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Abstract: The global concern regarding the monitoring of construction workers’ activities necessitates
an efficient means of continuous monitoring for timely action recognition at construction sites. This
paper introduces a novel approach—the multi-scale graph strategy—to enhance feature extraction in
complex networks. At the core of this strategy lies the multi-feature fusion network (MF-Net), which
employs multiple scale graphs in distinct network streams to capture both local and global features
of crucial joints. This approach extends beyond local relationships to encompass broader connections,
including those between the head and foot, as well as interactions like those involving the head
and neck. By integrating diverse scale graphs into distinct network streams, we effectively incorpo-
rate physically unrelated information, aiding in the extraction of vital local joint contour features.
Furthermore, we introduce velocity and acceleration as temporal features, fusing them with spatial
features to enhance informational efficacy and the model’s performance. Finally, efficiency-enhancing
measures, such as a bottleneck structure and a branch-wise attention block, are implemented to
optimize computational resources while enhancing feature discriminability. The significance of this
paper lies in improving the management model of the construction industry, ultimately aiming to
enhance the health and work efficiency of workers.

Keywords: construction worker action recognition; deep learning algorithm; 3D skeleton data;
multi-stream network

1. Introduction

In the construction industry, construction workers constitute the fundamental unit,
and their behavior significantly contributes to workplace accidents and injuries. Managing
and controlling workers, who are inherently dynamic, prove to be a major challenge on
construction sites. A concerning 80–90% of accidents are closely tied to unsafe actions
and behaviors exhibited by workers [1]. Traditional approaches to measure and improve
worker behavior, such as self-reports, observations, and direct measurements, are known
but are time- and labor-intensive.

Safety risks associated with worker posture are a significant concern in construction
projects. Construction workers typically face the risk of immediate or long-term injuries,
including unsafe and awkward activities [2] and falls from ladders. These injuries arise due
to repetitive movements, high force exertion, vibrations, and awkward body postures, all of
which are common occurrences among construction workers [3]. Various efforts, including
career training, education, and site manager observations, have been implemented to
mitigate posture-related safety risks. Nevertheless, current methods still lack effectiveness
in managing these risks.
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Recently, there has been a growing body of research dedicated to the automation
of information extraction from skeleton data using deep learning algorithms. Recurrent
Neural Networks (RNNs) [4] have emerged as a prominent choice for skeleton-based action
recognition due to their effectiveness in handling sequential data. On the other hand,
Convolutional Neural Networks (CNNs) [5] are often employed to transform skeleton data
into image-like formats. RNN-based methods are highly effective in handling skeleton
sequences, being naturally suited for modeling time series data and capturing temporal de-
pendencies. To further enhance the understanding of the temporal context within skeleton
sequences, other RNN-based techniques, like Long Short-Term Memory (LSTM) [6] and
Gated Recurrent Units (GRUs) [7], have been incorporated into skeleton-based action recog-
nition methodologies. The integration of CNNs alongside RNNs offers a complementary
approach, as CNN architectures are proficient in capturing spatial cues present in input
data, addressing a potential limitation of RNN-based methods.

However, these two approaches lack the ability to comprehensively capture the in-
tricate dependencies among correlated joints of the human body. A more robust analysis
algorithm, the Graph Convolutional Network (GCN) [8–10], was introduced to enhance
skeleton-based action recognition. This was inspired by the understanding that human
3D skeleton data inherently forms a topological graph distinct from the sequence vector
or pseudo-image treatment seen in RNN-based or CNN-based methods. In recent times,
the GCN has gained prominence in this task due to its effective representation of graph-
structured data. There are generally two types of prevalent graph-related neural networks:
graph and GCN [8]; our primary focus in this survey is on the latter. Over the past two
years, several classic methods have been proposed in this domain. For instance, Yan
et al. [11] introduced a method in which skeleton sequences are embedded into multiple
graphs. In this approach, the joints within a frame of the sequence act as nodes in the graph,
with the connections between these joints representing the spatial edges of the graph.

Therefore, the majority of these approaches have traditionally focused on a single,
encompassing graph based on the natural connections within the human body structure.
This approach confines a node to capturing only a specific type of spatial structure, resulting
in an inability of existing GCN methods to fully learn features within a single fixed graph,
which typically represents the physical relations of nodes. The convolution operator, which
is integral to GCN, heavily relies on meaningful graph structures to capture extensive local
and contour features in spatial data. Thus, the significance of developing meaningful graph
structures that promise to capture more local features and contour features in spatial data
cannot be overstated. Future research in this domain should concentrate on refining GCN
methodologies to achieve more robust feature learning within dynamic graph structures,
ultimately advancing the field of skeleton-based action recognition.

