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Abstract: Salt, one of the most commonly consumed food additives worldwide, is produced in many
countries. The chemical composition of edible salts is essential information for quality assessment
and origin distinction. In this work, a simple laser-induced breakdown spectroscopy instrument was
assembled with a diode-pumped solid-state laser and a miniature spectrometer. Its performances in
analyzing Mg and Ca in six popular edible sea salts consumed in South Korea and classification of the
products were investigated. Each salt was dissolved in water and a tiny amount of the solution was
dropped and dried on the hydrophilicity-enhanced silicon wafer substrate, providing homogeneous
distribution of salt crystals. Strong Mg II and Ca II emissions were chosen for both quantification and
classification. Calibration curves could be constructed with limits-of-detection of 87 mg/kg for Mg
and 45 mg/kg for Ca. Also, the Mg II and Ca II emission peak intensities were used in a k-nearest
neighbors model providing 98.6% classification accuracy. In both quantification and classification,
intensity normalization using a Na I emission line as a reference signal was effective. A concept of
interclass distance was introduced, and the increase in the classification accuracy due to the intensity
normalization was rationalized based on it. Our methodology will be useful for analyzing major
mineral nutrients in various food materials in liquid phase or soluble in water, including salts.

Keywords: edible salts; laser-induced breakdown spectroscopy; elemental analysis; classification

1. Introduction

Salt is mainly made up of ionic compounds such as chlorides and sulfates of alkali
and alkaline earth metals [1]. As an additive or a raw material, it is widely used for
various foods. However, salt is a mineral extracted from several natural sources, which are
seawater, underground rock, brine wells, and salt deserts. While the main component of
salt is NaCl, it also contains other elements such as Mg, Ca, Sr, K, Li, Al, Si, Ti, Fe, S, O, H,
and so on [2–6]. These minor elements show significant variations in their concentrations
depending on their sources and production methods [6]. This variation in concentration
of minor elements makes salts have different tastes and also potential health benefits
or risks [2,7–13]. Therefore, quantification of minor elements in edible salts is essential
for quality control in the salt production industry. Also, it should be noted that simple
compositional profiles, not the quantitatively determined concentrations, of minor elements
contained in edible salts can be utilized as chemical fingerprints for discriminating edible
salt products according to their origins. Isotope ratio analysis has been generally accepted
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as a dependable methodology for discriminating minerals, food materials, and natural
products so far [14–16]. Certainly, it would be a valuable scientific challenge to develop a
methodology discriminating edible salt products based on isotope ratio analysis. However,
for practical applications, simple elemental analysis techniques would be enough for
discrimination of edible salts rather than the complicated isotope ratio analysis. The fact
that the concentrations of minor elements in edible salts depend on their geographical
origins and production methods allows the simpler elemental analysis techniques to classify
edible salt products with dependable accuracy.

Laser-induced breakdown spectroscopy (LIBS) is one of the elemental analysis tech-
niques based on optical emission spectroscopy [17–19]. In typical LIBS analysis, a pulsed
laser beam is focused on the solid sample’s surface. The concentrated laser pulse energy
ablates and ionizes atoms in and around the laser focal spot to ignite a plasma. The laser-
induced plasma releases energy in the forms of light, sound, and heat in a few tens of
microseconds. The optical emission from the laser-induced plasma is utilized for both
quantification and material classification. In comparison with well-developed conventional
elemental analysis techniques such as inductively coupled plasma optical emission spec-
troscopy (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and atomic
absorption spectroscopy (AAS), LIBS has a few advantages such as simplicity in sample
preparation, rapidness in analysis, and the capability of performing analysis in air that
make it much simpler in its instrumentation. Despite these merits, LIBS is known to be
inferior to ICP-OES, ICP-MS, and AAS in terms of limit of detection (LOD), precision, and
accuracy. Fortunately, high performances in elemental analysis are not required to analyze
minor elements in edible salts such as Mg, Ca, and K. The detection capability of alkali and
alkaline earth metals at the concentrations of several hundred parts per million and higher
was found to be enough [20]. LIBS is particularly strong at detecting alkali and alkaline
earth metals, which are important in salt quality control and product discrimination. Typi-
cal nanosecond LIBS using a high-power flash-lamp-pumped Q-switched laser and a high-
or medium-resolution spectrometer coupled with an intensified charge-coupled device
(ICCD) camera detector can detect Mg, Ca, and K at the level of a few parts per million [21].
This implies that there is still more room to simplify not only the LIBS instrument but also
the sample preparation for the purpose of salt analysis.

