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Abstract: Object recognition and tracking have long been a challenge, drawing considerable attention
from analysts and researchers, particularly in the realm of sports, where it plays a pivotal role in
refining trajectory analysis. This study introduces a different approach, advancing the detection
and tracking of soccer balls through the implementation of a semi-supervised network. Leveraging
the YOLOv7 convolutional neural network, and incorporating the focal loss function, the proposed
framework achieves a remarkable 95% accuracy in ball detection. This strategy outperforms previous
methodologies researched in the bibliography. The integration of focal loss brings a distinctive
edge to the model, improving the detection challenge for soccer balls on different fields. This
pivotal modification, in tandem with the utilization of the YOLOv7 architecture, results in a marked
improvement in accuracy. Following the attainment of this result, the implementation of DeepSORT
enriches the study by enabling precise trajectory tracking. In the comparative analysis between
versions, the efficacy of this approach is underscored, demonstrating its superiority over conventional
methods with default loss function. In the Materials and Methods section, a meticulously curated
dataset of soccer balls is assembled. Combining images sourced from freely available digital media
with additional images from training sessions and amateur matches taken by ourselves, the dataset
contains a total of 6331 images. This diverse dataset enables comprehensive testing, providing a
solid foundation for evaluating the model’s performance under varying conditions, which is divided
by 5731 images for supervised system and the last 600 images for semi-supervised. The results are
striking, with an accuracy increase to 95% with the focal loss function. The visual representations of
real-world scenarios underscore the model’s proficiency in both detection and classification tasks,
further affirming its effectiveness, the impact, and the innovative approach. In the discussion, the
hardware specifications employed are also touched on, any encountered errors are highlighted, and
promising avenues for future research are outlined.
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1. Introduction

Soccer is the most popular sport in the world, and in surveys, just over 40% of those
surveyed responded as being “interested” or “very interested” in this sport [1,2]. Due
to this, the expectations of the performance of the players is under constant scrutiny [3],
expecting better results in each of the matches; therefore, the coaches have the responsibility
to generate the best strategies that are reflected during the match and the results. However,
it is known that there are multiple factors that have an impact on the performance of the
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player, individually and collectively [4,5]. The use of intelligent algorithms in data science
has also had its application in this sport [6,7]. García-Aliaga et al. [8] studied the playing
positions on the field of a group of soccer players based on their technical–tactical behavior
through machine learning algorithms using game statistics from different seasons and
national leagues. Meanwhile, Knoll and Stübinger [9] proposed the use of machine learning
to predict the outcome of soccer matches considering data science, including indicators
such as ball possession, intercepted balls, number of passes, number of fouls, among many
others, concluding that the complexity of obtaining a win in a soccer match depends on a
successful adjustment of thresholds, although the prediction accuracy remains low. If we
consider the literature focused on the measurement of performance analysis, it is possible
to associate the use of technological tools and sensors that allow measurements of the
different indicators that are related to the performance within a soccer match [10–12].

One of the devices that play an important role are video cameras, which is why they
are becoming increasingly popular in the development of video sports analysis systems in
all categories of soccer [13], since their use allows feedback, giving the coach the opportu-
nity to reflect on the strategies to be employed during training [14,15]. Andersen et al. [16]
conducted a study on performance analysis and how it has become key for soccer coaches,
which highlights that coaches mentioned the importance of dedicated performance mea-
surement systems. During the study, coaches who had access to video analysis more
frequently, and who spent more time analyzing performances, often had a higher coach rat-
ing than their colleagues who did not make use of these tools. Likewise, Brümmer et al. [17]
presented a particular approach to coaching techniques involving video recordings and
other systems used for performance analysis where the detection of coordination problems
is visualized, as well as the possibilities of solving them and generating new knowl-
edge for future reorganization of the game. In addition, video analysis allows players
to retrospectively review their contribution to the result obtained and to understand the
interdependence between individual activities and, therefore, the supra-individual effects
of the latter.

Introduction Background and Scope of This Study

Soccer videos can be analyzed manually and/or automatically, so for the second option
it is necessary to make use of machine learning models that allow the detection, recognition,
and tracking of the objects of interest (balls, players, referees, and others). The interest in
detecting and tracking players is motivated by the fact that it is possible to determine their
trajectory, which is the starting point for more complex analyses such as individual and
team performances [18], Wang and Li [19] combined the advantages of residual networks
(ResNet) and feature pyramid network (FPN) to build a new architecture that inherits the
advantages of both models to find the position of the player with a confidence map of the
player. They concluded that this model allows with competitive times the detection and
tracking of players, even in sports videos circulating on social networks.

Ayala et al. [20] mentioned the importance of object detection through deep learning,
these algorithms already being used in surveillance systems and many other applications,
so adapting a network for ball recognition could facilitate the analysis of some data such as
the distance traveled by an object during a match, the most recurrent passing lines, or simply
achieve the identification of the same in sports practice, which has been tried for the past few
years. Akan and Varlı [21] conducted an interesting study in which they analyzed the most
recent research related to the detection and tracking of players or the ball, event detection,
and game analysis, this from an approach of traditional techniques vs. deep learning,
concluding that the convolutional neural networks (CNN) have significant advantages
in sports video analysis. An example of this is the work where D’Orazio et al. [22] made
an adaptation of the Atherton algorithm, through digital image processing, achieving an
improvement over the original algorithm, but already showing that the convolutions were
necessary to improve a model. This is why it was proposed to adapt a convolutional
neural network widely used in the scientific community for object detection such as You
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Only Look Once (YOLO), which is based on the end-to-end approach for the detection
and classification of objects in real time [23]. YOLO has great advantages of being a faster
system than other CNN networks [24], because it reduces the problem of detection and
classification to a linear regression only, “YouOnlyLookOnce” at the image during the
process of feature extraction and this leads to running the CNN on an image or video for it
to make predictions. Then, it learns generalizable representations of objects, which means
that if more data are introduced to the input there is less chance of failure [25]. Adapting
this algorithm to ball detection in different environments and conditions provides useful
data for tactical considerations or to make sense of some passes or shots that do not seem
to be sensible, collecting sequences to perform in each of them an analysis of the tracking
and position of the ball [26].

In recent years, many advances have been made in object detection with YOLO, includ-
ing improvements in accuracy, speed, and robustness. Bochkovskiy et al. [27] presented
YOLOv4, which offers higher accuracy and speed than previous versions. In 2018, Corner-
net [28] was proposed, which detects objects as paired keypoints instead of bounding boxes;
subsequently, an enhancement to YOLO called objects as points [29] was presented, which
uses points instead of bounding boxes to detect objects that are included in the version
being used. These are just some of the improvements in object detection with YOLO that
have been achieved recently, giving relevance to the project initiated in 2016 by Joseph
Redmon at the University of Washington implemented for Darknet [30]. Now, it is able to
perform implementation in different environments such as in the present project in which
the training and model adjustments are performed using a virtual anaconda environment,
since that improves the compatibility of implementing online tracking of objects in real
time (SORT) that demonstrates good performance in terms of accuracy with a high number
of identities [31].

The YOLO algorithm has been the subject of numerous studies and numerous adapta-
tions of different versions have been presented in recent years. In [23], an improvement
of YOLO v2 was proposed using residual neural network techniques. Chandan et al. [32]
analyzed that YOLO in its third version was better than other networks if speed is sought
as the first criterion, being a better adaptation of SSD (single-shot multi-box detection) at
that time. In [33], a deep learning technique based on feature detection was proposed to
improve the accuracy of small object detection. In [34], a region-based detection technique
was used to improve the accuracy of object detection in complex environments, such as with
a background. The technique was analyzed in the detection of balloons, where accuracies
of 85% or less were obtained, and in cases of being higher than that percentage, was as
a result of being based on datasets of a single specific balloon with shots in controlled
environments. In the literature focused on small object detection (SOD) [35], interesting
studies have been carried out to compare the performance of the current models [36–38],
from which it is generally concluded that the best results are obtained by the convolutional
models: Faster R-CNN, SSD, and YOLO.