In this paper, our goal is to introduce a multi-scale graph strategy designed to acquire
not only local features, such as the relationship between the head and neck, but also to
capture broader connections, like the relationship between the head and foot. We utilize
varying scale graphs in distinct network streams, strategically incorporating physically
unrelated information. This addition aids in enabling the network to capture local features
of individual joints and crucial contour features of significant joints. Moreover, we incor-
porate velocity and acceleration as novel temporal features, which are fused with spatial
features, enhancing the depth of information. The primary contributions of this study can
be summarized as follows:

1. We devised the multi-feature fusion network (MF-Net) incorporating three-level
spatial features (body-level, part-level, joint-level) as different network streams. This
multi-stream strategic addition facilitates the network in capturing both significant
local and global features of workers’ joints.

2. Going beyond diverse spatial features, we innovatively introduced the velocity and
acceleration of each joint as temporal features. Meanwhile, we proposed a spatial–
temporal two-step fusion strategy, effectively correlating high-level feature maps
from multiple streams. These features were seamlessly integrated with three-scale
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spatial features, resulting in robust and efficient improvement in the performance of
action recognition accuracy. We struck a balance between the independent learning
of feature streams and ensuring adequate correlation of fusion streams to guarantee
fusion performance.

3. In order to enhance the efficiency of our model, we implemented a bottleneck structure
that effectively reduces computational costs during parameter tuning and model infer-
ence. This structure is further complemented by the utilization of two temporal kernel
sizes, allowing us to cover different receptive fields. Additionally, we introduced a
branch-wise attention block, which employs three attention blocks to calculate the
attention weights for different streams, contributing to the further refinement of our
model’s efficiency.

2. Literature Review
2.1. Action Recognition Based on Skeleton Data

Action recognition holds significant importance and poses a notable challenge across
various industries. Traditional approaches in construction project information analysis
primarily rely on self-reporting and observations by professionals [12]. These approaches
encompass vision-based [13–15] and wearable sensor-based methods. For instance, Roberts
et al. [16] extensively utilized 317 annotated videos to analyze the operations of bricklaying
and plastering workers. Beyond conventional cameras, the utilization of RGB-D cameras in
researching construction worker operations has garnered considerable attention. Khosrowpour
et al. [15] introduced a supervised machine approach employing RGB-D sensors to predict
worker activities, achieving an average accuracy of 76% in worker activity recognition.

Furthermore, Li et al. [17] introduced a novel approach based on geometric algebra
to represent shape and motion, emphasizing the importance of considering both joints
and bones in skeleton data. This representation effectively harnesses the information
contained in skeleton sequences. In a similar vein, Liu et al. [18] utilized enhanced skeleton
visualization techniques to represent skeleton data, enhancing the visual aspects of the
information. Additionally, Carlos et al. [19] proposed a unique representation known as
SkeleMotion, which focuses on encoding motion information. SkeleMotion achieves this
by explicitly computing the magnitude and orientation values of skeleton joints, providing
a valuable perspective on the temporal dynamics of skeletal data.

2.2. Deep Learning for Action Recognition

Conventional methods for skeleton-based action recognition primarily center around
Machine Learning (ML), relying heavily on handcrafted features to represent the human
body’s skeleton [20–22]. However, this approach to data processing is inherently intricate
and time-consuming, making it better suited for small- or medium-sized datasets. In
the realm of evolving technologies, particularly the advancement of Deep Neural Net-
works (DNNs), data-driven approaches, including RNNs, CNNs, and GCNs, have gained
significant traction and popularity.

2.2.1. RNN-Based Approaches

The recursive connection within the RNN structure is established by utilizing the out-
put from the previous time step as the input for the current time step [23]. This mechanism
has demonstrated its effectiveness in processing sequential data. In a similar vein, LSTM
extends the capabilities of the standard RNN by introducing gates and linear memory units,
addressing issues such as gradient problems and long-term temporal modeling.

Considering the aspect of spatial–temporal modeling, which is a fundamental principle
in action recognition tasks, it becomes evident that the spatial modeling ability of RNN-
based architectures is a limiting factor. This limitation often hampers the performance of
related methods, failing to achieve competitive results [24]. Recently, Hong and Liang [25]
proposed an innovative two-stream RNN architecture, effectively modeling both temporal
dynamics and spatial configurations for skeleton data. This involved an exchange of the
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skeleton that was applied as a preprocessing step to enhance spatial domain learning. Song.
et al. [26] introduced a spatial attention module that adaptively allocates varying levels
of attention to different joints within each frame of the input skeleton. Additionally, a
temporal attention module allocates distinct attention to different frames. In a relevant
domain, Antwi-Afari et al. [27] evaluated three types of RNN-based networks for the
automated recognition and classification of construction workers’ awkward postures,
achieving the highest performance with a GRU model, at approximately 99.01%.

