaptable for different types of data and showed at least twice the accuracy and
reliability in leak detection compared to the others tested, including Naïve Bayes and
neural networks.

The SVM algorithm uses a plot (linear, polynomial, etc.) to divide the space containing
data points using either a hard or a soft margin. The algorithm maximizes the space
between each divided region to find the best model. Subsequent data points can be
classified according to the region into which they fall. Each separate region represents
a specific group or event [32]. The KNN algorithm compares the number of neighbors
of varying types in each data point’s region. It uses only the K closest points for this
classification, grouping the closest data points together [33].
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3. Materials and Methods
3.1. Hydraulic Setup and Optical System

To test the ability and complexity of the proposed sensing method, we constructed an
optical and hydraulic setup to accommodate different configurations of our MMF-based
sensor (Figure 1).
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Figure 1. The hydraulic and optical system setup diagram. A1—water source, A2—centrifugal pump,
A3—piping loop, A4—pressure gage, A5—volumetric flow meter, B—leak sensor, B1—leak opening,
C1—laser, C2—holder for the fiber’s inlet, C3—fiber splitter (50/50), C4—connection to the sensor
fibers, C5—stand for the fiber’s outlet, C6—digital camera, and D—computer.

A 15 L bucket filled with water was used as a water source. It contained a centrifugal
pump (SEA STAR Q-3500) with a nominal capacity of 3000 L/h under 3 m head. The pump
was connected to a 1′′ piping loop containing the leak sensor and equipped with valves
and fittings to enable measurement of the pump flow and head, as well as the leak flow.
Depending on the hydraulic system status, the loop valves could be normally open (NO)
or closed (NC). The pressure gage comprised a transparent vertical branch with a valve
to measure the pipe pressure in cm of the water column. The volumetric-type flow meter
contained a pipe branch with an exit to a measuring burette. The optical setup contained
a green laser PPGL-2100F emitting a 300 µW, 532 nm beam directed to the fiber inlet, a
holder for the fiber’s inlet (limiting stray light), a fiber splitter (50/50) for recording speckle
patterns from two fibers simultaneously, a connection with the sensor fibers, a stand for
the fiber’s outlets, and a high-speed defocused digital camera (Basler acA1440-220 µm) set
to record at 100 FPS. The camera was connected to a computer to record and process the
videos containing speckle patterns.
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3.2. The Sensor

To determine the optimal configuration of the sensor, we tested several MMF types,
as well as their positioning and core exposure. Multimode fibers with core sizes of 200,
400, and 600 µm were fixed inside or outside the pipe. Some of the fibers placed inside
the pipe had a portion (approximately 1 cm) of their core exposed (cladding and plastic
protection were manually removed). The detection segment of the sensor was constructed
from a PVC pipe (1′′ diameter, 20 cm long), with the fibers running over or inside it. To
fix the MMF outside the pipe, the fiber was laid over, and the pipe was covered with a
plastic folio. For the internal installation of the fiber, the pipe thread was axially cut from
both ends to allow the fiber’s ingress and sealed with hot glue. The fiber was fixed 5 mm
from the pipe wall going over the simulated leak hole. To simulate pipe leakage, we drilled
3–8 mm diameter holes in the sensor’s pipe and plugged them until a burst or leak was
simulated. The properties of the fibers are presented in Table 1.

Table 1. MM optic fiber properties a.

Fiber Properties 200 µm 400 µm 600 µm

Transmission region 400–2200 nm

Core/Cladding material Pure silica/Hard polymer

Core/Cladding refraction index 1.458/1.365

Core diameter 200 ± 5 400 ± 8 600 ± 10

Cladding diameter 225 ± 5 425 ± 8 630 ± 10

Coating diameter 500 ± 30 730 ± 30 1040 ± 30
a From Thor Labs [34].

We used the following covered and exposed fibers (covered meaning with an unex-
posed core): 200 µm, covered, fixed on the pipe’s surface. In addition 200, 400, and 600 µm
fibers were placed inside the pipe as covered and exposed variants. An illustration of the
sensor variants is shown in Figure 2 for interior installations.
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Figure 2. Schematic of the sensor with covered and exposed MMF.