The detection of soccer balls is framed in SOD, because in different environments
detection is particularly challenging, presenting difficulties from the moment the ball
appears in sports videos, observed as a small object that has variations in speed and
direction, a frequent change in the background through the variation in environments and
angles from which the video is being taken, not to mention the complexity of identifying
balls with different designs and textures, changes in lighting in the soccer fields depending
on the time of the game, occlusions, and the blur that occurs on the ball when it is kicked
by a player. Ball detection and tracking has been studied in sports such as golf using CNN
to detect such a small object [39]; another area where ball detection is important is within
robotic sports competitions, in competitions such as RoboCup where the complexity of
detection increases when trying to implement models such as RESNET50 [40], Net + Long
short-term memory (LSTM) [41], or CNN [42], but now, using processing hardware such as
Raspberry Pi or with smaller processors with which the networks were originally trained,
a balance must be found between computational performance and accuracy rates. A paper
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focused on the detection of soccer balls is that of Kamble et al. [43], in which they proposed
the use of deep learning ball tracking (DLBT) using MATLAB for its implementation,
obtaining an accuracy of 93.25%.

Understanding that the problem to be addressed is complex in this work, an adaptation
of the convolutional neural network YOLO v7 (You Only Look Once) is proposed, since
it is an algorithm that has high accuracy and processing speed for the multi-detection of
objects (see Figure 1), by training detectors on small objects and transfer learning, because
the balloons are only a small part of the input image, also making a readjustment to the
size of images, to obtain better results.
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Figure 1 explains graphically the comparison of the version used in this article with
previous versions of YOLO, where the points that are higher and to the left are better, so
it shows that the model is the most efficient and it can even be seen that this model is up
to 120% faster. This is true even of most of the models that run in GPU as YOLOR and
the same with YOLOv7. However, as this one is the fastest and most efficient with respect
to the graph, it was decided to use it, since it is convenient to optimize time to be able to
complete the corresponding tests.

Table 1 shows a summary of the most relevant studies related to ball detection using
machine learning algorithms.

This paper is organized as follows: Section 1 is an introduction to studies and method-
ologies similar to the present paper. Section 2 provides a general description of the proposed
system and the theoretical basis of the models and techniques used in this research. Sec-
tion 3 presents a detailed description of the two experiments used to demonstrate the
competitiveness of the proposed model, as well as the results obtained in both experiments,
and describes the integration and adaptation of the system to work under real conditions.
Section 4 presents the conclusions based on the results obtained, and finally, Section 5
presents the discussion.
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Table 1. Summary of related works that address the ball detection problem under the small object approach.

Author Addressed Problem Dataset Model Precision (%) Observations

D’Orazio et al. [22]
(2004)

Ball recognition soccer on
real images

Image sequences taken by a
camera connected to an
S-VHS video:

− 318 Ball images
− 364 No-ball images
− 139 Occluded ball images

Adaptation of the Atherton
algorithm 96.46 Includes evaluation with ball

occlusion obtaining 92% accuracy

Zhang et al. [39]
(2022)

Golf ball detection and tracking
with CNN and Kalman filter

2169 high resolution golf images
from online tournaments of
which 17,436 golf ball labels
are generated.

− YOLO v3
− YOLO v3_tiny
− YOLO v4
− Faster R-CNN
− SSD

RefineDet

Tracking with
Faster R-CNN: 81.3
YOLOv3 tiny:
82.1

Addresses small object
detection issues

Kamble et al. [44]
(2019)

Deep learning approach for 2D
ball detection and tracking
(DLBT) in soccer videos

Own dataset
1500 images for each class: ball,
player, and background

CNN architecture designed by
modifying the Visual Geometry
Group (VGG) at University of
Oxford, named VGG-M

93.25 Soccer videos are used

Komorowski [45]
(2019)

Soccer ball detection in long
take videos

ISSIA-CNR Soccer Dataset
(20,000 frames)

− 7000 Ball
− 13,000 No-ball

− A classical CNN + Softmax 87
The hypercolumn concept is
implemented with convolutional
feature maps

Hiemann [46] (2021) Volleyball ball detection

12,555 images

− 10,363 images training
− 2192 images test

YOLOv3 73.2
Time inference metrics are
presented in frames per
second (FPS).
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2. Materials and Methods

The present work focuses on addressing the problem of ball detection and tracking
in real soccer matches using a CNN under a joint architecture of Supervised YOLO v7 +
Semi-Supervised YOLO v7 changing the loss function to compare the results. The objective
is to know the trajectory of the ball so that in subsequent work, a correlation can be made
with the performance of the players in a context of sports video analysis. The object of study
that you want to detect in this work is framed within small object detection (SOD) [34–38],
in addition to the problem that the soccer ball moves at an average speed from 120 to
130 km/h in professional matches, so the challenges to be faced focus on the detection
and location of an object that has a small dimension compared to the rest of the scene in a
soccer match, which brings the following problems: the object is lost within the context, the
color of the object can be confused with walls on the field since the camera shows scenes in
2D, the speed of movement of the ball generates motion blur which causes deformation
of the object within the scene, in addition, a ghosting effect is generated, which causes
blurring of the ball. These are the reasons why using the YOLO v7 architecture is proposed,
which is recognized for its effectiveness in detecting objects in real time. It stands out
as an open source network with great versatility, supporting a variety of algorithms and
model conversions [4,39,46]. Furthermore, its adaptability to diverse environments adds
significant value to this research.

The innovation of this article focuses on proposing a transfer of learning through
two types of training: “supervised” and “semi-supervised”; for this, the supervised model
is first trained with dataset A. Once the weights and hyperparameters are obtained, they are
transferred to the supervised model with focal loss function, so the learning of the second
model does not begin with random weights but with pre-trained weights in a supervised
manner, Subsequently, with dataset B, the transferred model is trained but under semi-
supervised learning (see Figure 2). This proposal seeks to improve the performance of the
original model as shown in the results section, where both YOLO v7 and YOLO v7 Tiny are
tested with this methodology. Finally, since the semi-supervised model has been trained, a
DeepSort model is added with which the goal is to track the ball.
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The primary focus during training was to achieve a high level of accuracy. This was
accomplished by fine-tuning the model using a combination of inherited weights and a
semi-supervised approach. By leveraging pre-trained weights and incorporating additional
labeled data, the model was able to adapt and generalize effectively in addition to changing
the loss function, as we chose to use the focal loss function instead of the standard loss
function used in YOLOv7 and YOLOv7_tiny, which helps to give more weight to difficult
examples, that is, those examples that are misclassified, and less weight to easy examples,
which is useful in this case since the examples belong to a single class and are small
moving objects.

To optimize the performance of the proposed model, we used the focal loss function.
This tool has been specially designed to address potential imbalances in class distribution,
which is of particular interest in this context as we are working with a single class. Fur-
thermore, the use of inherited weights for the new training in a semi-supervised scenario
will be explored. This strategy aims to leverage the knowledge gained during the previous
training, which can lead to substantial improvements in model performance. The selection
of YOLOv7 and the implementation of the focal loss function will not only provide an inno-
vative perspective on small object detection but will also open up opportunities to expand
its application in various domains. This proposal represents a step forward in enhancing
accuracy and efficiency in identifying elements of interest, with significant implications
in several areas. Once the best performing custom model is obtained, DeepSORT will be
implemented to find the trajectory lines of the ball which facilitates the task of evaluating
the player’s shots in various conditions or areas of play.

