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Abstract: In this study, we investigate the application of generative models to assist artificial agents,
such as delivery drones or service robots, in visualising unfamiliar destinations solely based on textual
descriptions. We explore the use of generative models, such as Stable Diffusion, and embedding
representations, such as CLIP and VisualBERT, to compare generated images obtained from textual
descriptions of target scenes with images of those scenes. Our research encompasses three key
strategies: image generation, text generation, and text enhancement, the latter involving tools such as
ChatGPT to create concise textual descriptions for evaluation. The findings of this study contribute
to an understanding of the impact of combining generative tools with multi-modal embedding
representations to enhance the artificial agent’s ability to recognise unknown scenes. Consequently,
we assert that this research holds broad applications, particularly in drone parcel delivery, where an
aerial robot can employ text descriptions to identify a destination. Furthermore, this concept can also
be applied to other service robots tasked with delivering to unfamiliar locations, relying exclusively
on user-provided textual descriptions.

Keywords: visual scene recognition; generative models; textual descriptions; diffusion model; CLIP;
visualBERT

1. Introduction

The parcel delivery industry has grown significantly in recent years due to the pop-
ularisation of e-commerce and online shopping. However, there are regions around the
world where inadequate urban planning and maintenance make delivery a daunting task.
Even when a courier has the delivery location’s address and the GPS coordinates on a map,
they often encounter challenges in locating the exact delivery destination, especially if the
courier is unfamiliar with the neighbourhood. This is known as the last-mile delivery prob-
lem [1], a metaphor that illustrates that the last part of the delivery trip, defined between
the local warehouse and the final destination (usually located in the same region/city/town
as the warehouse), is the most expensive and time-consuming stage [2].

In anticipation of any location-finding issues, several companies request a textual
description of the target destination. This may include the appearance of buildings and
distinctive landmarks such as trees, cars, lampposts, or any other feature that helps to
recognise the target location. Humans have the ability to read this textual description
and “imagine” what the target destination would look like. For instance, if the description
indicates that a red car is parked in front of the target destination, which at the same time has
a palm tree placed in the front yard, a human is capable of imagining these objects with no
particular visual features but rather general semantic characteristics. There are thousands
of car shapes and numerous variations of the colour red. Nevertheless, humans have a
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general understanding of the concept of a car and can recognise the colour red, regardless
of its shade or gradient. Even if the person has never seen the car before, the semantic
attributes are enough for the human to identify it. In the event that more than two cars were
found in the scene, the second object, the palm tree, would help to disambiguate the target
location, but again, no detailed description of the palm is required. The spatial relation
between the car and the tree becomes more useful than precisely detailed information of
the target location and the surrounding objects.

This human capability of being able to “imagine” a place from a textual description is
what motivates this work. The primary question is whether a computational procedure
can be implemented such that given a textual description, the computer can “imagine” a
visual representation of such description. We are aware that the word “imagine” is broad
and may be difficult to capture into a computational procedure. However, the last couple
of years have seen the emergence of novel techniques known as generative models [3],
where given a text, a computer is capable of generating an image [4,5]. Therefore, a second
question is whether these generative models could be enough to “recognise” a scene where
one has not been before.

To answer the aforementioned question, this paper provides preliminary insights
into the use of generative models, which are used to generate an image from a textual
description (e.g., diffusion models such as Stable Diffusion [6]) or a text generated from a
target image (known as image captioning [7]). Given a set of textual descriptions (provided
by humans) of target places and generated images from these descriptions, what are the
options to compare them against a given target image? To answer this question, we explore
the use of embedding representations such as Contrastive Language–Image Pre-training
(CLIP) [8], studied in our previous work [9], but now complemented with the study of
another embedding method known as VisualBERT [10], which also provides a numerical
representation of an image.

In this manner, we explore three possible strategies (see also Figure 1):

• Image generation: We generate an image given the textual description provided by
the user and compare it against the target image.

• Text generation: We compare the textual input against text generated from image
captioning of the target image.