Following the local removal of the fiber’s cladding, the core’s surface remained rough,
and it did not allow total internal reflection. We assumed that a portion of the light
leaking from an exposed fiber would exit the core to the water and would interact with
its surroundings. The light returning to the core due to reflection and refraction (from the
flowing water and its impurities) might carry information on the state of the water in the
pipe, which would add to the abilities of the sensor.

The installation of an optic-fiber-based sensor is critical for its performance; two
methods of installation were considered for field applications. The MMF could be placed
above the pipe and fixed with a folio used for the protection of newly installed buried pipes.
Alternatively, after pipe installation, an ordinary inspection robot could provide free fiber
laying inside the pipeline.
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3.3. Speckle Pattern Recording and Processing Software

We recorded video files containing the defocused speckle patterns captured from
the fiber’s outlet. After processing the files with a MATLAB script, the amplitude of the
variance between frames over time was extracted. First, the cross-correlation of the speckle
pattern images was used to determine its displacement across the x and y axes of the image,
given that the two images differed only by an unknown shift. When the images matched,
the value of the cross-correlation function was maximized. The cross-correlation was used
to analyze the positional shifting between two adjacent speckle patterns to determine each
pixel’s temporal correlation [22,23].

Two speckle patterns I and I’ are usually divided into a set of sub-images. The cross-
correlation algorithm tracks the movement of several speckles acting together as a sub-
image. The correlation function is calculated for each pair of corresponding sub-images, and
the respective displacement is derived from the maximum position difference. Sub-image
A in image I is allowed to sweep over image I’. When the area with the highest statistical
agreement (cross-correlation) is found, it is labeled as sub-image A’ and is considered to
correspond to sub-image A. The discrete cross-correlation between A and A’ is calculated
as follows:

RAAl
(
dx, dy

)
=

1
NM

N−1

∑
i=0

M−1

∑
j=0

A(i, j)Al(i + dx, j + dy
)

(5)

where dx and dy are displacements in the x and y directions, respectively. The movement
over the surface position A to A’ is found according to the position of the correlation peak
and is given by the displacement vector of the midpoint of sub-image A [23].

These calculations are performed for all sub-images of I until a displacement field of
the whole surface is obtained, meaning that the movement is determined in two directions:
x and y. The height of the correlation peak indicates how similar the cross-correlated
sub-images are and, hence, yields a value of the accuracy of the measurement.

The graph in Figure 3 shows the temporal changes in the correlation peak’s location
in pixel units for a single recording. We extracted the position of the correlation peak and
plotted its time-varying position, with the amplitude denoting the shift in the position of
the correlation peak in pixel units of the camera. All relative movements were cumulatively
summarized to extract the total movement vector.
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Using this method, a video including 10,000 frames at a resolution of 128 × 128 pixels
took about 2.5 s to process on a laptop (Intel 6700HQ).

ML Algorithms’ Data Processing Path
We used several supervised ML algorithms, including Naïve Bayes and neural net-

works, to classify the leak size and flow rate. The SVM and KNN algorithms produced the
best results compared to the others tested. The data path used to create a leak detection
model is presented in Figure 4.
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4. Results
4.1. Defocused Speckle Pattern

To exhibit the advantages of our defocused capture method, we tested the sensor with
focused and defocused lenses. For this test, the speckle patterns from a 400 µm covered
fiber were captured with an adjustable 12–14 mm lens under a water flow of 6.6 L/min
and a leak diameter of 6 mm. The recordings were 10 s long, with five repetitions per state.
After processing the recordings using the cross-correlation algorithm, the absolute average
amplitude was calculated. Overall, the defocused speckle patterns produced an average
amplitude twice that obtained from the traditional focused images. Therefore, we obtained
a higher sensitivity of the sensor. A comparison between two of the tests is presented in
Figure 3.

4.2. Pipe Burst Simulation

Three sensor types were tested under multiple flow rates, and each test was repeated
three times. A high-speed camera (Basler acA1440-220 µm) recorded speckle pattern videos
at 100 fps with a resolution of 992 × 512 pixels. We used a 400 µm fiber placed inside a
pipe and a 200 µm fiber on its outer surface (both covered), as well as two 400 µm fibers
inside a pipe, with one covered and the other exposed. A green 532 nm laser illuminated
the fiber inlet. The propagating light was divided 50/50 through a splitter, and the speckle
patterns from each fiber’s outlet were simultaneously recorded. The speckle pattern image
from the two fibers captured in the footage is presented in Figure 5.