2.1. Dataset

The dataset is one of the essential basic components for any deep learning system.
However, it often presents the challenge that, in order to address a specific problem using
convolutional neural networks, it is necessary to create a custom dataset. In this case, we
used our own dataset, made up of several stages. First, permissions were obtained from
both amateur and semi-professional football fields to capture video footage. From these
videos, the most significant frames that allowed optimal visualization of the ball were
extracted. Shots were taken at different times of the day and from different viewing angles
on the field, always keeping the ball in focus. This varied approach was employed to obtain
a dataset that reflected different conditions.

In addition to the field shots, images of balls from publicly accessible sources on the
internet were added. In total, 6331 images of balls were collected with varying photographic
quality. Most of these images were captured with a camera resolution of 1080p, although
photos taken with smartphones in 4K were also included, along with digital media images
ranging from 720p to 1080p resolutions.

Once the dataset was compiled, a split was performed for the two main objectives of
this article. A total of 5731 images were allocated for the first part, which involves compar-
ing the “tiny” and “normal” versions of the YOLO model. The remaining 600 images were
used to test the models in a semi-supervised convolutional neural network system. This
process of collecting and preparing the dataset lays the foundation for the research and
evaluation of ball detection models in this study, considering images with balls in grass
fields, synthetic grass, and paved fields, with different lighting conditions, using images
taken with artificial light and natural light and augmenting data from photographs taken
of balls with occlusions, unfocused images of balls due to the speed at the moment of being
hit, different colors, marks, and sizes of balls in order to improve ball recognition, using
data augmentation techniques, such as rotation and change in scale, to improve the training
of the model with the same dataset.

Upon achieving the new dataset, the coordinates of the region in which a ball can
be visualized are selected to achieve a learning transfer, through labels exporting them
in text coordinate format, since it is the format used to train YOLO neural networks.
Subsequently, the data must be divided into three sets: a training set, a validation set, and
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a test set, performing the division of the images, occupying 70% of data for the training
set, 20% for the validation set, and 10% for the test data; then, leaving 4012 images in
Train with 4000 positive coordinate labels, 1146 images in validation with 950 labels, and
finally 573 images in Test with 443 labels (see Figure 3). This is achieved by means of the
cross-validation technique programmed in Python, for the correct division of the images in
each category and the convolutional neural network can be trained with these images and
coordinates, which will be tested and the network topology “tiny” vs. the normal topology
is compared in terms of accuracy and training speed.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 29 
 

 

 
Figure 3. Complete diagram of proposed methodology. 

2.2. Proposed Methodology 
In this work, it is proposed to use a CNN with YOLOv7 architecture, incorporating 

significant changes that allow improvements in performance in the ball detection and 
tracking task, as shown by the results. As can be seen in Figure 3, an extensive version of 
the methodology is shown, in which it is proposed to use two types of training, the first 
being “supervised”, while the second is “semi-supervised”. The proposed innovation is 
to combine both types of learning to improve the performance of the original model (ex-
clusively supervised), especially since YOLOv7 has not been tested under SOD. Figure 3 
shows how the dataset is divided into A and B, the first divided part of the dataset is used 
to train the supervised model, using a 70/20/10 HoldOut validation method. Once the su-
pervised CNN was trained, the weights and hyperparameters of this network are trans-
ferred to the semi-supervised topology (transfer learning) to begin their own training. 
Subsequently, when the semi-supervised model finishes training, a DeepSORT model is 
used to track the ball within the scene. 

The methodology is applied to YOLOv7 and YOLOv7_tiny to evaluate their perfor-
mances. To achieve this, a semi-supervised system is adapted to achieve improvements in 
detection and apply it in a real execution environment. To evaluate the model, we used 

Figure 3. Complete diagram of proposed methodology.

2.2. Proposed Methodology

In this work, it is proposed to use a CNN with YOLOv7 architecture, incorporating
significant changes that allow improvements in performance in the ball detection and
tracking task, as shown by the results. As can be seen in Figure 3, an extensive version
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of the methodology is shown, in which it is proposed to use two types of training, the
first being “supervised”, while the second is “semi-supervised”. The proposed innovation
is to combine both types of learning to improve the performance of the original model
(exclusively supervised), especially since YOLOv7 has not been tested under SOD. Figure 3
shows how the dataset is divided into A and B, the first divided part of the dataset is
used to train the supervised model, using a 70/20/10 HoldOut validation method. Once
the supervised CNN was trained, the weights and hyperparameters of this network are
transferred to the semi-supervised topology (transfer learning) to begin their own training.
Subsequently, when the semi-supervised model finishes training, a DeepSORT model is
used to track the ball within the scene.

The methodology is applied to YOLOv7 and YOLOv7_tiny to evaluate their perfor-
mances. To achieve this, a semi-supervised system is adapted to achieve improvements in
detection and apply it in a real execution environment. To evaluate the model, we used the
optimized weights for transfer learning from YOLOv7, obtained directly from the authors’
repository [43], using the file “yolov7_training.pt” which allows us to achieve the extraction
of features of regions of interest selected by the coordinates, in order to process the image
optimally by applying mathematical functions to the model, supporting the use of the
algorithm proposed in this article. However, it is important to understand that its operation
is based on a convolutional neural network.

Therefore, a convolution is applied to the input image as a first step, taking into
account that the size of the image and the number of channels it has are important. With
this information, we can quickly know how many neurons the network will need to
examine it and allow the extraction of features from it. The convolution is defined as the
result of the dot product between the kernel or filter and the region of interest of the input
image; therefore, the selection of attributes proposed in the training diagram of Figure 3 is
useful, which mathematically expressed is observed as follows:

Ci,j,k = ∑
m

∑
n

∑
c

Wm,n,c,k Ii+m−1,j+n−1,c (1)

where C(i,j,k) is the result of placing the filter at the coordinate position (i,j), while
W represents the weights at which the filter starts and this is operated with the value
I of the pixels that are increasing while the filter runs through them for the input image,
performing a sigma operation for each weight index (m,n) and for the image channel (c).

Once the feature extraction is achieved, a reduction in the number of pixels present
in the image is performed, to reduce the processing time and deliver to the input of the
full-connected network the most relevant values of the image, without losing the shape,
color, or pattern detected. For this purpose, the MaxPooling function is used, which is
represented as follows:

Oi,j,c = (p− 1) maxp−1
m=0 maxq−1

n=0 Ii+m,j+n,c (2)

where O(i,j,c) is obtained, which represents the value of the output vector in the image
I of pixels i+m, j+n, c, in the rectangular region of interest, where the reduction size is
given by the window p,q, depending on the number of pixels of the input image and the
amount of data to process, to later flatten these data in a single vector and give way to a
fully connected ANN artificial neural network defined with y = f (Wx + b) to obtain the
classification and detection in real time, where y represents the final output, W the weights,
x the input value, and b the “bias” readjustment of the network using the backpropagation
algorithm to obtain the learning weights of the present model, highlighting that YOLO v7
uses non-maximum suppression (NMS) to eliminate redundant detections and keep only
the most accurate detections.

Intersection over union (IoU) is used to eliminate detections below the calculated
threshold, considering Abox1 as the highest detection in the model, and Abox2 the actual
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detection of the ball in the image being processed, using the following mathematical
function:

IoU =
Abox1 ∩ Abox2
Abox1 ∪ Abox2

(3)

For the case of the present project, the IoU metric is compared against a proposed
threshold of 60% in the neural network adjustments, so that superior detections are
achieved, discerning between true detections and false detections in the learning of the
model. This is to facilitate the task in the adjustment of weights, since, from the first training,
we can know if the network is acquiring a good transferred learning curve or has failed and
we must make adjustments in the hyperparameters of the network. Remember that IoU
(Intersection over Union) is a metric that measures the overlap between the prediction area
and the real area of the detected ball, while mAP (mean Average Precision) refers to the
average precision in detecting the ball, so they can have different percentages to each other.

