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Abstract: This paper proposes, analyzes, and evaluates a deep learning architecture based on trans-

formers for generating sign language motion from sign phonemes (represented using HamNoSys: 

a notation system developed at the University of Hamburg). The sign phonemes provide infor-

mation about sign characteristics like hand configuration, localization, or movements. The use of 

sign phonemes is crucial for generating sign motion with a high level of details (including finger 

extensions and flexions). The transformer-based approach also includes a stop detection module for 

predicting the end of the generation process. Both aspects, motion generation and stop detection, 

are evaluated in detail. For motion generation, the dynamic time warping distance is used to com-

pute the similarity between two landmarks sequences (ground truth and generated). The stop de-

tection module is evaluated considering detection accuracy and ROC (receiver operating character-

istic) curves. The paper proposes and evaluates several strategies to obtain the system configuration 

with the best performance. These strategies include different padding strategies, interpolation ap-

proaches, and data augmentation techniques. The best configuration of a fully automatic system 

obtains an average DTW distance per frame of 0.1057 and an area under the ROC curve (AUC) 

higher than 0.94. 

Keywords: motion generation; motion dataset; sign language; sign phonemes; HamNoSys;  

landmarks extraction; interpolation; padding strategies 

 

1. Introduction 

Motion generation is an innovative research field which consists of producing move-

ments, gestures, or animations by computer systems. This process involves the use of 

mathematical algorithms to create dynamic, natural, and fluid motions that simulate hu-

man movements, enhancing human–computer interactions. Motion generation has many 

different applications, such as movement of virtual characters in video games or animated 

films, robotics, and sign language representation in communication systems for deaf peo-

ple. In sign language communication systems, motion generation allows for an increase 

in the naturality of interactive avatars or virtual assistants that respond with a sign lan-

guage output. Increasing naturality allows for the development of friendly communica-

tion systems between deaf and hearing people. These systems empower and enhance the 

communication capabilities of deaf individuals, encouraging inclusivity and facilitating 

their integration into various social and professional scenarios. 

Most state-of-the-art sign language motion generation systems are based on expert 

rules or prerecorded movements. This work proposes to train a module to automatically 

generate sign language motion from sign phonemes, represented using HamNoSys [1]. 

The proposed generation system is based on deep learning using a transformer-based 
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approach [2]. HamNoSys is a phonetic transcription system for sign language, which in-

cludes sign characteristics or phonemes such as hand location, shape, and movement. 

To the best of the authors’ knowledge, the proposed system is the first motion gener-

ation system for sign language based on transformers. The main contributions of this pa-

per are the following: 

• Proposal and evaluation of a deep learning architecture based on transformers for 

generating the sequence of landmarks to represent a sign. 

• This proposed approach also includes a stop module for deciding the end of the gen-

eration process. This stop module is also evaluated in different scenarios. 

• Additional analyses for improving the system accuracy, considering different pad-

ding strategies, interpolation approaches, and data augmentation techniques. 

This paper is organized as follows. Section 2 reviews the literature, discussing differ-

ent previous studies related to the topic of this work. Section 3 describes the dataset used 

for this work. Section 4 contains the methods used, including the system architecture, 

specifying the motion generation, the stop detection module, and the strategies to improve 

the system performance. Section 5 includes the evaluation details and discusses the exper-

iments and the obtained results, and Section 6 presents the results, combining motion gen-

eration and stop detection in the same system. Finally, Section 7 summarizes the main 

conclusions of the paper. 

2. Related Work 

Motion generation is a research field aimed at developing realistic 2D or 3D anima-

tions based on different inputs such as image sequences, speech recordings, or text de-

scriptions. In the literature, we found several datasets for motion generation and different 

evaluation metrics to assess the quality of generated motion. This section reviews some 

previous works about motion generation, including information about evaluation metrics 

and specific works related to sign language. 

2.1. Motion Generation 

Within human motion modeling [3–6], motion generation aims at creating realistic 

animations to simulate human gestures and movements in virtual avatars. This generation 

can be achieved using different types of information as inputs to the systems: image se-

quences, speech recordings, or text descriptions that represent a specific movement. Some 

previous works [7,8] focused on generating articulated motion RGB video sequences by 

estimating the human pose based on a single frame image. The proposed approach incor-

porated constraints from 2D/3D skeleton points and used generative adversarial networks 

(GAN) to generate a more human-like 3D human model. Other works have focused on 

generating animated avatars from audio. For instance, Shlizerman et al. [9] developed an 

avatar that moved its hands similarly to how a pianist or violinist would do using music 

as input. The authors trained a long short-term memory (LSTM) network considering au-

dio features such as mel-frequency cepstral coefficients (MFCC) from violin and piano 

recital videos. Regarding the use of text description to generate motion, a previous work 

[10] generated 3D human motion sequences given a prescribed action type. The proposed 

approach used a conditional temporal variational autoencoder (VAE) approach endowed 

with Lie algebra representation. 