2.2.2. CNN-Based Approaches

CNNs have seen application in skeleton-based action recognition. Unlike RNNs, CNN
models demonstrate a remarkable ability to efficiently learn high-level semantic cues due to
their natural capability to extract higher-level information. However, CNNs are primarily
geared towards image-based tasks, and adapting them to action recognition based on
skeleton sequences poses a significant challenge, given the inherently time-dependent
nature of the task. Striking a balance and fully leveraging spatial and temporal information
in a CNN-based architecture remains an ongoing challenge.

The concept of a temporal convolutional network (TCN) was initially introduced by
Lea et al. [28] for human action segmentation. They employed an encoder–decoder TCN
approach throughout a video, and the outcomes demonstrated that TCN architectures
could achieve comparable functions to LSTM while offering faster training times. Building
upon this, Jia et al. [29] introduced a two-stream TCN architecture for skeleton-based
human action recognition. This approach comprised an intra-frame stream and an inter-
frame stream. For intra-frame features, the human body was divided into five relevant joint
subgroups, with each part’s features concatenated to represent the spatial domain. Regarding
the inter-frame stream, they utilized the coordinate difference between adjacent frames as
the representation. The entire model was constructed with twelve basic residual blocks, each
containing two TCN layers followed by activation functions and dropout layers.

2.2.3. GCN-Based Approaches

Recent research places more attention on graph data, such as e-commence recom-
mended systems [30], chemistry molecules [31], social networks [32], citation networks [33],
and so on. GCN-based methods have garnered increasing interest in skeleton-based ac-
tion recognition due to their expertise in handling skeleton data within a non-Euclidean
space [34–36]. The construction of the GCN on the graph primarily follows a spatial
perspective [37], involving the direct application of convolutional filters to the graph nodes.

In the realm of skeleton-based action recognition, various classic methods operate
directly on graph-structured data, allowing the propagation of local messages [38,39].
To illustrate this, consider the strong interdependence between the two hands during a
clapping action, a connection not inherently present in the graph based on the human
body’s structural connections. For instance, Yan et al. [11] introduced an influential model
called Spatial Temporal Graph Convolutional Networks (ST-GCNs) for skeleton-based
action recognition. This network constructs a spatial–temporal graph with joints as the
graph vertices, incorporating the natural connectivity of both human body structures and
the temporal dimension as graph edges. Subsequently, higher-level feature maps on the
graph, derived from ST-GCNs, are classified into corresponding action categories using
a standard SoftMax classifier. Building on this foundation, there has been a growing
emphasis on leveraging Graph Convolutional Networks (GCNs) for skeleton-based action
recognition, leading to several related studies. Li et al. [36] introduced the Action-Structural
GCN (AS-GCN), which not only recognizes a person’s action but also employs a multitask
learning strategy to predict the subject’s potential next pose. The graph created in this work
captures richer dependencies among joints through two key modules: actional links and
structural links. This progress opens up new avenues for enhancing the understanding of
complex actions in skeleton-based action recognition.
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3. Methodology

The content of this section can be summarized as follows: Firstly, we introduce MF-
Net, a robust and efficient multi-feature network designed for learning spatial–temporal
feature sequences. Secondly, in terms of spatial features, we design a hierarchical skeleton
topology (body, part, joint) and utilize a graph convolution network to extract these features.
For temporal features, we incorporate velocity and acceleration as novel features fused
with spatial features. Thirdly, TCN serves as the main network for recognizing sequence
information. To optimize our model’s efficiency, we implement a bottleneck structure,
effectively reducing computational costs during parameter tuning and model inference.
Additionally, we set two different temporal kernel sizes to obtain varying receptive fields.
Finally, we propose a two-stage fusion strategy integrating a branch-wise attention block
to correlate high-level feature maps from multiple streams. We carefully balance the
independent learning of feature streams and ensure adequate correlation of fusion streams
to optimize fusion performance. Furthermore, we introduce attention mechanisms to
compute attention weights for different branches, further enhancing the discriminative
capability of the features.

3.1. Pipeline of Multi-Scale Network

The network comprises two branches, each incorporating five sub-streams based on
input features, as shown in Figure 1. Branch 1 represents the spatial features. Before
entering the sequence network, we employ a GCN to extract spatial structural features
from each frame. A simplistic fusion approach involves concatenating these features at the
feature level and passing them through a fully connected layer. However, this approach is
not optimal due to inconsistencies in features across different streams.
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3.1.1. GCN Model

In contrast to CNN models, graph neural networks (GNNs) [8] are designed to process
graph-structured data. In essence, the input should depict a set of vertices (or nodes) and a
structure that delineates the relationships between them [40]. Each node undergoes an up-
date to a latent feature vector containing information about its neighborhood, resembling a
convolution operation, and leading to the nomenclature of GCN. This latent node represen-
tation, often referred to as an embedding, can be of any chosen length. These embeddings
can be employed for node prediction, or they can be aggregated to derive predictions at
the graph level, providing information about the graph as a whole. Concurrently, various
GNN variants have been utilized to address diverse tasks, such as graph classification [37],
relational reasoning tasks [41], and node classification in extensive graphs [42].