In Figure 4 of the basic scheme of a CNN, it is shown that in the central part there
are many layers connected to each other, since the processes that are carried out within
a convolutional neural network are extensive, in order to achieve a high detection and
certainty in finding an object. Therefore, it is important to explain the version of YOLO
used, which as in previous versions uses bounding boxes in places where it manages to
classify or detect something of what is presented to the model during its training, dividing
the complete image in grids of N × N. Thus, it gives value to each grid to be responsible
for the detection of the objects, obtaining this way the first confidence thresholds even
without training the model, since if it is a region where there is no interest or no object
present the confidence is 0. Each image will have five values (x,y,w,h and its confidence),
being (x,y) the ratio of the center of the bounding box to the grids present in that detection,
(w,h) are normalized ratios of the bounding box with respect to the input image size,
and the confidence derived from knowing if there are objects present as shown in the
following illustration.
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Figure 4. Basic Diagram of CNN.

From the grids in each frame like in Figure 5, it is possible to know which grid
is responsible for the correct identification, leaving aside the others since they are not
important for the algorithm, performing by default the IoU (Intersection over Union)
calculation according to the grids that are found in the object detection. In this version of
YOLOv7 used, the neural network performs the process in two phases as shown in the
following diagram of the architecture, a phase for feature extraction, and a learning phase
based on the extracted features; thus, optimizing the GPUs of the computer as they focus
on a single task at a time achieving up to 70% faster than previous versions.

Taking into account the aforementioned architecture from the Figure 6, which consists
of a Backbone, Neck, and Head for training images, the supported network parameters are
described in the following table. Specifically, the parameters utilized by this convolutional
neural network (CNN) are highlighted.
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To perform the hyperparameters adjustment taking Table 2 as a reference and looking
for the best detections of the frames as shown in the simplified scheme in Figure 7, we start
with a batch size of 16, with the idea of favoring the training, taking into consideration
that a larger batch size can accelerate the training, but it also requires more memory in
the GPU which is limited to 10 GB which is what the RTX 2080 Ti graphics cards of the
computer where it is trained provide us with, since if you use a smaller batch it consumes
less memory but it can decrease the training speed. This means that 16 passes will be
made for each training epoch and 100 training epochs are configured using the labeled
dataset. The performance of the model is observed once the training is finished with the full
hyperparameters in Table 3 below with a neural network of 640 × 640, since this is the size
to which the images are reduced when MaxPooling is performed within the convolution;
thus, obtaining the confusion matrices that are observed in the following illustrations, using
the respective topology for each matrix. Subsequently, a sum of new labeled and unlabeled
images is used to train a new model taking as a basis for training the weights obtained
from the first training using the model topologies described above, where the models are
compared with the precision, forgetting, and mAP (average precision) plots, given by the
following equations that can be verified with the confusion matrices obtained or review the
model functions:

P =
TP

TP + FP
(4)
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R =
TP

TP + FN
(5)

F1 =
2(R ∗ P)
(R + P)

(6)

where the first equation is to determine the Precision (P), in which TP is for True Positives
and FP, for False Positives, in the second equation for the Recall (R), FN is for False
Negatives, and once these values are obtained, the network performs the calculation of
the threshold by means of the third equation called F1. These functions are observed in
the graphs described below, starting with the analysis of Precision versus Recall, which
determines the certainty of locating the “Balon” class in the correct place at the moment of
detecting balloons in different environments.

Table 2. CNN Parameters.

Design Parameter Values
Convolutional Layers

Kernel Size 1 × 1, 3 × 3 or 5 × 5

Kernel dilatation 1 or 2

Stride 4

Output channels 512

Pooling Max Pooling

Activation Mish, Sigmoid or ReLU

Batch normalization No

Full Connected Layers

Layers outputs 16
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Table 3. Hyperparameters adjust.

Hyperparameter Adjust Value
Initial Learning Rate 0.01

Final Learning Rate 0.1

Momentum 0.937

Weight_decay 0.0005

Warmup_epoch 3.0

Warmup_bias_learning rate 0.1

Box Loss Factor 0.05

Classification Loss Factor 0.3

Classification Loss Weight 1.0
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Table 3. Cont.

Hyperparameter Adjust Value
Objectness Loss Factor 0.7

Intersection Over UnionThreshold 0.2

Anchor Threshold 4.0

Focal Loss Gamma 1.0

Mosaic Scale 0.5

Mosaic Augmentation 1.0

To improve the accuracy of our model, a fundamental change was implemented in the
loss function used in the network. Instead of the default function, we chose to integrate
the Focal Loss function. This decision is based on the uniqueness of our dataset, which
consists of a single class corresponding to class named “Balon”, which is an object of small
dimensions and high speed when viewed by the cameras. The adoption of focal loss is
defined by:

FL(pl) = −(1− pt)
γlog(pt) (7)

where pt = p if y = 1 (where “y = 1” meaning it is the probability of the correct class), while
it is 1 − p if y = 0 (meaning the probability class is false or is classified in an incorrect class),
γ is a hyperparameter to modulate the approach, which gives us the ability to highlight
and give more weight to the most difficult predictions, thus allowing an increase in the
assertiveness of the model in the detection of this type of object, playing a crucial role in
this process of improving the accuracy of YOLO models, which retain the same number of
neurons, convolutions, and the same anchor boxes.

In order to be able to track the ball trajectories and perform a serious analysis, a
complementary algorithm to the weights obtained in the training is used, as explained in
the following diagram. Previously, an adaptation of YOLOv5-DeepSORT [48] was made,
where now the aim is to use the weights of YOLOv7 instead of using a previous model,
Although the described YOLOv5-DeepSORT algorithm could be used, the adaptation
is made with the new YOLOv7 model, which means that this network should be more
efficient and effective due to the high degree of detection that already exists in the trained
models of detection with YOLOv7 and YOLOv7_tiny. The following diagram explains how
the implementation of DeepSORT works for the multiple object detection system.

Figure 8 shows the DeepSORT diagram and Table 4 the architecture that is used as
the ball tracking algorithm, the fastest and most compatible with the systems according
to [49], where the Kalman filtering is the first step and important component, because it
performs an aspect ratio between the dimensions of the bounding boxes and the speed of
detection in the objects, to later use the distances to trace diagonals of the coordinates and
calculate the centroid of the same (distance association as shown in Figure 8), from where
the trajectory of the ball will be traced. In addition, it makes use of the Hungarian algorithm
which is described with an association matrix, which compares the values of the detections
on several occasions, generating alternate matrices with the help of the augmented path
algorithm, which makes comparisons between the training datasets, weighting them with
an external variable. In order to reduce the number of data that do not serve for the
assignment and to make the places where the detections coincide keep the same bounding
box by placing a zero in all these places, it is noteworthy that for this article, there is only
one class, so the optimal matrix will be 1 × 1, thereby achieving greater speed in the
processing of the same.
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Table 4. Architecture of network inside DeepSORT.

Name Patch Size/Stride Output Size
Conv1 3 × 3/1 32 × 128 × 64

Conv2 3 × 3/1 32 × 128 × 64

Max Pool 3 3 × 3/2 32 × 64 × 32

Residual 4 3 × 3/1 32 × 64 × 32

Residual 5 3 × 3/1 32 × 64 × 32

Residual 6 3 × 3/2 64 × 32 × 16

Residual 7 3 × 3/1 64 × 32 × 16

Residual 8 3 × 3/2 128 × 16 × 8

Residual 9 3 × 3/1 128 × 16 × 8

Dense 10 128

Batch 128

l2 normalization 128

3. Results

To present the results, the images and graphs described in the previous part of the
methodology are shown and the simulation of the semi-supervised network is shown
from where the implementation of DeepSORT is performed. For this, the model is trained
and the use of the inherited weights is taken, to start the training with the same hyper
parameters adjusted, with the small dataset for the semi-supervised system that is the main
object of the present article in which it is labeled to less than 30% of the separated images
to test the semi-supervised system and with it to observe the behavior of a semi-supervised
model for the detection of soccer balls. Showing the results of the training, starting with
the first training dataset, where we start with 100 epochs of the large dataset of more than
5k images for our models (YOLOv7 and YOLOv7_tiny) with focal loss function.