• Text enhancement: We also delve into the use of tools such as ChatGPT [11] to perform
prompt engineering seeking to “generate” a more concise textual description of a
target location and evaluate its impact on the diffusion model.

Figure 1. (a) Stable Diffusion model [6] to generate an image from the provided textual description.
(b) Image captioning [7] to generate a caption compared to the original textual description. (c) User’s
textual description enhancement using ChatGPT-4 [11].
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Our experimental framework shows interesting insights. First, methods such as CLIP
and VisualBERT measure different levels of semantic similarity. The former scores better
when a prominent object dominates the scene, whereas the latter considers the spatial
relationship between objects and their background. Second, a direct comparison between
textual descriptions provided by humans and generated text (captioning) may not be
enough and seems to be less effective when compared to a visual comparison. Third, tools
such as ChatGPT are an option to engineer the original textual description input by the user,
and in such cases, our results are useful to assess whether such an enhanced description
has an impact on the generated image or not.

Therefore, the results obtained in this study contribute to understanding, both quali-
tatively and quantitatively, the impact of employing generative tools in conjunction with
state-of-the-art multi-modal numerical representations, specifically CLIP and VisualBERT
embeddings, in order to address the problem of visual recognition of unknown scenes.

There are several applications that could benefit from this research; the first and
foremost is that of parcel delivery using drones, where an aerial robot could use the textual
description to recognise the target place in the case when the address or GPS location is not
enough. Nevertheless, this could be extended to any other service robot that has to deliver
a package to a place where it has never been before and for which a textual description is
the only aid provided by the user.

This paper has been organised as follows to convey our approach. Section 2 discusses
the related work; Section 3 describes our approach in more detail; Section 4 presents our
experimental framework; and finally, Section 5 outlines our conclusions and future work.

2. Related Work

With the advent of deep learning in the last years, the progress achieved by different
AI areas as its own has been remarkable. Recently, many efforts have been made to develop
multimodal approaches using different information modalities: visual, textual, speech, etc.
In particular, there is one combining computer vision and natural language processing
capabilities to address very challenging tasks such as (i) image captioning, aiming to
generate a textual description from an input image [7]; (ii) visual question-answering,
which aims to find answers by means of a question in natural language and a related
image [12]; (iii) image retrieval, the objective of which is to retrieve the data in a given
modality by the cues provided in another modality [13], i.e., by providing an input text,
the system must retrieve relevant images and vice versa; (iv) phrase grounding, involving
object detection from an input image and a phrase in natural language [14]; and (v) image
generation, which aims to generate an image from the information provided by a textual
description in natural language [15].

Generating an image from a textual input is a challenging task that has been addressed
from different perspectives. One of the pioneer proposals is alignDRAW [16], which gener-
ates images by an iterative process incorporating the use of textual description by means of
a soft attention mechanism. More recently, image generation has been addressed by means
of generative adversarial networks [17] and Transformer-based architectures [18]. Another
alternative is the diffusion models inspired using non-equilibrium thermodynamics [19]
that have outperformed the state-of-the-art. Very powerful image generation models have
been made publicly available online through simple interfaces, allowing people beyond
the research community to use them in a wide range of applications. Among them are
Imagen [20] and DALLE-2 [21]. Furthermore, there is Stable Diffusion [6] the source code
and model weights of which are available for those interested in fine-tuning models for
downstream tasks.

Apart from generative models, there are other vision–language models capable of
performing more general tasks, including comparisons between images and texts, such as
CLIP and VisualBERT [10].
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The former is trained with a contrastive learning approach using image–text pairs,
while the latter comprises a joint contextualised representation of vision and language to
capture the semantics between these modalities.