In this work, a simple salt analysis methodology based on LIBS was developed, and its
quantification and classification performances were investigated using six popular edible
sea salt products consumed in South Korea. The LIBS instrument was assembled with a low-
power, compact diode-pumped solid-state laser (DPSSL) and a low-resolution miniature
spectrometer. Also, the salt samples were prepared using laser-patterned silicon wafer
(LPSW) substrates. Salt is actually a chemically inhomogeneous mixture of various ionic
compounds and also comes in forms of powder with crystals of different sizes. For the sake
of obtaining reliable results from LIBS analysis, such an inhomogeneous powder sample
is typically milled, mixed, and pressed into a pellet. This sample preparation process
forms a homogenized solid pellet. This pelletization process requires heavy equipment,
namely a ball mill and a hydraulic press. However, salt is highly soluble in water. Thus,
a large amount of salt powders can be sampled and dissolved in water. Sampling only a
small part of the solution is enough to obtain a representative result because the solution is
homogeneous. For LIBS analysis, the sampled solution is dropped onto a solid substrate and
dried. When the solution is dried on the silicon wafer without laser patterning, the residual
salt crystals are deposited in a very confined area. This makes the repetition of precise
measurement hardly possible. Thus, it is necessary to spread out the residual crystals
over a pre-defined area. Drying the solution on the LPSW substrate, the residual crystals
can be spread over a patterned area. Then, multiple measurements can be performed on
it [22]. Directly measuring salt powders would greatly simplify the LIBS analysis of salts
by removing the complicated sample preparation process. However, there are issues to
be resolved in powder LIBS. One of them is the blown-off particles forming a stationary
cloud during successive laser ablations. There is a recent study by Rajavelu et al. resolving
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this issue [23]. Due to the limitations on wavelength coverage and detection capability
of the low-cost LIBS instrument used in this work, only three elements, Na, Mg, and Ca,
could be detected with confident identification. However, the emission line intensities of
Mg and Ca observed in the LIBS spectra showed strong correlations to the corresponding
concentrations determined using ICP-OES. This formed dependable calibration curves
converting the measured emission intensities into the corresponding concentrations. To
develop a classification model, the emission peak intensities of Mg II at 279 nm and Ca II at
393 nm were also employed as latent variables. The classification accuracy was investigated
using the k-nearest neighbors (k-NN) algorithm [24,25]. When the intensities of the Mg II
and Ca II lines were normalized by the emission line intensity of the Na I at 589 nm, the
classification correctness could be significantly improved to 98.6%. This was rationalized
using the concept of “increase in interclass distance”. Our results indicate that the low-
performance LIBS instrument, and the simple sample preparation process using LPSW
substates can be utilized as not only a practical quality assessment technique on the salt
production sites but also an origin determination methodology in combination with an
appropriate modelling algorithm.

2. Materials and Methods
2.1. Salt Samples and ICP-OES Analysis

For the six salt products used in this work, their codes, origins, types, and the concen-
trations of Mg and Ca are listed in Table 1. The concentrations of Mg and Ca in the sea
salt samples were determined via ICP-OES. First, 15 g of each salt sample was dissolved in
85 g of ultrapure water (resistivity = 18.2 MΩ·cm) first. The 15 wt% salt solution was then
diluted to the final factor of 1/5000. Mixtures of NaCl and MgSO4 were prepared to obtain
powders in which the concentrations of Mg were 103.01, 206.50, 1014.2, 2027.4, 10,097, and
30,015 mg/kg. Also, mixtures of NaCl and CaCl2 were prepared to form powders with
99.171, 198.92, 497.29, 993.88, 2484.7, and 4971.9 mg/kg of Ca. These two sets of binary mix-
tures were diluted by a factor of 1/5000 using ultrapure water for the calibration standards
for Mg and Ca. The calibration standards and sample solutions were fed into an ICP-OES
spectrometer (GREEN, SPECTRO, Kleve, Germany) at the rate of 1 L/min. A power of
1400 W was applied to generate the plasma. Argon gas was used for coolant, auxiliary, and
nebulizer (cross) flows at rates of 12.0, 1.0, and 1.0 L/min, respectively. The calibration
curves for Mg and Ca were obtained using the Mg II and Ca II lines at 279.553 nm and
396.847 nm, respectively.