It is observed in the “Box” graph of Figure 9 that the model error is decreasing
throughout the 100 epochs, the accuracy is increasing, where from epoch 50 it is less
dispersed and with an accuracy higher than 60% and mAP shows that it will recognize
when it has a percentage higher than 50%, which it achieves a little before reaching the
100 epochs.

Figure 10 shown above, is for the same data, with the same hyperparameters in
the YOLOv7_tiny network, it is observed that the graphs maintain a smaller dispersion
between the data, from “Box” where the error is decreasing, the accuracy remains above
60% before the 50 epochs and mAP shows that after the 50 epochs it is able to recognize
objects where it has 50% confidence. This emphasizes that up to the moment of these tests,
the tiny network achieves a better and more optimized training in few epochs, but it should
still be evaluated with the equations and functions in the following trainings, since 66% of
accuracy is obtained in YOLOv7 and 69% in YOLOv7_tiny.
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Figure 10. YOLOv7_tiny first training validation results for 100 epochs.

It can be seen in the Figure 11 (the metric results) and in Figure 12 (matrix) that the
network with the same data and same hyperparameters reacts much better to the training
of 200 epochs, since it shows a lower model error after epoch 100 and a higher and less
dispersed accuracy than in the previous model, being much higher than 60%, reaching up
to 77%, and mean average accuracy close to 0.6, showing that it has become more confident
with more training epochs.
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Figure 12. YOLOv7 test results in 200 epochs.

Exhaustive training was conducted on the YOLOv7_tiny model, just as with the
YOLOv7 model, totaling 200 epochs like show the axis “x” in the Figure 13. Throughout
this process, fundamental data were collected and analyzed to provide a detailed insight
into the model’s performance.
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Figure 13. YOLOv7_tiny training results in 200 epochs.

The resulting graphs are crucial for understanding the training progress. The Box
plot reveals a descending trend with a descent rate of approximately 0.03, indicating
a significant reduction in the model’s loss. This suggests a substantial improvement in
prediction accuracy as the training progresses, which is less dispersed in this case compared
to the previous YOLOv7 figure. On the other hand, precision exhibits an initial phase of
instability, especially before epoch 100, where it fluctuates considerably. However, after this
point, a notable stabilization in the model’s precision is observed. This trend suggests that
the model achieves a more consistent level of reliability as the training deepens, similar to
that which occurs in the case of YOLOv7 training, where stability is achieved earlier than
in this tiny model. Meanwhile, the mAP@0.5 metric, crucial in object detection evaluation,
demonstrates a pattern of stabilization and constant improvement after epoch 110. This
indicates that the model’s ability to locate and classify objects reaches a more advanced
refinement stage, culminating in a harmonious increase in detection accuracy, albeit at
low percentages. Therefore, the loss function will be modified, and further results from
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this process will be presented. The following image displays the confusion matrix of the
customized training for the tiny model.

It is again appreciated that the model is less dispersed, but it is also noted that it is
complicated to continue learning, since the trend angle of the functions is flattening more
and more, also achieving with 200 epochs an accuracy close to 76% like can be seen in
the Figure 14 in the matrix on the upper left-hand side, the same as the normal model of
YOLOv7, a mAP close to 0.50, and just manages to decrease its error after epoch 150. When
obtaining very close values, precision between both models will be evaluated by plotting
the precision, recall and confidence threshold functions, to decide which model will be
used to perform the semi-supervised network simulation, starting with the comparison of
the precision function against forgetting, known as the PR_curve.
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Figure 14. YOLOv7_tiny test results in 200 epochs.

It is found that the topology YOLOv7 has obtained a 0.4% better learning rate with
respect to YOLOv7_tiny as shown above in Figure 15, and it has very strong confidence
in learning what is a ball, so the most convenient method of continuing to obtain a better
model is to work with the weights derived from the training of YOLOv7. This is a better
topology with respect to learning, because evaluating the model with the test set obtains
very good results as shown in the Figure 16.
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(c) confidence function, with recall greater than 80% and confidence greater than 90% for
YOLOv7 test.
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Figure 16. Ball detection results with the model obtained from YOLOv7 in 200 epochs with the
adjustment of hyperparameters.

The simulation of the semi-supervised system is carried out with the set of 600 pieces
of data, where 73.41% of the images have been left unlabeled. To observe what the model
performs, taking the weights obtained from the model trained with 100 and 200 epochs
with the YOLOv7 network as a basis for the training of the semi-supervised network, where
for 100 epochs 84% is shown as follows.

Based on the Figures 17 and 18, the mAP@0.5 metric provides us with the first un-
favorable indicator, as it displays a disastrous dispersion, ranging from 0.64 to 0.76 with
no discernible pattern. Although it is above 60%, the same holds true for precision. Once
it surpasses 80%, it oscillates erratically without finding a correct trend. This is why the
decision was made to reset the training to 200 epochs and assess if the presented oscillation
is due to training time constraints. The results of this evaluation are shown below.
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Figure 18. Validation results for first 100 epoch training in semi-supervised system.

It is observed in Figure 19, that the number of false positives and true negatives
is improving since the “Box” graph maintains an increasingly downward trend, which
is a good indicator. With low dispersion, the accuracy has started from 70% thanks to
the inherited weights, which are of great help in improving the detection of the model,
obtaining oscillating values very close to 90%. This is because there is a large number of
images without labels which can hinder the task of the network reaching 95% accuracy
and mean average precision remains above 0.9 after the 50 epochs unlike the tiny model
shown in Figure 20, which shows that its precision is very oscillating, so that demonstrates
that the model has obtained great confidence on what is a soccer ball in different fields, of
different sizes, showing the functions that demonstrate the reliability of the same one, to
then implement in this model DeepSORT and be able to improve the visualization of the
detections, and to obtain trajectories of the ball obtaining a useful tool in the area of sport
video analysis for soccer.
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With these data obtained as shown in Figure 21, from the previous functions, the
calculation of the sensitivity is made, which is data that have not been obtained from the
training. This saves us time, since we do not need to make the calculations of the equations,
since the confusion matrix gives us a little conflict by not considering the data of false
positives and negatives:

Sensitivity =
2(F1× P)

F1 + P
=

2(0.90× 0.95)
0.90 + 0.95

= 0.9243 (8)

Obtaining a sensitivity higher than 90% in the same way, which indicates that the
model is highly sensitive and able to adequately identify the balls presented to it, while
maintaining a high level of accuracy in the classification. The following illustration shows
the results obtained when testing the semi-supervised system model.
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Figure 21. Metric results: (a) precision vs. recall function, with an average of 95% for ball detection;
(b) confidence function for the semi-supervised system, with 99% of security; (c) threshold function
F1 with a score of 90%.

Figure 22 shows a test conducted immediately after training the model using the test
set. In this test, it is observed that the model effectively and accurately identifies the balls
present in the images. It is important to note that the model is capable of detecting the ball
regardless of the brand or colors used.
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In Figure 23, the model was run in real time to detect balls at the facilities of the UPM,
specifically at the INEF soccer field. Screenshots were taken while the model detected the
ball in different moments. It is noteworthy that the detection remains very accurate, even
under challenging lighting conditions, as the images were captured at approximately 12:00
PM in Madrid, Spain. It is worth mentioning that the average detection in the field test
shows detections with high confidence values as to what is being visualized.
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Figure 23. Implementation of the model in a real environment in INEF Madrid fields with the balls
that are used there.

At the end of this phase, a comparative graph of the network topologies is used as a
comparison of the semi-supervised system in the adaptation of the CNN algorithm with
focal loss, and the original versions of this network (YOLOv7), in which the variation can
be observed graphically, showing that YOLOv7_tiny is useful for perhaps simpler tasks,
but the robustness of the normal topology in the semi-supervised system with focal loss
helps us in the task of this article.