Figure 2 presents a visual description of the GCN. In this example, at the input layer,
there are four nodes, and each node takes an input vector of dimension C, together forming
the initial activation H0. After passing through several hidden layers, the activation is
then converted into the values on the output layer nodes Zi of each dimension F. These
are then compared with the partial labels Yi to generate a loss for the model to train on.
Normally, a graph G(V, E) consists of vertices V and edges E, where each edge in E is a
pair of two vertices. A walk is a sequence of nodes in a graph, wherein consecutive nodes
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are connected by an edge. Each graph can be represented by an adjacency matrix A of size
n× n, where Ai,j = 1 represents an edge between vertices Vi and Vj, and Ai,j = 0 indicates
no connection between them. Vertices and edges attributes are features that possess a single
value for each node and edge of a graph.
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To perform the convolution operation in a GCN, the skeleton graph is transformed
into the adjacency matrix A. When the skeletal joints Ji and Jj are connected in the skeleton
graph, the value of Aij is set to 1; otherwise, it is set to 0. Therefore, different adjacency
matrices A can represent various skeleton topological structures through the aggregation
of information. Specifically, each skeleton frame can be converted into a graph G(V, E) to
represent intra-body connections. V constitutes the joint set representing spatial features,
while E is the set of edges between joints used to represent structural features. Based on
the skeleton data X and its corresponding adjacency matrix A, the convolution operation
in a GCN can be formulated as shown in Equation (1):

fout = σ
(

D−
1
2 ÃD−

1
2 finW

)
(1)

where Ã = A + I is the adjacency matrix of graph G with self-connection identity matrix I.
D is the degree matrix of Ã. W is the learned weight matrix, and σ(·) denotes the activation
function.

3.1.2. TCN Sequence Model

Each stream comprises four blocks connected by a kernel size 1 temporal convolution
layer, as shown in Figure 3. The output dimensions of blocks B1, B2, B3, and B4 are 32,
64, 128, and 256, respectively. These blocks are interconnected in a sequential manner.
The input data are initially normalized by a Batch Normalization (BN) layer at the start
of the network. Referring to the temporal convolution kernel sizes in related research, 3
is a popular choice [34]. Accordingly, the temporal convolution kernel sizes in our model
are set to 3 and 5, resulting in corresponding receptive fields of 7 and 13, respectively. The
TCN model is exclusively composed of convolutional structures and has exhibited excellent
results in sequence modeling tasks without utilizing a recurrent structure. The temporal
convolutional network can be regarded as a fusion of one-dimensional convolution and
causal convolution:

H(l+1) = H(l)W(l) + Bias(l) (2)

where H(l+1) is the output feature of layer l, and H(l) ∈ Rinput_size represents the input size.
The W(l) and B(l) denote the learnable parameter matrices and the bias vectors, respectively.



Sensors 2023, 23, 9350 7 of 16

Sensors 2023, 23, x FOR PEER REVIEW 7 of 17 
 

 

convolutional network can be regarded as a fusion of one-dimensional convolution and 
causal convolution: 𝐻ሺାଵሻ ൌ 𝐻ሺሻ𝑊ሺሻ  𝐵𝑖𝑎𝑠ሺሻ (2)

where 𝐻ሺାଵሻ is the output feature of layer 𝑙, and 𝐻ሺሻ ∈ ℝ௨௧_௦௭ represents the input 
size. The 𝑊ሺሻ and 𝐵ሺሻ denote the learnable parameter matrices and the bias vectors, re-
spectively. 

 
Figure 3. The overview of the proposed TCN architecture network. 

A nuanced block structure known as the “bottleneck” was introduced [43]. Its oper-
ation involves the insertion of two convolution layers before and after a standard convo-
lution layer. This strategic arrangement substantially reduces the overall network param-
eters. More precisely, it achieves this by decreasing the number of feature channels during 
convolution calculations with a reduction rate denoted as “r”. In this section, we replaced 
the conventional TCN block with a bottleneck structure to significantly expedite model 
training and responsiveness during implementation. 