Table 1. Sample codes, origins, types, and concentrations of Mg and Ca determined by ICP-OES.

Sample
Code

Origin Type
Concentration (ppm)

Mg Ca

A Australia Sea salt 75.57 ± 0.17 363.5 ± 4.7
C1 Jiangsu, China Refined salt Not detected 134.2 ± 2.4
C2 Shandong, China Sea salt 3487 ± 10 1701 ± 22
K1 Goheung, South Korea Sea salt 15,110 ± 230 1540.6 ± 9.5
K2 Sinan, South Korea Sea salt 7166 ± 95 2210 ± 25
V Ho Chi Minh, Vietnam Sea salt 22,650 ± 120 2092 ± 25

2.2. LIBS Analysis

The preparation process of LPSW substrates is as follows. Briefly, a silicon wafer
(2-inch diameter) was placed on a motorized sample stage (L-406.40DD10, L-406.40DD10,
and L-306; Physik Instrumente GmbH & Co. KG, Karlsruhe, Germany), and a lattice pattern
was engraved on it over a 1 cm × 1 cm area using a DPSSL (1064 nm, 7 ns pulse duration,
270 µJ pulse energy, DTL-329QT, Laser-export Co. Ltd., Moscow, Russia). The DPSSL was
operated at a repetition rate of 1 kHz, and the stage was moved at a rate of 1 mm/s. The
DPSSL beam was focused through an objective lens (ten times magnification, 20 mm focal
length). The pattern was composed of a set of forty 1 cm long horizontal trenches and the
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other set perpendicular to the horizontal ones. The space between two adjacent trenches
was 250 µm, and the width and depth of each trench were approximately 55 and 28 µm,
respectively. Pieces of plastic tape were attached along the four sides of the pattern. The
four pattens were carved on each 2-inch-diameter silicon wafer. A total of twelve patterns
were prepared using three silicon wafers. Two patterns were used for each salt sample.
Figure 1a shows the four patterned areas on a silicon wafer. A 15 µL droplet of 15 wt%
salt solution was dropped on the prepared pattern. The laser-produced trenches enhanced
the surface hydrophilicity significantly, and the hydrophobic plastic tape confined the
salt solution to the 1 cm × 1 cm area precisely. After being dried in an oven at 60 ◦C for
1 h, salt crystals were formed and distributed over the patterned area. Figure 1b shows a
microscope image of the salt crystals formed on the patterned area.
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Figure 1. (a) Four laser-patterned areas on the silicon wafer and (b) the microscope image of the
laser-patterned area. In (b), the scale bar indicates 500 µm.

A picture of the laboratory-assembled LIBS setup used in this work is shown in
Figure 2. The same DPSSL, focusing optics, and sample stage were used as those for
preparing LPSW substrates. A continuous-wave diode laser beam (wavelength = 635 nm,
PL202, Thorlabs, Inc., Newton, NJ, USA) was sent to the sample surface through a pinhole
and a variable neutral-density (ND) filter (NDC-25C-4, optical density = 0.04 − 4.0, Thorlabs,
Inc., Newton, NJ, USA) to keep the lens-to-sample distance constant. When the lens-to-
sample distance is changed, the diode laser spot image shifts on the detector plane of the
vision camera (1.6 megapixels, color CMOS camera, CS165CU/M, Thorlabs, Inc., Newton,
NJ, USA) through the short-pass filter (cut-off wavelength = 850 nm, FES0850, Thorlabs,
Inc., Newton, NJ, USA). The lens-to-sample distance was adjusted to obtain the hottest
plasmas first. Then, the position of the diode laser spot imaged by the vision camera was
carefully monitored through all the measurements. However, the samples used in this
work were prepared using flat silicon wafers with constant thicknesses. This allowed us
to keep conducting measurements without re-adjusting sample surface height after the
lens-to-sample distance had been optimized first. Optical emissions from ignited plasmas
were collected using two plano-convex lenses (7-cm focal length, 2-inch diameter) and
sent to a non-gated miniature spectrometer (MAYA2000PRO, Ocean Insight, Inc., Orlando,
FL, USA) through an optical fiber (600 µm core diameter). The spectrometer covered the
wavelengths from 200 to 650 nm with a resolution of ~1 nm. For recording LIBS spectra,
the laser repetition rate was set to 1 kHz, and the sample placed on the motorized stage
was translated at the rate of 1 mm/s. Each LIBS spectrum was taken from a 9.5 mm
long line scan over the laser-patterned area. This launched 9500 laser pulses along the
9.5 mm long line. The detector exposure time was set to 10 ms, and 950 successively
detected signals were averaged to obtain a line scan. This made the detector stay open
through the whole 9.5 mm line scan, and it was not gated with any delay from a laser pulse.
Thus, the continuum background emission, particularly strong from early plasmas, could
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not be removed from our LIBS spectra. Two 1 cm × 1 cm patterned areas were used to
analyze each salt solution. On each patterned area, 31 parallel line scans were conducted.
Thus, 61 (=31 line scans × 2 patterned areas) spectra were recorded for each salt sample.
Considering the length (9.5 mm) and width (55 µm) of ablated trenches, the coverage of the
31 line scans was roughly estimated to be 16.2 mm2 of the 100 mm2 pattern area. Assuming
that the salt crystals were spread evenly on the patterned area, the laser ablation sampled
~16% of the whole salt crystals.
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collection lenses.