2.2. Metrics for Motion Generation 

Regarding the assessment of the generated motion, there are several possible ways 

to proceed. Some metrics, like smoothness, refer to how natural the generated motion is, 

and others, such as diversity or multimodality [10], refer to how realistic the generated 

motion is, including variance across all action categories or variety within each action 

class. However, there exist metrics that objectively determine how similar the generated 

motion is compared to the ground truth. Some of these objective metrics are Fréchet 
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inception distance (FID), probability of correct key points (PCK), average position error 

(APE), and dynamic time warping (DTW). FID refers to the distance between the feature 

distribution of generated motion and the ground truth [10]. PCK scores evaluate the prob-

ability of pose key points to be close to the ground truth key points up to a specific thresh-

old, with higher PCK corresponding to better pose generations [11]. APE covers the error 

for all the locations of the human pose (landmarks) at all times [12], computing the aver-

age position error. DTW finds an optimal alignment between two landmark time series 

by non-linearly warping them. A lower DTW corresponds to better landmark sequence 

generations [11].  

Even though all these metrics have been used in the literature, some previous works 

have highlighted the efficacy of DTW compared to others, especially for aligning land-

marks sequences. For example, a previous work [13], focusing on the motion capture data 

of the human gait, used DTW as a measure to align time instants, concluding that DTW is 

an effective technique in motion data analysis. In addition, another previous work [14] 

used a DTW-based metric to assess Kinect-enabled home-based physical rehabilitation 

exercises. They used this metric to compute motion similarity between two time series 

from an individual user and a virtual coach. They concluded that a DTW-based metric 

could be effectively used for the automatic performance evaluation of motion exercises. 

Moreover, a recent work [15] focused on determining which is the best automated metric 

for text to motion generation. The authors concluded that commonly used metrics such as 

R-Precision (a distance-based metric that measures the rate of correct motion prompt pair 

matchings) show strong correlations with the quality of the generated movement.  

In this work, we use a DTW-based metric to evaluate the proposed landmark gener-

ation model. The metric consists of using DTW to align the sequences of ground truth and 

generated landmarks, and computing the average error between them. 

2.3. Sign Language Generation 

Some previous works in the literature have directly focused on sign language motion 

generation, exploring the interplay between linguistic expression through videos or tex-

tual descriptions and physical movements that represent that language. 

A recent work [16] proposed a pose-based approach for gloss prediction using a 

transformer model and datasets of Word-Level American Sign Language (WLASL) [17]. 

Particularly, they used WLASL100, which contains 2038 videos from 100 glosses and 97 

signers, and WLASL300, which includes 5117 videos from 300 glosses and 109 signers. 

The authors achieved the top 1% recognition accuracy of 80.9% in WLASL100 and 64.21% 

in WLASL300 via a key frame extraction technique that used histogram difference and 

Euclidean distance metrics to select and drop redundant frames. This work also used data 

augmentation based on joint angle rotation. Another work [18] extracted landmarks from 

videos of British Sign Language using MediaPipe, but in this work, the landmarks were 

used as input to CNN and LSTM-based classifiers. 

Some works focused on generating motion from natural language. For example, in a 

previous work [12], the authors built a neural architecture able to learn a joint embedding 

of language and pose, mapping linguistic concepts and motion animations to the same 

representation space. They used the KIT Motion-Language Dataset, reaching PCK scores 

of 70% when using a threshold of 55 mm. Another work [19] used complex natural lan-

guage sentences to generate motion through an encoder-decoder structure. They used a 

hierarchical two-stream model (pose and sentence encoders) along with a pose discrimi-

nator. In this case, the model also learned a joint embedding for both pose and language. 

Other works generated motion from speech. For instance, a previous work [11] fo-

cused on converting speech segments into sign language through a cross-modal discrim-

inator, allowing the network to correlate between poses and speech time-steps. They ob-

tained a DTW distance of 14.05 over an Indian Sign Language dataset. Another work [20] 

used a BERT encoder to transform source sentences to context vectors and a transformer 

decoder to generate Korean Sign Language sequences. 
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Finally, a previous paper [21] provided a method to automate the process of Indian 

Sign Language generation using plain RGB images. The method leverages animation data, 

using an intermediate 2D OpenPose representation, to train a sign language generation 

model. 

2.4. Sequence Generation Based on Transformers 

The state-of-the-art technology for sequence generation is based on transformers. 

This technology has been used to generate different types of sequences. Li et al. [22] used 

a transformer-based architecture for speech synthesis. Their work focused on the use of a 

multi-head self-attention mechanism to enable end-to-end neural text-to-speech synthesis, 

similar to Tacotron2 [23]. By leveraging the power of multi-head and self-attention mech-

anisms, their work built the decoder and encoder in parallel, resulting in improved train-

ing efficiency. The transformer TTS model takes phoneme sequences as input and predicts 

mel-spectrogram sequences as output (these are converted to audio sequences with a vo-

coder). 

This previous system [22] has a strong analogy with the system developed in this 

paper: instead of generating speech from phonemes, we target the generation of sign lan-

guage motion from sign phonemes. To the best of the authors’ knowledge, in the litera-

ture, there is not any previous work focused on generating Spanish Sign Language (LSE: 

Lengua de Signos Española) using transformers (state of the art technology for modelling 

sequences). This paper proposes the first LSE generation system from sign phonemes or 

characteristics. 