Different artificial intelligence areas can benefit from using vision–language models [22],
for example, robotics, where providing a robot with information coming from language
and vision could improve its understanding of the environment where it must perform. In
spite of its potential applications, the literature on the use of vision, language, and robotics
is scarce. As an attempt to improve navigation in 3D environments, Vision-and-Language
Navigation [23] provides communication between humans and agents; another proposal is
Text2Pos [24], which performs city-scale position location by means of a textual description,
but as with most state-of-the-art methods, it also relies on the ability to only recognise previ-
ously known areas. Monocular depth estimation methods have taken advantage of language
by means of CLIP [25] and by combining object recognition with spoken language [26]. Large
language models have also been evaluated as a tool for decision making in autonomous
vehicles [27]. DALL-E-Bot [5] is an autonomous robot that exploits DALL-E for rearranging
objects in a scene by inferring a textual description.

State-of-the-art visual localisation methods struggle to match visual data with sig-
nificantly different appearances [28]. To address this issue, some methods attempt to
incorporate different place recognition techniques. Real-world navigation tasks must face
challenges such as (i) changes in visual appearances due to temporal variations, (ii) diverse
viewpoints of the same areas, and (iii) visiting unknown areas, which can impact efficiency
and robustness when applied in real-world scenarios [29]. Many existing methods make
use of a reference image for recognising the objects or scenes in the explored environment,
assuming that the system has an accurate estimation of its position [28].

Providing drones, service robots, or any other autonomous agent with the ability to
recognise unknown scenes by means of generative models has not been yet investigated in
depth. In this paper, we propose to investigate the use of diffusion models for generating
images from a textual description to be compared with a target image that, in a real scenario,
could be captured with an onboard camera. In this sense, we assess different strategies
regarding the use of automatically generated images and textual descriptions against a
target image and human-generated texts.

3. Methodology

We depart from the scenario where we have a textual description, provided by a
user, of a target image representing an unknown scene. We investigate the application of
generative models and embedding representations (e.g., CLIP [8] and VisualBERT [10])
to facilitate the visual recognition of a target image or scene, potentially obtained with
a camera mounted on a robotic system such as a drone or a service robot, based on
a textual description provided by a user. Exploring the use of generative models, we
consider three different strategies, as outlined in Figure 1. In Figure 1a, we employ a
Stable Diffusion model [6] to generate an image from the provided textual description,
which is then compared to the target image. In Figure 1b, we utilise image captioning [7]
to generate a caption based on the target image, which is subsequently compared to the
original textual description. In Figure 1c, we enhance the user’s textual description using
ChatGPT [11] and assess whether this enhancement improves image generation using the
Stable Diffusion model.

The main blocks used in these strategies are a pre-trained generative model that
generates an image from text known as Stable Diffusion [6]; image and text embeddings,
obtained with CLIP [8] and VisualBERT [10], a pre-trained image captioning model [7] that
produces text from an image; and finally, ChatGPT-4 [11] to produce an enhanced version
of the textual descriptions provided by the user.
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3.1. Image Embeddings for Visual Comparison

For the first and third strategies (image generation and text enhancement), we use the
diffusion model to generate an image from the textual description. Thus, for the generated
image and the target image, we can compute a numerical embedding vector using either
CLIP or VisualBERT. These embeddings can be compared using a similarity score based on
the cosine distance (with values between −100 and 100). Assuming we have an embedding
for a target image et and one for the image generated with Stable Diffusion es, the similarity
score is:

score = 100.0× cos(et, es) = 100.0× et · es

‖et‖‖es‖
(1)

Note that CLIP can also be used to generate an embedding from the textual description.
Thus, it can be compared against the embedding of the target image. We evaluated this
strategy in our previous work [9] and found that the similarity score between a textual
description and a target image reaches an average of 30% in the similarity score range of
0 to 100. In contrast, two CLIP embeddings of the same image achieve a score of 100, and if
the image begins to change in appearance, the less similar they become; thus, the smaller
the score becomes with a tendency towards zero. We also noted that different textual
descriptions with significant changes for the same target image produce scores with no
significant difference. This would make it difficult to assess whether one image corresponds
better to a textual description than another. Therefore, we argue that working in the visual
space provides more discriminative information whose similarity with the target image
can be reflected in the score. In this work, textual and image embeddings are numerical
vectors of 512 float numbers.