3. Results and Discussion
3.1. Quantification of Mg and Ca

Figure 3a shows the representative LIBS spectra of the samples A, C1, C2, K1, K2,
and V in the wavelength region between 200 nm and 650 nm. The three emission peaks of
Mg, Ca, and Na employed for the following analysis are highlighted by a yellow-colored
background. Intensity values for the following analysis were taken as baseline-subtracted
peak areas, which is represented in Figure 3b. The intensity is the value corresponding
to the red-colored area. First, we added up the intensity values across the Mg II emission
peak, which correspond to the sum of the red- and blue-colored areas. Then, the baseline
function was taken as the line connecting the two left- and right-most spectral intensity
data. The area under this straight baseline (blue-colored area) was subtracted from the
sum of the red- and blue-colored areas. The highlighted peaks are the strongest emissions
of the corresponding elements. This approach would make up for low performance of
the LIBS instrument used in this work. The Mg emission peak at 280 nm is composed of
several close-lying Mg II lines at 279.078, 279.553, 279.800, and 280.270 nm which were
not resolved due to the limited resolution of the miniature spectrometer used in this
work. The Ca emission peak at 393 nm is a single Ca II line. The Na emission peak at
589 nm is the unresolved sodium D-line doublet at 589.0 and 589.6 nm. While the Na
emission intensities, INa, remain almost the same across the six salt samples, the intensities
of Mg and Ca emissions, IMg and ICa, respectively, vary significantly from one sample to
another. Na is one of the matrix elements composing NaCl. Thus, INa was selected as a
reference signal for intensity normalization. In addition to INa, the performance of the total
emission intensity (sum of those from 200 nm to 650 nm), ITot, as a reference signal was also
investigated. The performances of INa and ITot in improving the measurement precision
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were evaluated by comparing the relative standard deviations (RSDs) of IMg, IMg/ITot, and
IMg/INa (Figure 4a) and also those of ICa, ICa/ITot, and ICa/INa (Figure 4b). In the cases of
both the Mg and Ca emission peaks, the intensity normalization was found to be effective
at decreasing the RSDs, that is, improving the measurement precision. However, between
the two reference signals, ITot and INa, the latter showed better performance. The average
RSDs of IMg/INa over the six samples is 15.2%, which is much smaller than those of IMg
(23.1%) and IMg/ITot (19.3%). Also, the average RSDs of ICa/INa (23.1%) taken for the six
samples were consistently decreased from those of ICa (34.2%) and ICa/ITot (30.7%). In
consideration of possible intensity saturation of the strongest Na I emission at 589 nm, the
weaker Na emissions identified at 330 nm and 569 nm can also be used as reference signals
for intensity normalization (see the assignments in Figure 3a). However, the weaker Na
emissions showed much larger RSDs in their intensities than those of the strongest one.
Thus, the intensity normalization using the weaker ones as references was not effective.
In our experiment, the measurement precision was affected by two factors: (i) instrument
performances and (ii) sample preparation. The LIBS instrument is inexpensive but provides
low laser power (270 µJ/pulse) and low spectral resolution (~1 nm). The low laser power
may result in relatively large plasma temperature fluctuations, leading to low measurement
precision. Also, the salt crystals may not be spread evenly on the patterned area.
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Figure 3. (a) Representative LIBS spectra of the samples A, C1, C2, K1, K2, and V. The three emission
lines of Mg II, Ca II, and Na I used for analysis are indicated by the yellow bands and (b) the expanded
spectrum around the Mg II emission peak at 280 nm observed for sample V.
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Calibration curves converting IMg, IMg/ITot, IMg/INa, ICa, ICa/ITot, and ICa/INa into
the concentrations of the corresponding analytes are shown in Figure 5. The concentrations
of Mg and Ca, listed in Table 1, were determined for the six salt samples via ICP-OES. The
concentration of Mg ranges from 0 mg/kg to 22,650 mg/kg. Although the concentrations
of Ca vary with samples, the difference between the largest (2092 mg/kg) and smallest
(134.2 mg/kg) ones is not as large as that of the Mg concentrations. The calibration curves
were obtained by fitting the experimental values using two linear functions, y = a + bx,
and y = bx. In fitting experimental values using the former function, the offset was floated
to be determined. However, the determined offsets were smaller than the corresponding
uncertainties in all of the fits (see the fitted parameter, a, noted in each panel of Figure 5).
Thus, it would be reasonable to fit the experimental values with the offsets fixed to 0 using
the latter function, y = bx. Also, the coefficients of determination, R2, are closer to 1 when
the experimental values were fitted by y = bx than y = a + bx. The R2 values from the two fits
are noted in each panel of Figure 5. Taking the ratios, IMg/INa and ICa/INa, might lead to
nonlinear calibration functions because the Na content decreases as the Mg or Ca contents
increase. The nonlinear behavior would be observed clearly if the correlation between y
(IMg/INa or ICa/INa) and x (Mg or Ca concentration) was investigated over wide enough
concentration ranges and/or y values were measured with high precision. In addition to
these factors, self-absorption effects on the used analyte and reference emission peaks can
play an important role in determining the form of calibration functions. In our experiment,
the measured intensity ratios could be correlated with the concentration of Mg or Ca simply
with linear functions, not nonlinear functions. If the samples contain much higher contents
of Mg and Ca, nonlinear functions should be considered as calibration curves.
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Figure 5. Calibration curves of Mg and Ca constructed using (a) IMg, (b) IMg/ITot, (c) IMg/INa, (d) ICa,
(e) ICa/ITot, and (f) ICa/INa.