3.1.3. Branch-Wise Attention 
In this work, we propose a two-step fusion strategy integrating an attention block 

method. Specifically, we focus on discovering the importance of different streams and 
branches. Inspired by split attention in the ResNeSt model [44], the attention block is de-
signed as Figure 4. Taking a branch as an example, first, the features of different streams 
are taken as input. Secondly, they are passed through a fully connected layer (FC) with a 
Batch Norm layer and a ReLU function. Thirdly, the features of all streams are stacked. 
Subsequently, a max function is adopted to calculate the attention matrices, and a SoftMax 
function is utilized to determine the most vital stream. Finally, the features of all streams 
are concatenated as an integral skeleton representation with different attention weights. 
The stream attention block can be formulated as: 𝑓௦ ൌ 𝑓ሺ𝑠ሻ ⊙ 𝑓௫൫𝜃൫𝑓ሺ𝑠ሻ൯𝑊൯  𝑓ሺ𝑠ሻ (3)𝑓௨௧ ൌ 𝑐𝑜𝑛𝑐𝑎𝑡ሺሼ𝑓௦|𝑠 ൌ 1,2,3ሽሻ (4)

where 𝑓ሺ𝑠ሻ  and 𝑓௦  denote input with and without the attention block, and 𝜃ሺ∙ሻ  and 𝑓௫ represent ReLU activation and max function. And 𝑊 is the learnable parameters of 
the FC layer. 

Figure 3. The overview of the proposed TCN architecture network.

A nuanced block structure known as the “bottleneck” was introduced [43]. Its opera-
tion involves the insertion of two convolution layers before and after a standard convolution
layer. This strategic arrangement substantially reduces the overall network parameters.
More precisely, it achieves this by decreasing the number of feature channels during con-
volution calculations with a reduction rate denoted as “r”. In this section, we replaced
the conventional TCN block with a bottleneck structure to significantly expedite model
training and responsiveness during implementation.

3.1.3. Branch-Wise Attention

In this work, we propose a two-step fusion strategy integrating an attention block
method. Specifically, we focus on discovering the importance of different streams and
branches. Inspired by split attention in the ResNeSt model [44], the attention block is
designed as Figure 4. Taking a branch as an example, first, the features of different streams
are taken as input. Secondly, they are passed through a fully connected layer (FC) with
a Batch Norm layer and a ReLU function. Thirdly, the features of all streams are stacked.
Subsequently, a max function is adopted to calculate the attention matrices, and a SoftMax
function is utilized to determine the most vital stream. Finally, the features of all streams
are concatenated as an integral skeleton representation with different attention weights.
The stream attention block can be formulated as:

fs = fin(s)� fmax(θ( fin(s))W) + fin(s) (3)

fout = concat({ fs|s = 1, 2, 3}) (4)

where fin(s) and fs denote input with and without the attention block, and θ(·) and fmax represent
ReLU activation and max function. And W is the learnable parameters of the FC layer.
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3.2. Multi-Scale Input Features

In this research, we described the five different input streams. For the body-level input
stream, we used the whole-body nodes based on human skeleton body to represent worker’s
actions. For body-level and joint-level inputs, we split human body input five parts and
abstract the relationship between important joints. Lastly, two-mode motion data were
employed as inputs to encompass a broader range of motion features exhibited by workers.
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3.2.1. Part-Level Input

In this section, we divided the whole human body into five main parts, considering
the physical structure of the human body for mining more representative spatial–temporal
features, as shown in Figure 5. Instead of taking the whole skeleton as the input of the deep
learning model, we established five body parts, including left arm (LA), right arm (RA),
left leg (LL), right leg (RL) and trunk.

s(la)t = concat
([

s8
t − s7

t , s19
t − s7

t , s9
t − s7

t

])
, t ∈ T (5)

s(ra)
t = concat

([
s5

t − s4
t , s17

t − s4
t , s6

t − s4
t

])
, t ∈ T (6)

s(ll)t = concat
([

s14
t − s13

t , s20
t − s13

t , s15
t − s13

t

])
, t ∈ T (7)

s(rl)
t = concat

([
s11

t − s10
t , s18

t − s10
t , s12

t − s10
t

])
, t ∈ T (8)

s(t)t = concat
([

s2
t − s1

t , s3
t − s1

t , s16
t − s1

t

])
, t ∈ T (9)

x(b)t = concat
(

s(la)t , s(ra)
t , s(ll)t , s(rl)

t , s(t)t

)
(10)
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3.2.2. Joint-Level Input

Construction tasks are very heavily reliant on manual actions of workers, such as
“installation” or “tying retar”. Therefore, the relationship between the two hands and
the relationship between the hands and other joints are highly important to distinguish
construction worker actions. Hence, we chose two representations of geometric features,
Joint–Joint Euclidean Distance (JJED) and Joint–Joint Orientation (JJO), as the input of
this stream. JJD represents the Euclidean distance between any joints within a 20-joint
model with two hands, significantly reflecting the relative relationship between directly or
indirectly connecting with the hands. JJO represents the x, y, and z orientations from any
joints to the two hands within a 20-joint model, and the values are calculated with the unit
length vector, as shown in Figure 6.