Once the results of the network are obtained wich displays the graph of Figure 24
and the Table 5, DeepSORT is implemented with the help of a virtual environment using
the free software Anaconda with conda version 23.7.2 where use the Prompt, to obtain
ball trajectories in practice shots and in training sessions within the INEF facilities. The
identification of the ball trajectories is activated by calculating the centroids of the pre-
diction boxes, where the visibility of the ball detection is also improved, as shown in the
following illustration.

Table 5. Comparison of the precision and training mode in models used in this paper.

Model Range Precision Way to Train CNN
YOLOv7_tiny 70–75% Transfer Learning

YOLOv7 70–77% Transfer Learning

YOLOv7_tiny Focal Loss 50–60% Transfer Learning

YOLOv7 Focal Loss 65–70% Transfer Learning

YOLOv7_tiny
semi-supervised with

Focal Loss
90–94.5% Inherited weights

YOLOv7 semi-supervised
with Focal Loss 90–95% Inherited weights
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It is also tested in shots of Figure 25 where the ball appears suddenly, without having
a previous identification of the static ball, to test the high effectiveness in ball detections
with this implementation. It is noteworthy that better detections should have at least 10 fps
or more, since the ball during detection is small and moves at high speeds.
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It is highlighted from the described methodology that semi-supervised training in
a convolutional neural network, leveraging inherited weights from previous training,
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presents an innovative strategy with potential to significantly improve neural network per-
formance and efficiency. This approach combines supervisory and unsupervised elements
to address the challenges of labeled data sparsity and adaptation to new domains. It also
provides significant advantages, such as leveraging unlabeled information to enable the
CNN to understand in a deeper and more versatile way the characteristics of the balls pre-
sented in such training, also improving its ability to generalize different environments and
conditions like multi detection in Figure 26; by using a semi-supervised approach, the need
for large labeled datasets is reduced, as the network can learn from unlabeled examples,
which in turn decreases the costs and time required for labeled data acquisition. Finally, it
is shown that the results obtained from the inclusion of unlabeled data and the transfer of
inherited weights can improve the robustness of the network to noise or variations in the
input data, since the network has learned more robust and relevant intrinsic features like
display in ablation study of Figure 27 and Table 6, to later mix it with some other system
and give greater applicability to the work with CNN.
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Table 6. Ablation study on models used, where RCSP means Reverse CSP DarkNet.

Model Model Size Backbone Loss Function mAP APtest
YOLOv7_tiny 640 E-ELAN SigmoidBin 74.88 38.7%

YOLOv7 640 E-ELAN SigmoidBin 76.15 51.4%
YOLOv7_tiny 640 RCSP-ELAN Focal Loss 53.7 43.1%

YOLOv7 640 RCSP-ELAN Focal Loss 60.2 56.0%
YOLOv7_tiny_semisupervised 640 RCSP-ELAN Focal Loss 94.5 59.2%
YOLOv7_semisupervised 640 RCSP-ELAN Focal Loss 95 67.5%

4. Discussion

This paper focuses on achieving the correct identification of soccer balls (that we call
“Balon” in the results) and the tracking of their trajectories using deep learning and transfer
learning algorithms by selecting regions of interest in images and obtaining a model capable
of what is sought by convolutional neural networks.

It is found that the adjustment of hyperparameters must be obtained by means of
iterative tests of hit and miss. However, it is demonstrated that our work has achieved
this very well by obtaining encouraging values in learning, although for the first models
presented there was high dispersion between points of the model, it has made use of
two different network topologies to see if very different results are obtained, Although
for the second model, the results are better, it is observed that the error can be improved
by increasing the number of epochs raised, which is performed and a better model is
found. From this model, use is made of the second part of the image bank to train a
semi-supervised model with the use of neural weights inherited from the best previous
model, improving the speed of training as described in [50]. Also, we obtain an accuracy of
95%, a very high and encouraging indicator that the model was trained correctly without
overtraining. The differentiator of our model with respect to existing ones is that it manages
to identify balls of different shades and different brands, easily adapting to the current
market where a different ball is used for each competition and each season. If it seeks to
also implement this in training and amateur soccer it is important to achieve this, since in
amateur games the players do not always have the same type or tone of balls. To obtain
the 95% classification and detection model, modifications are made to the architecture of
the neural network with the implementation of a robust MOT algorithm of free use that is
composed inside of more algorithms that facilitate the task of obtaining the trajectories. It
makes use of the Kalman filter to reduce noise, improve detection regarding the current
position of the object, and its inertia is very useful to evaluate the shots of the players.
Note also that the angle of shot depends on the analysis to be performed; if you want to
observe the tendency of how curved or high a goalkeeper’s clearance is made, the camera
should be placed on the sides of the field, but if you want to analyze the effect of a free
kick of a player on the tendency of a ball, the camera should be near the goal’s area at an
elevation that allows observation of the ball during its trajectory. This is because, although
the Hungarian algorithm within this implementation helps us to improve the detection
of balls already in occlusions, it is important to first identify the ball and assign an id
number. The literature is also reviewed to generate a better discussion of systems that
have facilitated tasks of this type, since it is not only in soccer that it is important to detect
the ball and its trajectories. In [45], they adapted a CNN of single shot detection type
performing tests in different databases obtaining oscillating results. Meanwhile in [51], it is
reaffirmed that neural networks are the best option to achieve the identification of small
and changing objects in position with respect to time, in this case the ball detection. Finally,
we can provide a report to the DT with hard data on specific trajectories and know how to
defend or find the best space to steal the ball or know what to expect when a certain player
shoots a penalty, for example, leaving less and less of the game to luck, and thereby have
more chances of winning.

The proposed methodology is good regarding the scientific–practical vision, since
having the final model and running it in the virtual environment of anaconda, where
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you can perform ball detections and trajectories in real time, whilst a little dependent on
the camera used and the image delay possessed, this algorithm works with any camera
connected to the computer, from webcams, professional sports cameras connected by IP
or via wireless. Because the model depends on the amount of fps that the camera detects
to obtain a good drawing of the trajectories, it is recommended to obtain videos and then
pass them through the model. An important finding regarding the technological analysis
is that the tiny network topology is very useful for when you want to detect objects of a
single class but with fewer variations or easier to learn by the machine, as this involves
less time and less computational cost. In our case, it was necessary to select the normal
network due to the best sensitivity that it presented us with. It was able to make sense of
“set-pieces” in the observed tendencies of hitting specific players; with the implementation
of this model, it is also possible to review in a faster way how to prepare defensive actions
simply based on the videos that you have. You can create an analysis of the tendency to hit
the goal kick to improve offensive progressions or achieve a prompt recovery of the ball for
the defending team, and to obtain real and accurate trajectories the camera must be fixed so
as not to allow human error with pulse issues to influence the video. Last but not least, it is
recommended that to obtain a model of this type the users must have their own graphics
cards. In this case, two RTX 2080 Ti cards were used in parallel to perform faster training
without exceeding the RAM capacity, because although it is possible to do it through online
repositories, such a complex model takes quite a long time and you must always be aware
that the connection is not lost. You must also save all the values manually, because once
the time of the online repositories is over, the data are lost, unlike having one’s own cards
where the results are saved on our own computer. Finally, we believe that this model can
be easily adaptable to other sports such as basketball, volleyball, tennis, etc.

5. Conclusions

The present study addresses the problem of detecting and tracking balls in soccer
match scenes, and it was proposed to use deep learning models, under a joint architecture
of Supervised YOLOv7 + Semi-Supervised YOLOv7. For this purpose, transfer learning
was used through the two types of training: “supervised” and “semi-supervised”, the first
step being to train the supervised model with dataset A. The second step was that once the
weights and hyperparameters were obtained, these are transferred to the semi-supervised
model with the focal loss function, so that the learning of the second model does not
begin to learn with random weights but with weights previously trained in a supervised
manner. The third step is that with dataset B, the transferred model is trained, but under
semi-supervision, and DeepSORT is finally used to track the ball.