LODs of Mg and Ca in this method were estimated using the following equation [19]:

LOD =
3σ

b
(1)

In the above equation, σ is the standard deviation of the measured quantity corre-
sponding to y in the fitting functions. To estimate LODs, it is reasonable to take σ from y
measured for the standard containing minimum amount of the analyte. b is the slope of
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linear fitting function, that is, sensitivity. As can be seen in Figure 5, fitting the experimental
values with the offset fixed to 0 (y = bx) gave slightly higher sensitivity. In consideration of
precision (σ) and sensitivity (b), LODs of Mg and Ca were estimated from fitting IMg/INa
and ICa/INa with the linear function of y = bx and obtained to be 87 mg/kg and 45 mg/kg,
respectively. As mentioned above, only a tiny volume (15 µL) of salt solution (15 wt%)
was used for the analysis. Considering this sample volume used for the analysis, the
absolute LODs of Mg and Ca were estimated to be 8.1 × 10−9 mol and 2.5 × 10−9 mol,
respectively. These LOD performances of our low-power, low-resolution LIBS instrument
are still sufficient for the analysis of Mg and Ca in edible salt products containing a few
hundred to percent levels of Mg and Ca.

In addition to precision and LODs, calibration accuracy was also evaluated for the
quantification of Mg and Ca. To express the accuracy quantitatively, root-mean-square
errors (RMSEs) of predicted concentrations were calculated using the following equation:

RMSE =

√√√√√ n
∑

i=1

(
Cpred

i − Cre f
i

)2

n
(2)

In this equation, n and i represent the total number of test data and the index given
to each of them, respectively. Cpred

i and Cre f
i are predicted and reference concentrations

corresponding to the ith test data. Herein, the leave-one-sample-out cross-validation
(LOSO-CV) method was used to calculate RMSE values [20]. In LOSO-CV, one of the six
data points for each calibration curve shown in Figure 5 was selected as the test data, and
the calibration curve was constructed by fitting the other five data. The calibration function
was then used to predict the concentration of the data left for testing. This process was
repeated six times with different test data selected in turn. The LOSO-CV did not use any
information of the sample corresponding to the selected data and excluded the possibility of
overestimating calibration accuracy. The RMSEs, calculated using the calibration function
of y = bx, are listed in Table 2 along with the RSDs averaged over the six samples. The
RMSEs in predicting the concentrations of Mg and Ca based on IMg/INa and ICa/INa were
1300 mg/kg and 130 mg/kg, respectively. It should be noted from the RSD and RMSE
values listed in Table 2 that the intensity normalization was effective at improving precision
but not accuracy.