A pipe burst test was simulated after 15 s of unimpeded flow. A leak was instigated
by the rapid removal of a pipe wall plug. The recording continued for 17 more seconds to
record the steady state of the leaking system. The speckle pattern processing for one of the
recording samples is given in Figure 6.
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Figure 5. Full speckle pattern image from two simultaneously recorded MMFs—400 µm placed
inside (left) and 200 µm placed outside (right).

Sensors 2023, 23, x FOR PEER REVIEW 9 of 15 
 

 

A pipe burst test was simulated after 15 s of unimpeded flow. A leak was instigated 

by the rapid removal of a pipe wall plug. The recording continued for 17 more seconds to 

record the steady state of the leaking system. The speckle pattern processing for one of the 

recording samples is given in Figure 6. 

 

Figure 6. The outer and inner fibers’ signals in a pipe burst simulation (200 and 400 µm). 

The amplitude of the signal momentarily increased as the plug was removed, show-

ing that a strong pipe disruption, which simulated an outside intervention, affected the 

recorded signal. The test was repeated two more times, showing variance in the maximum 

signal amplitude measured with the 200 µm fiber (resulting from inaccuracy in the man-

ually simulated “bursts”).  

With the same protocol, we repeated the burst tests using the 400 µm covered and 

exposed MMF sensors inserted into the pipe. Both sensors showed similar results; during 

the burst simulation, the maximum signal amplitude increased by up to 4.67 times. The 

results of the two tests comparing the maximum signal amplitudes between the undis-

turbed flow and burst simulation are presented in Table 2. 

Table 2. Burst tests with the 400 µm inner fibers. 

Test 

Number 
 

No Leak–Maximum  

Amplitude [Pixel] 

Simulated Burst–Maximum  

Amplitude [Pixel] 
Relation 

1 
Covered fiber 0.122 0.567 4.67 

Exposed fiber 0.121 0.465 3.84 

2 
Covered fiber 0.116 0.321 2.77 

Exposed fiber 0.098 0.314 3.2 

4.3. Analysis Using a Frequency Spectrogram 

Another method applied for the detection of pipe bursts and leaks utilizes a fre-

quency spectrogram. A spectrogram visualizes the variation in the frequency spectrum 

over time, revealing both narrow and spectrum-wide changes. The spectrogram of the 

speckle cross-correlation signal for a burst and further leak simulation obtained with a 

Fourier transformation is presented in Figure 7. An increased power for a certain fre-

quency corresponds to a higher point on the color scale. 

Figure 6. The outer and inner fibers’ signals in a pipe burst simulation (200 and 400 µm).

The amplitude of the signal momentarily increased as the plug was removed, show-
ing that a strong pipe disruption, which simulated an outside intervention, affected the
recorded signal. The test was repeated two more times, showing variance in the maxi-
mum signal amplitude measured with the 200 µm fiber (resulting from inaccuracy in the
manually simulated “bursts”).

With the same protocol, we repeated the burst tests using the 400 µm covered and
exposed MMF sensors inserted into the pipe. Both sensors showed similar results; during
the burst simulation, the maximum signal amplitude increased by up to 4.67 times. The
results of the two tests comparing the maximum signal amplitudes between the undisturbed
flow and burst simulation are presented in Table 2.

Table 2. Burst tests with the 400 µm inner fibers.

Test
Number

No Leak–Maximum
Amplitude [Pixel]

Simulated
Burst–Maximum

Amplitude [Pixel]
Relation

1
Covered fiber 0.122 0.567 4.67

Exposed fiber 0.121 0.465 3.84

2
Covered fiber 0.116 0.321 2.77

Exposed fiber 0.098 0.314 3.2
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4.3. Analysis Using a Frequency Spectrogram

Another method applied for the detection of pipe bursts and leaks utilizes a frequency
spectrogram. A spectrogram visualizes the variation in the frequency spectrum over
time, revealing both narrow and spectrum-wide changes. The spectrogram of the speckle
cross-correlation signal for a burst and further leak simulation obtained with a Fourier
transformation is presented in Figure 7. An increased power for a certain frequency
corresponds to a higher point on the color scale.
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Figure 7. A spectrogram of a pipe burst test—400 µm covered fiber.