Sensors 2023, 23, 9350 9 of 16

Sensors 2023, 23, x FOR PEER REVIEW 9 of 17 
 

 

𝑥௧ሺሻ = 𝑐𝑜𝑛𝑐𝑎𝑡 ቀ𝑠௧ሺሻ, 𝑠௧ሺሻ, 𝑠௧ሺሻ, 𝑠௧ሺሻ, 𝑠௧ሺ௧ሻቁ (10)

3.2.2. Joint-Level Input 
Construction tasks are very heavily reliant on manual actions of workers, such as 

“installation” or “tying retar”. Therefore, the relationship between the two hands and the 
relationship between the hands and other joints are highly important to distinguish con-
struction worker actions. Hence, we chose two representations of geometric features, 
Joint–Joint Euclidean Distance (JJED) and Joint–Joint Orientation (JJO), as the input of this 
stream. JJD represents the Euclidean distance between any joints within a 20-joint model 
with two hands, significantly reflecting the relative relationship between directly or indi-
rectly connecting with the hands. JJO represents the x, y, and z orientations from any joints 
to the two hands within a 20-joint model, and the values are calculated with the unit length 
vector, as shown in Figure 6. 

 
Figure 6. Schemes of distance and orientation. 

3.2.3. Motion Data 
Specifically, the raw skeleton at frame 𝑡 is represented as 𝑃௧ ∈ ℝேൈଷ, where 𝑁 is the 

number of joints, 𝑃௧ ∈ ℝଷ denotes the 3D coordinates of 𝑖 െ 𝑡ℎ joint at time 𝑡. Then, the 
joint accelerations at time 𝑡 can be calculated as 𝐴௧ ൌ  𝑉௧ାଵ െ 𝑉௧, where 𝑉௧ ൌ  𝑃௧ାଵ െ 𝑃௧. 𝑉௧ and 𝐴௧ can be considered as the first-order and second-order derivatives of the joint 
coordinates, respectively. Temporal interpolation is applied to the velocity and accelera-
tion information to have a consistent sequence length, as shown in Figure 7. 

Figure 6. Schemes of distance and orientation.

3.2.3. Motion Data

Specifically, the raw skeleton at frame t is represented as Pt ∈ RN×3, where N is the
number of joints, Pt

i ∈ R3 denotes the 3D coordinates of i− th joint at time t. Then, the
joint accelerations at time t can be calculated as At = Vt+1 − Vt, where Vt = Pt+1 − Pt.
Vt and At can be considered as the first-order and second-order derivatives of the joint
coordinates, respectively. Temporal interpolation is applied to the velocity and acceleration
information to have a consistent sequence length, as shown in Figure 7.
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4. Results and Discussion
4.1. Dataset and Implementation Details

To assess the effectiveness of our model, comprehensive experiments were carried out
using the Construction Motion Library (CML) dataset [45], tailored for motion recognition
in construction-related actions. The CML dataset comprises a vast collection of over
61,275 samples, equivalent to approximately 10 million frames, encompassing 73 distinct



Sensors 2023, 23, 9350 10 of 16

action classes performed by around 300 individual subjects. Each sample offers motion data
represented by 20-joint skeletons. The dataset is broadly categorized into four fundamental
activity types: production activities, unsafe activities, awkward activities, and common
activities, as shown in Table 1.

Table 1. Statistics of the CML Dataset.

Construction-
Related

Activities
Unsafe Activities Awkward

Activities
Production
Activities

Common
Activities

Number of labels 73 38 10 12 13
Number of

samples 61,275 36,778 5101 5105 14,291

File size 10.53 GB 5.98 GB 0.69 GB 0.72 GB 3.14 GB

The modeling was performed on a desktop computer equipped with an i7-11700@
2.50 GHz CPU and a GeForce GTX 3060Ti GPU. The CML dataset comprised a total of
61,275 samples, which were randomly shuffled and divided into a training set (70%) and a
testing set (30%). The training data were further segmented into a training subset (60%)
and a validation subset (10%). To mitigate overfitting, parameter tuning involved adjusting
values while monitoring optimization loss and accuracy on both the training and validation
sets. The training employed the adaptive moment estimation (Adam) optimizer [46] to
dynamically adjust the learning rate during the training process, with a weight decay set
at 0.0005. A batch size of 256 and a learning rate of 0.00001 were set for the experiment.
Additionally, several effective techniques, such as Batch Normalization [47], early stopping,
and dropout with a probability of 0.5, were applied to prevent overfitting.

4.2. Performance of Multi-Stream Network
4.2.1. Overall Performance of Different Inputs

In this section, we evaluate the accuracy of various input streams, as described in
Section 3.2. The results provide the following insights. Firstly, we observed that the five-
stream fusion achieved the highest accuracy, suggesting that a greater number of input
features allow the model to capture valuable local and global connections, as shown in
Figure 8. Secondly, the motion data input exhibited suboptimal performance, especially for
the acceleration input. This could be attributed to the model’s heightened focus on potential
dependencies among the vertices of human joints in the temporal domain. Lastly, both
the body input stream and the velocity input stream outperformed other input features
within the same branch. More details about the input feature combinations are presented in
Table 2. Furthermore, Table 3 gives an overview of each model’s average F1 score, precision,
and recall focusing on different input streams. The average precision, recall, and F1 score
of the 5-stream fusion input was around 79% which shows the efficacy of our proposed
action recognition system.