Table 2. RSDs and RMSEs provided by the raw emission intensities (IMg and ICa) and the normalized
intensities (IMg/ITot, IMg/INa, ICa/ITot, and ICa/ITot).

Element Variable RSD (%) RMSE (mg/kg)

Mg
IMg 23.1 1300

IMg/ITot 19.3 1700
IMg/INa 15.2 1300

Ca
ICa 34.2 370

ICa/ITot 30.7 410
ICa/INa 23.1 390

3.2. Classification Modeling

The emission peaks of Mg II at 280 nm and Ca II at 393 nm selected for the calibra-
tion curves showed significant differences in their intensities across the six salt samples
(Figure 5). This indicates that these peaks possess capabilities of discriminating each salt
sample from the others. In the following, the two peak intensities were employed as
variables to construct a classification model, and the model performance, i.e., classification
accuracy, was evaluated based on the k-NN algorithm with a separate test data set. The
total number of spectra recorded in the experiment is 372 (=62 spectra × 6 salt samples).
For the test data set, 12 spectra were randomly selected per each salt sample, and thus
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72 spectra (=12 spectra × 6 salt samples) were left for evaluating the classification accuracy.
From the other 300 spectra, the (IMg, ICa) pairs, i.e., objects, were obtained and plotted in
Figure 6a. As discussed above, the intensity normalization using ITot or INa was effective at
improving measurement precision. The improved precision would decrease the intraclass
distribution of objects and separate the six classes further from one another. In Figure 6b,c,
the objects, (IMg/ITot, ICa/ITot) and (IMg/INa, ICa/INa), were plotted, respectively.
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The effect of intensity normalization on separating the six classes from one another
can be quantitatively evaluated by using the concept of interclass distance, dij, defined
as below:

dij =

∣∣mi − mj
∣∣

savg
(3)

In the above equation, i and j indicate two classes between which the interclass distance
are measured, and mi and mj are the means of intensity or normalized intensity values
of the corresponding classes. Thus, |mi − mj| is the mean-to-mean distance along a
given variable axis. However, the mean-to-mean distance is not sufficient to represent the
separation between two data clusters, which have their own variances. It should be scaled
by a common standard deviation representing the distribution of objects belonging to the
two classes. The pooled standard deviation, spooled, expressed below, can be employed for
this purpose [26].

spooled =

√√√√ (ni − 1)s2
i +

(
nj − 1

)
s2

j

ni + nj − 2
(4)

In this equation, ni and ni are the numbers of objects belonging to two classes, i and
j, respectively, and si and sj are the standard deviations of the data in the corresponding
classes. In this work, the same number of spectra, 50, was used to model each class. In
this case, with ni = nj, spooled

2 becomes simply an average variance, savg
2 = (si

2 + sj
2)/2.

Therefore, the interclass distance representing the separation between two classes, i and j,
can be defined as the mean-to-mean distance scaled by savg. Figure 7 shows the interclass
distances calculated with raw intensities (IMg and ICa), those normalized by ITot, and those
normalized by INa. The interclass distance is herein the measure of the two-dimensional
space. Thus, those shown in Figure 7 are the two-dimensional Euclidean distances based
on the two one-dimensional interclass distances calculated along the two variable axes
separately. Figure 7a shows the interclass distances from class A (Australian sea salt) to
the others. It indicates that the interclass distances are increased significantly following
intensity normalization. Between the two reference signals, ITot and INa, the latter is found
to be more effective at increasing the interclass distances. This is in good agreement with
the results of RSDs shown in Figure 4. Figure 7b–f show interclass distances from each
of the classes, C1, C2, K1, K2, and V, to the other classes, respectively. All of these results
consistently indicate that the intensity normalization is effective in separating the classes