The VisualBERT model was specifically designed to capture the rich semantics present
in both images and their associated textual descriptions. This is facilitated by the intricate
interplay between words and regions within object proposals, enabling the model to grasp
the complex associations between text and images. VisualBERT operates with two primary
objectives: predicting masked words based on the visual context and the provided text
and determining whether the provided text corresponds accurately to the image. Note that
VisualBERT cannot be used to directly compare two texts, as with CLIP.

VisualBERT encompasses different tasks, such as visual question answering (VQA),
visual commonsense reasoning (VCR), and natural language for visual reasoning (NLVR).
We opted to explore VQA where the model responds to a textual question with a textual
answer, effectively limiting its output to specific queries. This approach excludes general
details and precludes the utilisation of the image’s direct visual characteristics. Hence, we
selected the VisualBERT model pretrained on the COCO dataset for our purposes.

To evaluate the generated images, akin to the process in CLIP, VisualBERT requires
both an image and a textual description as input to generate an embedding representation.
In Section 4, we will indicate what textual description was fed to VisualBERT in order to
generate the corresponding embedding vector. The latter, encapsulating the visual and
textual information of the image, was obtained by extracting the output from the last
hidden state, resulting in a 768-dimensional embedding. The similarity score between
the target image and the generated image was also achieved using the cosine similarity
outlined in Equation (1), as in the CLIP evaluation methodology.

3.2. Textual Comparison via Image Captioning

As a second evaluation strategy, we decided to consider only textual information. In
this case, human-generated textual descriptions of a given scene were compared with a
corresponding automatic description obtained by means of a pre-trained image captioning
model applied over each target image. Then, these automatic descriptions could be denoted
as “target texts”. Therefore, the task was to determine which of the human-generated textual
descriptions is the most similar to the target text. For text representation, we exploited
three different methods without applying any kind of pre-processing:
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• CLIP. Since it allowed us to generate both textual and image based embeddings repre-
sentations, we extracted the embeddings of the textual descriptions. It is important
to mention that CLIP has a constraint regarding the maximum length of the textual
inputs, which cannot exceed 77 tokens. Thus, when a textual description is longer
than 77 tokens, it is truncated.

• GloVe. By using a pre-trained word embedding model called GloVe [30], we calculated
a sentence embedding representation by calculating an average vector of all the words
contained in the textual descriptions.

• SentenceBERT. We used a Transformer-based model especially suited for semantic
similarity comparison between two sentences denoted as SentenceBERT [31]. This
model allowed us to encode each textual description as a single embedding.

In this text-to-text comparison, once we have embedding-based representations it is
also possible to use the cosine similarity as previously defined.

3.3. Enhanced Textual Description with ChatGPT

As will be described further in our experimental framework, we requested users to
provide more than one textual description of a target image, seeking to obtain variation in
the generated images. As one could imagine, an image can be described in many different
manners, and the level of detail could vary from user to user.

Given the variation among the different textual descriptions of the same target image,
we decided to use ChatGPT to produce an enhanced version of the textual descriptions.
First, we calculated the average number of words for all the textual descriptions of a target
image. As a prompt for ChatGPT, we provided the textual descriptions of a target image
plus the following text:

“Given these descriptions, could you mix them to generate the best description whose
number of words is around N words?”

In the prompt above, N is the average number of words in the textual descriptions.
The generated textual description was passed to Stable Diffusion to generate a new im-
age that could be compared against the target image. If textual descriptions are seen as
prompts for the Stable Diffusion model, this strategy aims to provide what we call an
enhanced textual description that could potentially generate a better image that could be
compared against the target image, this is, an image with more useful semantic information.
Section 4.3 discusses our findings regarding this strategy.

4. Experimental Framework

We depart from the fact that we have target images depicting different outdoor scenes.
We asked subjects to provide a textual description of a target image by only looking at it.
The participants had not previously viewed the images. They were instructed to focus on
the image and then provide a written description when prompted.