Table 2. Comparison of the action recognition accuracy of different geometric features.

Input Feature 200 Epoch (Acc%) Input Feature 200 Epoch (Acc%)

Body + part + joint + velocity + acceleration 79.75 Body + velocity 74.29
Body 69.13 Body + velocity 72.63
Part 67.55 Part + velocity 75.07
Joint 64.86 Part + acceleration 71.18

Velocity 63.94 Joint + velocity 75.79
Acceleration 39.21 Joint + acceleration 69.87
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Table 2. Cont.

Input Feature 200 Epoch (Acc%) Input Feature 200 Epoch (Acc%)

Body + part + joint 76.02 Body + part + velocity 77.96
Velocity + acceleration 65.61 Body + part + acceleration 76.35

Body + part + joint + acceleration 78.66 Body + part + joint + velocity 79.01

Sensors 2023, 23, x FOR PEER REVIEW 11 of 17 
 

 

4.2. Performance of Multi-Stream Network 
4.2.1. Overall Performance of Different Inputs 

In this section, we evaluate the accuracy of various input streams, as described in 
Section 3.2. The results provide the following insights. Firstly, we observed that the five-
stream fusion achieved the highest accuracy, suggesting that a greater number of input 
features allow the model to capture valuable local and global connections, as shown in 
Figure 8. Secondly, the motion data input exhibited suboptimal performance, especially 
for the acceleration input. This could be attributed to the model’s heightened focus on 
potential dependencies among the vertices of human joints in the temporal domain. 
Lastly, both the body input stream and the velocity input stream outperformed other in-
put features within the same branch. More details about the input feature combinations 
are presented in Table 2. Furthermore, Table 3 gives an overview of each model’s average 
F1 score, precision, and recall focusing on different input streams. The average precision, 
recall, and F1 score of the 5-stream fusion input was around 79% which shows the efficacy 
of our proposed action recognition system. 

 

 
Figure 8. The validation set’s accuracy and loss over training epochs. 
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Table 3. The recall, precision, and F1 scores of action recognition classifications.

Metrics 5-Stream
Fusion Body Stream Part Stream Joint Stream Velocity

Stream
Acceleration

Stream

Recall 0.7875 0.6905 0.6558 0.6432 0.6485 0.3934
Precision 0.8012 0.7013 0.6695 0.6498 0.6278 0.3947
FI score 0.7760 0.6872 0.6743 0.6444 0.6300 0.3853

In this research, we have introduced a novel two-stage feature fusion method aimed at
enhancing the integration of multi-stream features, as depicted in Figure 1. This approach
diverges from many existing studies that directly concatenate all input streams in the
final stage. Specifically, in the early fusion stage, we combined temporal and spatial
dimension features independently. Within the spatial domain, we amalgamated features at
four distinct scales (body, part, joint), enabling the network to effectively explore spatial
characteristics. In the temporal domain, our emphasis lay in motion information obtained
by combining velocity and acceleration features. In the late fusion stage, we consolidated
features from the early stage to investigate the correlation between these two feature types.
The results illustrate that the two-stage fusion strategy outperforms direct concatenation,
resulting in an improvement of approximately 1.25%, as shown in Table 4.
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Table 4. The comparison of results of two-stage fusion strategy and directly concatenating.

Recognition Accuracy Naive Concatenate Two-Step Fusion
Strategy Difference

Acc (%) 79.45 80.7 1.25

4.2.2. Performance of Bottleneck Structure

In Section 3.1.2, we introduced the bottleneck structure into each TCN bottleneck to
reduce the model size and computational cost. The bottleneck structure includes a hyper-
parameter, the reduction rate (r), which determines the number of channels in the middle
layers. To elaborate, considering the fact that the input and output channels are both 32
and choosing a channel reduction rate of r = 2, along with temporal window sizes of 3 and
5, the basic block in this research contains 8192 parameters, whereas the bottleneck block
contains only 2304 parameters, or nearly half the parameters of the basic block. Further
details are presented in Table 5.

Table 5. Comparison with different reduction rates (r) and parameter numbers.

Reduction
Rate (r) Parameter Total Param. Basic Param. Ratio

r = 2
K = 3, 32 * 16 * 1 + 16 * 16 * 5 + 32 * 16 * 1 = 2304

4096 8192 0.5
K = 5, 32 * 16 * 1 + 16 * 16 * 3 + 32 * 16 * 1 = 1792

r = 4
K = 3, 32 * 8 * 1 + 8 * 8 * 3 + 32 * 8 * 1 = 704

1536 8192 0.1875
K = 5, 32 * 8 * 1 + 8 * 8 * 5 + 32 * 8 * 1 = 832

r = 8
K = 3, 32 * 4 * 1 + 4 * 4 * 3 + 32 * 4 * 1 = 304

640 8192 0.078125
K = 5, 32 * 4 * 1 + 4 * 4 * 5 + 32 * 4 * 1 = 336

Note: * represents multiplication operation.