A clear spectrum change could be observed as the simulated burst occurred, allowing
its detection. Similarly, the change in the overall frequency spectrum before and after
the burst was also visible. This showed that the leak affected the sensor in the frequency
domain, demonstrating another way of processing the data for leak detection.

4.4. Statistical Analysis

Unlike the previous tests, only one fiber’s speckle patterns were recorded, and a
selected window of 128 × 128 pixels was used. The recordings were taken at a rate of
100 fps for 10 s, with three repetitions per test. For every fiber type (200, 400, 600 µm,
covered or exposed, all installed inside a pipe), three leak sizes of 3, 6, and 8 mm in
diameter were tested under the pipe flow rates of 2.2, 4.2, 5.3, 6, and 6.6 L/min. For each
flow rate, the leak volume and velocity were evaluated. The environmental temperature
was stable and relatively consistent between the tests.

We did not observe a correlation between the pipe flow and the average signal ampli-
tude. This indicated that the pipe flow did not significantly affect the leakage discharge.
However, we found a strong correlation between the average signal amplitude and the
leak flow, showing the possibility of leak size detection with our sensor. The relation of the
average signal amplitude and the leak flow for the 400 µm fiber is presented in Figure 8.

While this method of data processing makes it easy to compare many tests, the raw
signal data are more information-dense than the single-value average. The relation of the
signal amplitude and leak flow from the recordings of the 400 µm covered fiber with leak
diameters of 8 mm and 3 mm under a 1.05 L/min flow is presented in Figure 9.

The non-leaking system showed an inconsistent signal amplitude, often reaching
the same level as that in the leaking system. This made it difficult to apply a statistical
model to the data and accurately detect leaks. We tried to use amplitude thresholds to
distinguish between normal and leaking operation, but the accuracy was barely better
than that of random guessing. By analyzing and processing the data, we found that ML
was more suitable for extracting information from the recordings. An additional factor
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potentially affecting leak flow determination could be the water temperature. To evaluate
the impact of water temperature on the MMF output, we tested a 400 µm covered fiber
under a leak flow of 5.7 L/min from a 6 mm hole at water temperatures of 7 ◦C, 18 ◦C, and
34 ◦C. We found that the average signal amplitude decreased by 25% between 7◦ and 34 ◦C
and by 13% between 7 ◦C and 18 ◦C. While leak event discovery may not be affected by
water temperature variation, for precise leak flow determination, the water’s temperature
coefficient should be investigated.
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4.5. Leak Detection with ML

To find an automated and reliable way to detect leaks, we applied ML methods. In the
statistical analysis, the data were averaged to produce easy-to-analyze graphs; however,
this process caused significant data loss. For ML data processing, we used the 1D signals
from the previously analyzed speckle pattern videos. As each dataset was unique, the
ML algorithm needed to be fine-tuned to produce the best predictions. The selected ML
algorithms were KNN and SVM, with a fine setting for the KNN’s number of neighbors
and a medium size for the SVM’s Gaussian function. Each recording was divided into
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10 segments, and the number of training samples was multiplied. Overall, each test
configuration included 30 samples containing 100 data points each. For the training, a
common cross-validation technique was applied—K-fold (10-fold) cross-validation—to
prevent the algorithms from overfitting. The model trained with K-1 subsets was validated
using the remaining subset. This step was repeated ten times to ensure that each subset was
validated exactly one time. We decided to use supervised learning for all of our ML testing.
A total of 70% of the data were used to train the model, while 30% of the data were used to
validate its accuracy. The duration of training and validation was about 10 s per algorithm.

Data processing for the 400 µm MMF by ML
Preliminary data processing with ML showed that 400 µm MMF fiber is about twice

as accurate as 200 and 600 µm fibers for leak size determination. The ML model training
was performed separately for each pressure level, as the pipe pressure was not expected to
fluctuate during typical use. While the data for the ML were separately classified according
to leak size, we initially focused on the ability to detect a leak regardless of its size, which
was the main goal of this research. The results for positive and false positive detection
regardless of leak size for a given pressure—measured in cm of the water column—are
shown in Figure 10 (P—percentage of leaks detected, FP—percentage of non-leaks classified
as leaks).
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Figure 10. ML accuracy for leak detection—400 µm covered fiber. Positive accuracy shown in (a) and
false positive rate shown in (b).