We defined our experimental test bench as follows. We selected 5 images from the
internet without seeking a particular appearance rather than the images that should corre-
spond to an outdoor scene. This was motivated by the delivery scenario, where a courier
typically is looking for an outdoor destination. These images were: (1) a house with cars
parked in front of it; (2) a food truck selling hot dogs; (3) a kiosk; (4) a basketball court; and
(5) a house with a swimming pool. Three subjects were requested to view these images
and provide textual descriptions of the scenes. To evaluate variations in the output of our
methodology, we asked participants to provide 10 textual descriptions of each target image.

4.1. Image Generation from User’s Textual Descriptions

We used Stable Diffusion as an image generation model, which requires a prompt in
the form of a text describing the image to be generated. Hence, we used the subjects’ textual
descriptions as prompts. The Stable Diffusion model was set to generate 10 images per
prompt. This means a total of 100 images were generated per target image. Once the images
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were generated, we used CLIP and VisualBERT to obtain the corresponding embedding
vectors. Beforehand, we also computed the embedding vectors of the 5 target images.

However, before using VisualBERT, its textual input must be converted into an ap-
propriate format using a BERT Tokeniser. In our case, we utilised the BERT Base Uncased
model [32], which translates each token in the input sentence into its corresponding unique
IDs. Furthermore, the VisualBERT model lacks a built-in function to retrieve the generated
visual embeddings from an image. Consequently, we implemented Detectron2 from Face-
book AI [33], drawing inspiration from the fundamental methods outlined by the authors
of VisualBERT. Additionally, we changed the chosen pre-trained model for mask R-CNN
X-101-32x8d FPN [34], selected for having the best accuracy in mask detection performance
against other pre-trained models for the R-CNN mask model (this enhanced the final scores
obtained from the similarity evaluation).

Detectron2 implementation serves to provide the regional detection and segmentation
necessary for entity identification. Moreover, Detectron2 gives the chance to manipulate
the number of masks over the image. Therefore, we conducted experiments aimed at
controlling the number of masks generated over the images, but finally, we decided to set a
minimum of 10 and a maximum of 100 masks per image to keep the model as faithful as
possible to the VisualBERT authors’ original implementation. The experiments performed
also demonstrated the importance of the number of masks on the image to recognise
regions of interest. This exploration revealed the significance of mask quantity and textual
description; mask quantity impacts the number allowed over the image and the resultant
score. Additionally, the textual description directly affects the score.

Therefore, we computed the embeddings for the 5 target images using CLIP and
VisualBERT. For the latter, we fed VisualBERT with the target image together with its
corresponding automatically generated textual descriptionby means of a pre-trained image
captioning model of BLIP [35]. As for the generated images, CLIP was used seamlessly to
generate the embedding vector. However, for VisualBERT, we furnished the model with
each image generated by the diffusion model and its corresponding human-generated
textual description. Once all embedding vectors were obtained, as explained in Section 3,
we used the cosine distance to measure their similarity.

Figure 2 shows a mosaic of the best images generated with Stable Diffusion according
to the cosine similarity when using the CLIP (Figure 3a) and VisualBERT (Figure 3b)
embeddings for Subject 1. Each column corresponds to the best image out of the 10 images
generated from prompt 1. Similarly, the second column is the best obtained from prompt 2,
and so on until the 10th prompt provided by Subject 1 for each of the target images. Note
that in both cases, CLIP and VisualBERT help to draw a set of very similar generated images
compared to the target images. In semantic terms, the types of objects, shapes, colours,
and backgrounds are very similar. For the sake of comparison, in Figure 3, we also show
the worst images generated with Stable Diffusion according to the scores measured with
CLIP and VisualBERT. Note that these images contain similar objects to those found in the
target images. However, at first sight, the number may be less similar, e.g., the number of
cars or persons and the visual appearance of facades, buildings, and roads is also dissimilar
(or distorted), and certain objects may also vary. Therefore, this shows that the generative
model does not always get it right.