This proposal seeks to improve the performance obtained by using YOLOv7 exclu-
sively with supervised training where a mAP = 76.15% was obtained. Integrating a second
semi-supervised model after having trained in a supervised manner allowed us to obtain
a mAP = 95%. It is important to mention that YOLOv7 has been extensively tested in
object detection [43] and it has been widely proven that its performance is superior to
previous versions in detecting objects at medium and close distances from the capture
device. However, these studies do not address the small object detection (SOD) + object
detection at high speeds (ODHS) problem, which is the case in which we could frame the
detection of soccer balls in real matches. Therefore, we cannot conclude that in all cases
of object detection it is possible to improve the performance of YOLO in its supervised
version by adding transfer learning to a semi-supervised model, but it seems to have good
results when seeking to detect objects under the problems of SOD and ODHS.

Since the model is intended to detect balls under different conditions such as the
environment, lighting, and ball colors, the database integrates a series of video sequences of
real matches with these variations, where it can be observed that by increasing the epochs of
our model, improvements in performance are seen. That is, in the first 100 training epochs
provided to our model, it was not possible to obtain the learning transfer that we were
looking for, so the number of epochs was changed to 200 in both topologies. Additionally,
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the final model obtained is capable of operating with images of any dimension and with
different qualities than those used during training (1080 pixels). It is observed that the
best detections are performed with light colored balls placed on both natural and artificial
green grass, It is also visualized that changing the number of workers in the RTX 2080
Ti cards used in the training help us to improve the training speed by simultaneously
processing the images, since the first 100 epochs of training were run using both cards
but only one CUDA processing thread, obtaining an estimated time of 24,182 h for the
simple topology and 22,732 h for the tiny topology. Meanwhile, for the 200 epoch training
using four threads of each of the RTX 2080-Ti cards, using the same topologies finished the
training in 8215 h and 7912 h, respectively, while for the new training using the weights
obtained, it is completed in 0.565 h and 0.498 h. In conclusion, it is very useful to use
four or more than one processing thread depending on the hardware used in order to
optimize the training time, depending on the cards that are being used. We also highlight
that retraining a model using weights obtained from previous training helps accelerate
the learning process and that using a good percentage of images without labels that allow
the transfer of learning tests the model during the same process. Observing that with a
semi-supervised system better ball detections are obtained when tested, highlighting the
obtained accuracy of 95% that can be variable even in different lighting conditions and
that the high speed with which the ball moves is a conflict, being such a small object, so
it is important to consider that the camera is of adequate shutter speed to avoid blur and
distortion, because although there are cases in which the ball has managed to reach a speed
of 58.6 m/s [52], the average speed of the ball is approximately 27 m/s [53]. However,
it is true that today, any cell phone of the last 3 years can detect high speeds, because
although the design of the ball is different, it has been detected correctly, achieving better
detections than in previous works reviewed and taken as inspiration for this article. For
example, in [54], they achieve a mAP of 10.71% for their class of ball with their own dataset,
giving value to creating a wide dataset, and in [46] they achieve an accuracy of 73.2% and
F1 of “80.9%”, and with an older version [55] achieve 93%, a model with assertiveness
very close to our model but the big difference lies in the number of types of balls detected.
In conclusion, the dataset created for the work presented is correct for implementation
in YOLO, thanks to the architecture of the CNN in two phases which manages to more
effectively extract the characteristics of the areas of interest, processing the images better,
for proper adaptation of the network to a specific task.

Finally, it is determined that the adaptation of the convolutional neural network for
multi-detection of soccer balls in different environments, the purpose of this paper, is
a challenging task due to the variability in the ball appearance and the complexity of
the background. However, the experimental results show that the proposed network
achieves a high accuracy and detection rate of more than 90% in detecting soccer balls in
different situations according to the experimental results in real application environments,
where the implementation of a MOT (multiple object tracking) algorithm is applied to
improve the visualization of the detections for the ball and to obtain its trajectories. This
provides a guideline to perform future work based on these trajectories obtained, where
the camera also plays an important role at this point, since it must remain static to avoid
false trajectories due to the mobility that the camera may have.

6. Future Works

As future work, we propose to implement the adjustment of these weights in an
embedded system, such as an NVIDIA Jetson Orin NX module, or an ESP32-DevKitC
module, adding a camera so that the detection is portable or can be carried to a field easily
and quickly. In addition, with this we can make the implementation in such a way as
to record a game with an automated camera to track the ball, track balls during training
to prevent loss of the same, institute a surveillance system so that the balls are not in
a certain area, perform an algorithm that manages to make a pass count based on the
detection of the ball or times that the ball crosses a certain boundary of the field during a
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match, to identify how many plays go to a certain area, and can be applicable in different
applications in soccer. As the identification of the ball in different environments with a very
high accuracy has been achieved, derived work can be performed to implement it in other
sports using only the weights obtained in the model and with a small dataset. This will
greatly facilitate the task of ball detection with the optimization of weights obtained from
the semi-supervised network, while obtaining the trajectories can be analyzed trajectories
in specific plays such as corners, plays ABP (A Balón Parado or (Static Ball)) and goal kicks.
This is a function of the camera being able to observe the ball, so that this model can also
be implemented for training schools where the ball can be identified to improve shooting
and passing techniques [56], and can be coupled with other algorithms to generate a more
complete system.

Author Contributions: Conceptualization, conceptualization, J.A.V.-M. and V.H.-H.; methodology,
M.M.-O. and A.G.-A.; validation, J.A.V.-M. and M.M.-O.; formal analysis, V.H.-H.; investigation,
J.A.V.-M. and A.G.-A.; resources, V.H.-H. and M.M.-O.; writing—original draft preparation, J.A.V.-M.
and M.M.-O.; writing—review and editing, M.M.-O. and V.H.-H. All authors have read and agreed to
the published version of the manuscript.

Funding: We acknowledge support from Instituto Politécnico Nacional IPN (COFAA, SIP, and
CIITEC (Centro de Investigación e Innovación Tecnológica)) for Open Access Publishing.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to data protection regulations.

Acknowledgments: The authors of the present paper would like to thank the following institutions
for their economical support to develop this work: Science and Technology National Council of
Mexico (CONACYT), National Polytechnic Institute of Mexico IPN (COFAA, SIP, and CIITEC (Center
for Research and Technological Innovation)).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nielsen Sports. World Football Report; The Nielsen Company: New York, NY, USA, 2018.
2. García-Lago Cañas, Á. Impacto de La Liga Profesional de Fútbol En El Conjunto de La Economía Española. 2020. Available

online: http://hdl.handle.net/10902/20577 (accessed on 31 March 2023).
3. Ali, A. Measuring Soccer Skill Performance: A Review. Scand. J. Med. Sci. Sports 2011, 21, 170–183. [CrossRef]
4. Gong, H.; Mu, T.; Li, Q.; Dai, H.; Li, C.; He, Z.; Wang, W.; Han, F.; Tuniyazi, A.; Li, H.; et al. Swin-Transformer-Enabled YOLOv5

with Attention Mechanism for Small Object Detection on Satellite Images. Remote Sens. 2022, 14, 2861. [CrossRef]
5. Wright, C.; Carling, C.; Lawlor, C.; Collins, D. Elite Football Player Engagement with Performance Analysis. Int. J. Perform. Anal.

Sport 2016, 16, 1007–1032. [CrossRef]
6. Goes, F.; Meerhoff, L.; Bueno, M.; Rodrigues, D.; Moura, F.; Brink, M.; Elferink-Gemser, M.; Knobbe, A.; Cunha, S.; Torres, R.