Sensors 2023, 23, 9280 10 of 13

from one another. This would lead to an increase in the classification accuracy. Fifteen
interclass distances, dA-C1, dA-C2, dA-K1, dA-K2, dA-V, dC1-C2, dC1-K1, dC1-K2, dC1-V, dC2-K1,
dC2-K2, dC2-V, dK1-K2, dK1-V, and dK2-V, were calculated for the three kinds of variables:
(i) raw intensities, (ii) those normalized by ITot, and (iii) those normalized by INa. The
average of the 15 interclass distances was 6.0 with raw intensities. This could be increased
to 7.0 and 11.9 following normalization using ITot and INa as reference signals, respectively.
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Figure 7. Interclass distances from classes (a) A, (b) C1, (c) C2, (d) K1, (e) K2, and (f) V to the others
calculated using raw and normalized intensities.

The classification accuracy was evaluated for the separate test data set following the
k-NN algorithm. The three non-parametrically trained models shown in Figure 6 were
used to assign the classes of the 72 test spectra. The classes were assigned considering
the k training objects nearest to the unknown test object. The majority vote criterion was
applied with only odd numbers of the k nearest training objects. Figure 8a shows the
dependence of the classification accuracy obtained by the three models based on (IMg, ICa),
(IMg/ITot, ICa/ITot), and (IMg/INa, ICa/INa) on k, which was varied from 1 to 299. The three
models show similar dependence on k for classification accuracy. The classification accuracy
was maximized at k = 1 and 299, and decreased between these values. As shown in the
two-dimensional models in Figure 6, most of the objects belonging to different classes are
separated, but the objects in classes K1 and V overlap each other. This similarity would be
the main cause of the decreasing classification accuracy. In the K1-V overlapping region on
the variable space, the majority vote criterion can fail and make the classification accuracy
much lower with intermediate numbers of voters than those with k = 1 or 299. As discussed
above, intensity normalization increased the interclass distances. The model with the larger
interclass distances shows a higher classification accuracy over all k values and a lesser
decrease in classification accuracy at the intermediate k values. Finally, the model based on
(IMg/INa, ICa/INa) with k = 1 showing 98.6% classification accuracy was identified as the
best one. The corresponding confusion matrix is shown in Figure 8b. Among the 72 test
objects, only 1 of them belonging to K1 was misassigned to V.
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4. Conclusions

A cost-effective LIBS instrument was assembled with a compact low-power DPSSL and
a miniature low-resolution spectrometer. In combination with a simple sample preparation
method using LPSW substrates, the analytical performances of the LIBS instrument were
investigated with six popular edible sea salts consumed in South Korea. Each of the two
technologies, the low-cost LIBS instrument and the sample preparation method using
LPSW substrates, have been applied for the analysis of edible salts and other materials
separately so far. In this work, their combination was applied to the quantification and
classification of edible salts for the first time. The concentrations of Mg and Ca could
be determined with LODs of 87 mg/kg and 45 mg/kg and accuracies of 0.13 wt% and
0.039 wt%. These analytical capabilities are sufficient for analyzing Mg and Ca in edible
salts that typically contain ~1 wt% Mg and ~0.1 wt% Ca. Among the salt samples used in
this work, the refined salt (C1) and the sea salt produced in Australia (A) showed very low
Mg and Ca contents. It should be mentioned that a higher-performance LIBS instrument or
other conventional elemental analysis techniques are required for accurate analysis of Mg
and Ca in such low-mineral salts. Also, a classification model showing very high accuracy
(98.6% correctness) could be developed using the emission peak intensities of Mg and Ca
that are the same as those used for analyzing the concentrations of Mg and Ca. In both
quantification and classification, intensity normalization using the Na I emission intensity
at 590 nm was effective in improving measurement precision. Herein, formulating the
concept of interclass distance, we demonstrated a method to quantitatively estimate the
effectiveness of the intensity normalization in increasing discrimination power of a variable
used in a classification model. The interclass distances, defined as the scaled mean-to-
mean distance, would be useful to measure the effectiveness of any data pre-treatment
process at enhancing the classification capabilities of classical models. Finally, it should
be emphasized that only a tiny volume (15 µL) of 15 wt% salt solution was needed for
quantification and classification based on the measurements of the emission peaks of Mg
and Ca. This consumes only 2.25 mg of salt per each sample. Theis analytical capability
with a small volume of liquid is potentially useful for analyzing not only water-soluble
or -dispensable food materials but also bio-fluids such as urine and blood for medical
diagnosis and forensic investigation.
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