Corresponding mosaics for Subjects 1 and 2 are not shown to avoid being repetitive,
but similar results were obtained. Instead, to obtain a better picture of the score distribution
for both embeddings and for each participant, Figure 4 shows the score distribution per
participant and for each target image. The first thing to highlight is that the distribution for
VisualBERT (Figure 4b) tends to accumulate towards the right, closer to 100, and with more
frequently higher score values than those obtained with CLIP (Figure 4a).



Sensors 2023, 23, 8757 8 of 17

(a)

(b)
Figure 2. Highest-rated images, ranked by CLIP (a) and VisualBERT (b) scores using cosine distance
(Equation (1)). Each column features the highest-scoring image from prompts by Subject 1. Rows
correspond to prompts one through ten.

(a)

(b)
Figure 3. In contrast to Figure 2, we show the lowest-rated images, ranked by CLIP (a) and Visual-
BERT (b) scores using cosine distance as well.
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Keep in mind that we do not intend to directly compare CLIP against VisualBERT in
the score scale, as these models were trained with a different methodology and datasets.
However, the histograms help to show that the generated image scores vary in terms
of visual similarity, measured through one embedding or another, but within such a
distribution, there is a set of images that could be very similar to the target images.

Taking inspiration from previous research that evaluated the effectiveness of gen-
erative models through human assessments [36], we also had all participants select the
image they believed was the closest match to the target image. In this manner, it is possible
to compare them against those images with the highest score obtained with CLIP and
VisualBERT. This comparison is shown in Figure 5. The first column shows each target
image. The second column headed as “Subject 1 selected” shows the image selected by
Subject 1 and the prompt from which it was generated. Scores obtained with CLIP and
VisualBERT embeddings are also shown. The second and third columns show the best
image according to the score evaluated with CLIP and with VisualBERT, as much as the
prompt from which these images were obtained.

(a)

(b)
Figure 4. Histogram distribution, per subject, of the scores obtained with CLIP and VisualBERT
measuring the similarity between the generated images and the target images. (a) Score distribution
using CLIP. (b) Score distribution using VisualBERT.

We ask the reader to remember that in each case, the best image was drawn from
100 images per target image. Note that 4 out of 5 images evaluated with CLIP coincide
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with those selected by Subject 1. In the case of VisualBERT, there is no coincidence, yet
the best images keep a resemblance in semantic terms. For completeness, in Figure 6, we
also show the best images for Subjects 2 and 3, this time without the prompts. Again, CLIP
draws more coincidences with the images selected by both users. In contrast, VisualBERT
coincides only one time for Subject 2 on the third target image, the kiosk image. Once more,
the images may not coincide with those selected by the users, but the resemblance with the
target image in terms of objects, shapes, and colours in the scene is uncanny.

Figure 5. Images most similar to the target image from Subject 1 prompts through three criteria: The
one chosen by the subject (selected), the one with the highest CLIP score, and the one with the highest
VisualBERT score.

Figure 6. Same comparison as in Figure 5 but without showing the prompts and scores.

4.2. Textual Descriptions vs. Automatically Generated Text

One of the intuitive strategies could involve comparing text-to-text information. There-
fore, we decided to evaluate the similarity scores obtained by comparing the target images’
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textual descriptions, obtained through the image captioning model, against the textual
descriptions or prompts provided by the subjects for image generation. This approach
involves the utilisation of GloVe, SentenceBERT, and CLIP to represent textual information
in a vectorial space and subsequently gauge the similarity scores. Figure 7 shows the
obtained results summarised by means of boxplots regarding the cosine similarity between
the automatic and human-generated textual descriptions for each target image. As can
be observed, the highest similarity values are obtained by the GloVe representation for
all images and all users, while the lowest were with SentenceBERT. Overall, the similar-
ities obtained are lower than the ones obtained when using visual information. Then,
making a direct comparison between the use of both modalities is not a trivial issue. It
is important to highlight that since we are assuming the textual descriptions generated
by image captioning are the ”target texts”, all the comparisons performed must be care-
fully interpreted in the sense that the captions depend entirely on the pre-trained model
exploited. For instance, we noticed that these textual descriptions are shorter than most of
the user-generated ones, which mostly attempt to consider particular details of the target
images. We consider that exploring the use of textual-based comparison is a topic that
deserves to be further investigated.