Unlocking the Potential of Big Data to Support Tactical Performance Analysis in Professional Soccer: A Systematic Review. Eur. J.
Sport Sci. 2021, 21, 481–496. [CrossRef]

7. Stübinger, J.; Mangold, B.; Knoll, J. Machine Learning in Football Betting: Prediction of Match Results Based on Player Character-
istics. Appl. Sci. 2019, 10, 46. [CrossRef]

8. García-Aliaga, A.; Marquina, M.; Coteron, J.; Rodriguez-Gonzalez, A.; Luengo-Sanchez, S. In-Game Behaviour Analysis of
Football Players Using Machine Learning Techniques Based on Player Statistics. Int. J. Sports Sci. Coach. 2021, 16, 148–157.
[CrossRef]

9. Knoll, J.; Stübinger, J. Machine-Learning-Based Statistical Arbitrage Football Betting. KI-Künstliche Intell. 2020, 34, 69–80.
[CrossRef]

10. Paolo, D.; Zaffagnini, S.; Pizza, N.; Grassi, A.; Bragonzoni, L. Poor Motor Coordination Elicits Altered Lower Limb Biomechanics
in Young Football (Soccer) Players: Implications for Injury Prevention through Wearable Sensors. Sensors 2021, 21, 4371. [CrossRef]
[PubMed]

11. Kondo, Y.; Ishii, S.; Aoyagi, H.; Hossain, T.; Yokokubo, A.; Lopez, G. FootbSense: Soccer Moves Identification Using a Single IMU;
Springer: Berlin/Heidelberg, Germany, 2022; pp. 115–131.

12. Yu, C.; Huang, T.-Y.; Ma, H.-P. Motion Analysis of Football Kick Based on an IMU Sensor. Sensors 2022, 22, 6244. [CrossRef]
[PubMed]

http://hdl.handle.net/10902/20577
https://doi.org/10.1111/j.1600-0838.2010.01256.x
https://doi.org/10.3390/rs14122861
https://doi.org/10.1080/24748668.2016.11868945
https://doi.org/10.1080/17461391.2020.1747552
https://doi.org/10.3390/app10010046
https://doi.org/10.1177/1747954120959762
https://doi.org/10.1007/s13218-019-00610-4
https://doi.org/10.3390/s21134371
https://www.ncbi.nlm.nih.gov/pubmed/34202369
https://doi.org/10.3390/s22166244
https://www.ncbi.nlm.nih.gov/pubmed/36016005


Sensors 2023, 23, 8693 28 of 29

13. Wadsworth, N.; Charnock, L.; Russell, J.; Littlewood, M. Use of Video-Analysis Feedback within a Six-Month Coach Education
Program at a Professional Football Club. J. Sport Psychol. Action 2020, 11, 73–91. [CrossRef]

14. Kinnerk, P.; Kearney, P.E.; Harvey, S.; Lyons, M. High Performance Team Sport Coaches’ Perspectives of Their Use of In-Session Core
Coaching Practices to Stimulate Player Learning; Taylor & Francis: Oxfordshire, UK, 2023; pp. 1–14. [CrossRef]

15. Modric, T.; Versic, S.; Sekulic, D.; Liposek, S. Analysis of the Association between Running Performance and Game Performance
Indicators in Professional Soccer Players. Int. J. Environ. Res. Public Health 2019, 16, 4032. [CrossRef] [PubMed]

16. Andersen, L.W.; Francis, J.W.; Bateman, M. Danish Association Football Coaches’ Perception of Performance Analysis; Taylor & Francis:
Oxfordshire, UK, 2021. [CrossRef]

17. Brümmer, K. Coordination in Sports Teams–Ethnographic Insights into Practices of Video Analysis in Football. Eur. J. Sport Soc.
2019, 16, 27–43. [CrossRef]

18. He, X. Application of Deep Learning in Video Target Tracking of Soccer Players. Soft Comput. 2022, 26, 10971–10979. [CrossRef]
19. Wang, T.; Li, T. Deep Learning-Based Football Player Detection in Videos. Comput. Intell. Neurosci. 2022, 2022, 3540642. [CrossRef]

[PubMed]
20. Ayala Beltrán, H.F.; Duarte Valero, E.A. Rol Del Video-Análisis En La Enseñanza Del Giro En Los Porteros de Fútbol de 9 a 11 Años;

Universidad de Ciencias Aplicadas y Ambientales: Bogotá, Colombia, 2023. Available online: https://repository.udca.edu.co/
handle/11158/5035 (accessed on 31 May 2023).

21. Akan, S.; Varlı, S. Use of Deep Learning in Soccer Videos Analysis: Survey. Multimed. Syst. 2023, 29, 897–915. [CrossRef]
22. D’Orazio, T.; Guaragnella, C.; Leo, M.; Distante, A. A New Algorithm for Ball Recognition Using Circle Hough Transform and

Neural Classifier. Pattern Recognit. 2004, 37, 393–408. [CrossRef]
23. Redmon, J.; Farhadi, A. Yolov3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
24. González, S. Estudio Comparativo de Modelos de Clasificación Automática de Señales de Tráfico. 2020. Available online:

https://academica-e.unavarra.es/xmlui/handle/2454/37479 (accessed on 31 May 2023).
25. Rozada Raneros, S. Estudio de la Arquitectura YOLO para la Detección de Objetos Mediante Deep Learning. Master’s Thesis,

Universidad de Valladolid, Valladolid, Spain, 2021.
26. Thomas, G.; Gade, R.; Moeslund, T.B.; Carr, P.; Hilton, A. Computer Vision for Sports: Current Applications and Research Topics.

Comput. Vis. Image Underst. 2017, 159, 3–18. [CrossRef]
27. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.

[CrossRef]
28. Law, H.; Deng, J. Cornernet: Detecting Objects as Paired Keypoints. In Computer Vision—ECCV 2018, 15th European Conference,

Munich, Germany; Springer: Cham, Switzerland, 2018; Volume 11218, pp. 734–750.
29. Zhou, X.; Wang, D.; Krähenbühl, P. Objects Points. arXiv 2019, arXiv:1904.07850. [CrossRef]
30. Moreira. Aplicación de un Modelo de Reconocimiento de Objetos Utilizando YOLO (You Only Look Once). 2021. Available

online: https://repositorio.upse.edu.ec/handle/46000/5755 (accessed on 18 August 2023).
31. Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric. In Proceedings of the

2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [CrossRef]
32. Chandan, G.; Jain, A.; Jain, H. Real Time Object Detection and Tracking Using Deep Learning and OpenCV. In Proceedings of the

2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018;
pp. 1305–1308.

33. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single Shot Multibox Detector; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 21–37.

34. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Networks. Neural
Inf. Process. Syst. 2015, 28, 1137–1149. [CrossRef]

35. Feng, Q.; Xu, X.; Wang, Z. Deep Learning-Based Small Object Detection: A Survey. Math. Biosci. Eng. 2023, 20, 6551–6590.
[CrossRef]

36. Pham, M.-T.; Courtrai, L.; Friguet, C.; Lefèvre, S.; Baussard, A. YOLO-Fine: One-Stage Detector of Small Objects under Various
Backgrounds in Remote Sensing Images. Remote Sens. 2020, 12, 2501. [CrossRef]

37. Liu, Y.; Sun, P.; Wergeles, N.; Shang, Y. A Survey and Performance Evaluation of Deep Learning Methods for Small Object
Detection. Expert Syst. Appl. 2021, 172, 114602. [CrossRef]

38. Wang, X.; Wang, A.; Yi, J.; Song, Y.; Chehri, A. Small Object Detection Based on Deep Learning for Remote Sensing: A
Comprehensive Review. Remote Sens. 2023, 15, 3265. [CrossRef]

39. Zhang, T.; Zhang, X.; Yang, Y.; Wang, Z.; Wang, G. Efficient Golf Ball Detection and Tracking Based on Convolutional Neural
Networks and Kalman Filter. arXiv 2020, arXiv:2012.09393.
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