We conducted comparative experiments to illustrate the influence of the bottleneck
structure, as presented in Table 6. The results unmistakably indicate that the bottleneck
structure, especially with a suitable reduction rate (r = 2/4), effectively reduces the model’s
complexity, achieving a significant reduction—of half or even a quarter—in the model
parameters while maintaining a reasonably tolerable decline in model accuracy. This
outcome aligns with the findings in [48].

Table 6. Illustration of the influence of the bottleneck structure.

No Bottle R = 2 R = 4 R = 8

Acc (%) 80.7 79.92 78.79 76.82

4.2.3. Performance with and without Attention

In the discussion in Section 3.1.3, we emphasized that the attention mechanism serves
as an information selection mechanism. By considering the varying degrees of importance
among correlated features, the attention model assigns distinct weights to each input stream,
enabling the model to adaptively focus on critical information. As depicted in Figure 1,
three attention blocks were incorporated individually. To emphasize the advantages of
the attention model, we conducted a comparison of various experiments, including the
proposed stream attention block and benchmark experiments, as illustrated in Figure 9. The
results distinctly demonstrate that the recognition accuracy exhibited the highest increase,
approximately 1.26% after 500 epochs, further validating the necessity and efficacy of the
attention module.

4.2.4. Comparison with Other State-of-the-Art Action Recognition Models

In terms of broader impact, this research conducted a series of comparison experiments
with existing classical action recognition methods. One notable method, ST-GCN [11],
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stands out, as it was the first to employ graphs for extracting dynamic information from
human body skeletons, achieving high accuracy in benchmark datasets for skeleton-based
deep learning. ST-GCN employs nine ST-GCN blocks for spatial and temporal graph
convolutions, followed by fully connected dense layers and a SoftMax classifier for action
prediction. In this study, the key modification lies in the input graphs, along with the
introduction of multi-stream and attention mechanisms to enhance accuracy. Reproducing
ST-GCN on the same CML skeleton dataset showed that our approach outperformed
ST-GCN by 4.68%, affirming the effectiveness of our multi-stream model in recognizing
construction workers’ actions. Meanwhile, to ensure a fair comparison, our method was
also compared to four dynamic modeling models, including the traditional RNN [4]
and two-layer LSTM [6], as shown in Table 7. The traditional RNN showed the poorest
performance, with 72.71 accuracy, while various two-layer LSTMs exhibited better accuracy,
though they still lagged behind our model by about 6.82%. This discrepancy may stem from
the fact that these methods primarily focus on modeling the temporal dynamics of actions,
without fully considering the spatial characteristics unique to construction workers.
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Table 7. Illustrates the influence of the bottleneck structure.

Algorithms Acc (%)

ST-GCN 79.51
2-layer LSTM 77.37

Traditional RNN 72.71
Our approach 84.19

5. Conclusions

In this study, we have presented a novel model with two key innovations. Firstly, we
introduced a multi-scale graph strategy to capture local and contour features, effectively
utilizing three levels of spatial features. Additionally, we incorporated two levels of motion
data to comprehensively capture motion dynamics. Next, the proposed fused multi-stream
architecture integrates five spatial–temporal feature sequences deriving from raw skeleton
data, including body-level, part-level, joint-level, velocity, and acceleration features. Our
experiments have demonstrated the effectiveness of employing additional input features,
leading to notable improvements in recognition accuracy. We observed that intra-frame
features (body-level input + part-level input + joint-level input) outperformed inter-frame
features (velocity and acceleration) by about 10.41%. Moreover, both the body-level stream
and velocity stream yielded superior results compared to the other individual features. The
five-stream direct fusion strategy achieved the highest accuracy, at about 79.75%. Finally,
we also added three attention modules to further improve the accuracy of the whole model,
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and this enabled our model to extract deep and rich features, significantly enhancing its
action recognition performance.

In summary, the recognition of construction workers’ activities is of paramount impor-
tance in optimizing project task allocation and safeguarding the long-term health of the
workforce. Delving into the impact of deep learning frameworks on skeleton-based auto-
mated recognition techniques is a fundamental step in ensuring the safety and productivity
of human workers. With the proliferation of tools for extracting and processing human
skeleton information in the construction sector, the potential and desirability of automated
recognition techniques in future construction sites are evident. This research underscores
the effectiveness of the multi-scale graph strategy and the fusion of diverse spatial–temporal
features in enhancing action recognition models. These advancements offer the potential
not only to refine action recognition but also to make substantial contributions to enhancing
workplace safety and efficiency, particularly within the construction industry.
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