Figure 7. Box plots summarising the similarities obtained by comparing the textual descriptions
generated by the subjects and the target texts.

In most cases, the similarities obtained for each image are comparable between the
textual descriptions. However, some salient differences can be observed in some cases. For
example, let us consider Image 3 and Subject 2. The textual descriptions generated by the
user for this image are particularly short (one of them has only 3 words). The similarity
values obtained are very dispersed for all text representations; the ones obtained with GloVe
are notably diverse, while the values obtained by Subject 1 and Subject 3 for the same image
and text representation are more similar between them. We hypothesise that this could be
because Subject 2 included some out-of-vocabulary words in their textual descriptions.

In a similar fashion to the first strategy, we decided to analyse which of the human-
generated textual descriptions are more similar to the “target texts”. To do so, we identified
which of the textual descriptions obtained the highest similarity with respect to the target
text and then determined whether or not this greater similarity similar is the same for all
text representations. Figure 8 shows some human-generated textual descriptions together
with their corresponding “target text” (denoted as ‘TT’). The last column indicates which
of the text representation methods was used in each case. When two models appear, this is
because both textual descriptions achieved the highest similarity value. In the rest of the
cases, there is no agreement between the text representations. It is important to note that
only in one case is there a full agreement with all text representations.
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For each target image and its corresponding textual descriptions, we highlight in bold
those main concepts that appear in both kinds of descriptions. As can be observed, each
human-generated text contains at least one keyword in common with the TT. For Images 1
and 4, we identified the largest sequences of words, while for the rest of the TT, only one
word was common in the textual descriptions. A very particular case is once again Image
3, in which a very uncommon word (“araffe”) was obtained from the image captioning
model. It is very likely that such a word would not be used by the subjects to describe the
scene of interest. The use of this kind of non-common term to refer to an important object
in the scene is another particular aspect that needs to be further explored.

Figure 8. Examples of human-generated descriptions for each target image. The automatic descrip-
tions are also included.

4.3. Enhancement of Users’ Textual Descriptions

As indicated in Section 3, we used ChatGTP to generate an enhanced version of
each textual description out of the textual descriptions provided by each participant for
each target image. In doing this, we aimed to evaluate whether this improved prompt
would help to generate an image more similar to the target image. To this end, we use the
participants’ prompts to feed ChatGPT, as follows:

• “I have 10 descriptions of a place: [here the list of human-created prompts were
added] for each one of the 10 descriptions, could you tell me the average number of
words?”; and

• “ok, then given these 10 descriptions, could you mix them to generate the best descrip-
tion whose number of words is around [NUM] words? (where NUM was replaced by
the average length of the prompts generated by each subject)”.

As output, we obtained a new prompt for each target image per subject. As before, we
passed these prompts to Stable Diffusion to generate 10 images per enhanced prompt. The
generated images were evaluated using CLIP and VisualBERT as in Section 4.1. Note that
we used the enhanced prompts with each generated image for the VisualBERT embedding.

Therefore, the images with the highest score (using CLIP and VisualBERT) for each
target with the summary prompt are shown in Figure 9 for Subject 1. Note that once more,
the best images drawn according to the cosine score, either using CLIP or VisualBERT, have
a high score considering the score distributions shown in Figure 4, but also in semantic
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terms, the generated images contain similar objects to those found in the target images.
However, we noticed that these images were not better than those obtained when using the
variations of prompts. This can also be noted in the images drawn for Subject 2 and Subject
3, shown in Figure 10. This could indicate that when it comes to searching space, it would
be better to generate a wider set of images from variations of prompts rather than using a
particular one that could limit the text-to-image generative model.

Figure 9. Best images generated with the enhanced prompt of Subject 1 using ChatGPT, including
their score, when using CLIP and VisualBERT.