While both algorithms detected the leaks with an accuracy above 85%, only the
SVM algorithm delivered a pressure-consistent false positive rate under 35%. The KNN
algorithm failed to differentiate regular flow from a leak at higher pressure levels; therefore,
it is unreliable for the detection of leaks. The SVM algorithm’s accuracy was consistent for
all measurements and fiber configurations, and it will be the focus of our further analyses.

As mentioned, to train the ML models, we separated the data according to leak size,
enabling the testing of leak size determination. The results for the leak size prediction
accuracy for a given pipe pressure are shown in Figure 11.

The results were compared with random prediction as a threshold. With four classes
tested (no leak and 3, 6, and 8 mm leak diameters), it was 25%. The accuracy was higher
at lower pressures for the covered fiber, while for the exposed fiber, the accuracy was less
consistent. Upon averaging the leak size determination accuracy of the SVM algorithm,
we found an overall accuracy of 75.8% for the 400 µm covered fiber, 68.3% for the 400 µm
exposed fiber, and 45.5% for the 200 µm covered fiber.
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5. Discussion

This paper presents a novel technique for the continuous sensing of leakages in water
pipes using the direct effect of the leaking water on the defocused speckle patterns recorded
from covered and exposed fibers’ outlets.

We experimentally demonstrated that this type of sensor can detect outside interven-
tion or shock to the pipe. By disturbing the pipe to simulate a pipe burst, the measured
amplitude of the recorded signal spiked, exceeding the average signal amplitude during
steady flow by 3 to 10 times. This result was consistent for the sensors fixed inside and
outside the pipe for both covered and uncovered MMFs. Using a spectrogram, we exhibited
that the frequency domain may also provide a method for the detection of pipe bursts
and leaks.

Moreover, we were able to use the sensor data to detect leaks and determine their
size with accuracy above 85% with the 400 µm MMF sensors, which were found to be
optimal. Using both statistical methods and ML, we found that this sensor was sensitive
enough to distinguish between leak sizes. Further improvement can be made by accounting
for changes in water temperature and employing a more representative dataset for ML.
Employing the selected ML algorithms allowed for the creation of an accurate model for
detecting the existence of a leak. However, further investigation is required to eliminate
false positive detection. We additionally demonstrated that defocusing of the digital
camera when capturing the speckle patterns from the MMF outlet allowed us to increase
the sensitivity and, therefore, leak detection capabilities of the sensor.

While showing that the developed fiber-based sensor is feasible, we acknowledge that
improvements are required to expand and perfect its capabilities. A different method for
calculating 1D variations in the speckle pattern recordings may include the measurement
of the speckle pattern contrast. The ML detection accuracy may improve by using an
extended dataset, lowering the false positive rate, and allowing leak detection regardless
of pipe pressure. Another direction is the field of deep learning, where an algorithm can
work with the original speckle pattern images. The ability of an uncovered fiber to collect
information related to water turbidity and composition has yet to be explored. This will be
especially useful in rural areas, where the water supply systems may suffer from pollution
or contaminants. In addition to the detection of pipe bursts, the tested method also allows
the detection of transient flow, water hammer, and pipe intervention and sabotage. Our
method can be similarly useful for leak detection in oil and gas transmission systems. In
addition, the fiber utilized for the sensor can be simultaneously used for communication
by modulating the laser light.
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A shortcoming of the current sensor is its lack of positional awareness. However,
we aim to demonstrate distributed sensing by injecting photons from both ends of the
fiber and generating a standing multi-modal wave. This allows us to change the observed
location by tuning the position of the peaks of the standing wave with the relative frequency
of the injected photons and scanning vibrations along the fiber in a continuous manner.
Alternatively, the use of a Bragg filter (fiber-based grating) and a multi-wavelength laser
could also determine leak location. This will enable the separation of specific wavelengths
at different placements for measurement. The detection for each grating placement is
possible using our method, as the interference between wavelengths is minimal in an
MMF. By determining the particular wavelength affected by a pipe leak, its location can
be evaluated.
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