4.4. Discussion

Table 1 shows the highest scores obtained with both CLIP and VisualBERT for each
target image and per subject. Remember that, for a target image, the score corresponds
to the highest score out of the 100 scores measured with the corresponding embeddings,
that is, 100 images generated from 10 prompts for each image, per participant. The values
in the table are useful to appreciate the maximum scores obtained with both types of
embeddings, and by looking at the images associated with these scores, we can establish
that these high values indicate that the images do resemble the target image in semantic
terms. Therefore, this methodology could be used to visually recognise a target scene using
only a quantitative textual description. Furthermore, these sets of scores in Table 1 could
also help to determine the threshold that determines whether the target place is recognised
or not.
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Figure 10. Best images generated with the enhanced prompt of Subject 1 and Subject 2 using ChatGPT
when using CLIP and VisualBERT.

Table 1. Best scores for images generated through human-generated descriptions and ChatGPT
prompts obtained using CLIP and VisualBERT.

Target
Image

Best Score

CLIP VisualBERT CLIP GPT-4 VisualBERT GPT-4

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

1 89.84 84.08 84.77 98.21 98.74 94.68 84.66 80.08 76.94 99.48 99.71 99.49
2 82.86 83.35 83.99 97.78 98.27 98.35 83.78 84.57 88.33 99.44 98.94 99.4
3 84.08 80.27 81.20 97.45 98.38 97.35 83.48 89.37 86.39 99.6 99.42 99.66
4 79.00 77.69 79.30 96.9 98.33 98.06 85.68 90.06 83.18 98.25 98.07 99.43
5 86.28 89.84 90.62 97.13 98.57 93.71 90.98 92.35 90.68 98.37 98.39 99.33

Additionally, we present the best scores for enhanced textual descriptions in Table 1,
obtained for each target image based on user and embedding type. We observed a consistent
trend in score values, where the most similar images closely align. Specifically, images
drawn from the pool of generated images using enhanced prompts exhibit both visual and
semantic similarity to the target images.

However, it is noteworthy that, this time, none of the images coincided with those
selected by the subjects. This suggests that, qualitatively, the enhanced prompts may not
have contributed to generating better images. Nevertheless, this discrepancy could be
attributed to the smaller pool of generated images compared to previous experiments.

Thus, the key insight is that, for the effective use of generated images from text in
recognising unknown target scenes, one must be able to create a diverse pool of generated
images. It is evident that CLIP or VisualBERT can assist in determining which image will
score better when it becomes visually and semantically similar to the target image.

In summary, our results indicate that among the three proposed strategies—image
generation, text generation, and text enhancement—the most promising one is centred
on image generation using textual descriptions. We evaluated the use of text generation
models against human-generated textual descriptions to illustrate that, even though this
approach might demand less computational effort, it proves to be less effective compared to
utilising generated images. Lastly, we introduce text enhancement using ChatGPT, where
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we have discovered that a more varied textual description yields better results than a
concise one.

5. Conclusions

This work has been motivated by the last-mile delivery problem, in which a courier
has to find a place they have probably never been before. In anticipation of this issue,
it has become a common practice for delivery companies, in particular for those in e-
commerce, to request a textual description of the delivery destination, hoping that such
a description could aid the courier in visualising what the target destination looks like.
Therefore, we have explored the use of generative models to develop a methodology that
enables an artificial agent, such as a delivery drone or service robot, to mimic the process of
“imagining” an unknown target scene by means of a textual description only. To this end,
we have explored the use of a text-to-image generative model, image captioning, as well
as multi-modal vision-and-language models such as CLIP and VisualBERT for text and
image representation via numerical embeddings. Our experiments show that a generative
model such as Stable Diffusion can be used to generate images visually and semantically
similar to target images of unknown scenes in both qualitative and quantitative terms with
no prior information or cues about these images.

For our future work, we will investigate novel generative methods that could be run
in real-time, a crucial aspect for aerial and service robots. This also calls for a deeper study
of the text modality, which could be faster to process to rule out dissimilar images, leaving
the final decision to the image generation-based method.
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