3. Dataset 

The dataset used in this work includes sign descriptions (phonemes specified in 

HamNoSys), sign videos, and landmarks for each frame of the videos [24]. The dataset 

includes 754 different signs represented by three different subjects with three different 

orientations. The synthetic videos were generated using the software developed by the 

Virtual Humans Group in the School of Computing Sciences at the University of East An-

glia [25]. This software can be used on terms equivalent to Creative Commons BY-ND, 

allowing its use for research. This dataset includes content of a total of 6786 signs. For the 

experiments in this work, we used only the orientation facing forward: 2262 sign repre-

sentations in total (754 signs represented by three different subjects). For each video gen-

erated we periodically obtained a frame, resulting in an average of 21 frames per sign. 

Figure 1 shows a histogram of frames per sign, where it is possible to observe that most 

of the signs contain between 10 and 30 frames. 

 



Sensors 2023, 23, 9365 5 of 21 
 

 

Figure 1. Histogram of frames per sign. 

3.1. HamNoSys or SiGML Sign Characteristics 

This dataset includes sign phonemes represented using HamNoSys [1]. This notation 

system is transformed into Signing Gesture Markup Language (SiGML) annotations for a 

better processing [26,27]. SiGML is a simplified XML (Extensible Markup Language) for-

mat that preserves the same information as the HamNoSys description of a sign but is 

designed to be processed by computers. This notation includes aspects related to the body 

and specifically to the hand movements that describe the motion used to perform a sign. 

For example, Figure 2 includes the SiGML annotation for the gloss “AMO”, which means 

“love”. The sign characteristics or sign phonemes (coded using HamNoSys notation) are 

crucial in the context of sign motion generation because they univocally represent every 

sign, and they also contain a detailed description of the sign representation. This way, 

they are the best information we can introduce into the transformer architecture in order 

to generate the landmark sequences required to represent sign language. 

 

Figure 2. SiGML example representation of the gloss “AMO”. 

3.2. Landmarks Extraction Using MediaPipe 

This dataset includes landmarks (the x and y coordinates) of 57 pose and hand rele-

vant points extracted with MediaPipe [28] for each frame. All coordinates have values in 

the [0.0, 1.0] interval considering the height and width of the input images.  

These 57 landmarks specify 15 locations of the body including the face, shoulders, 

and elbows, and 21 locations for each hand including the wrist and four points along each 

of the five fingers. Figure 3 shows the extracted landmarks over a frame. 

 

Figure 3. Landmarks over a frame from the sign “AMO” performed by one of the avatars (red land-

marks are related to right hand, orange and yellow ones are related to the left hand, and green ones 

are related to the body). 

For this representation, it was necessary to combine MediaPipe Pose and MediaPipe 

Hands models to extract information from the whole body, and from both hands without 

ambiguity. 

4. Methods 

This section describes the methods used in this work: a transformer-based architec-

ture to generate motion, which includes a stop detector. This description includes also the 

different variants considered in the experiments: several padding strategies, interpolation 

approaches, and data augmentation techniques.  
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4.1. System Architecture 

In our proposal, we used a transformer-based architecture, similar to the architecture 

used in a previous work [22] for speech generation. In our case, we made certain modifi-

cations to adapt the inputs and outputs of the modules constituting the transformer (en-

coder and decoder modules): translating sign characteristics into landmark-based motion. 

The system includes a stop mechanism to limit the duration of the generated sequence. 

To develop this architecture, we used a transformer code implemented with 

keras_nlp [29]. In our architecture, the input data consist of the sign phonemes for the 

encoder, and the landmarks for the decoder. The encoder takes the sign phonemes and 

processes them using self-attention and feed-forward neural networks. Self-attention al-

lows the model to weigh the different sign characteristics in the encoder input data, em-

phasizing the most relevant ones for each output. The decoder generates an output se-

quence of landmarks based on the sign phonemes and previously generated landmarks. 

The decoder output includes the predicted landmarks at this step, and also a binary out-

put for indicating the end of the sign (stop token) (Figure 4).  

 

Figure 4. Diagram of the whole architecture to generate motion from the sign characteristics. 

The encoder module codes the sign phonemes in order using a token and position 

embedding layer, which prepares the data for further processing by the decoder. This 

layer sums a token and position embedding to generate an embedding vector for each 

sign phoneme. The decoder takes a sequence of landmark vectors as inputs, which do not 

require tokenization, so only a positional embedding layer is needed. This layer learns a 

position embedding for decoder inputs sequences. 

The decoder aims to predict the next set of landmarks based on the encoder infor-

mation and the previous landmarks.  

In summary, the system generates two outputs: the predicted landmarks and a stop 

output, which indicates the end of the generated sequence. The system architecture incor-

porated two distinct loss functions to optimize its performance. The mean absolute error 

(MAE) was employed for the generation of landmarks, providing a measure of the 
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absolute difference between the predicted and ground truth landmark coordinates. Sim-

ultaneously, the binary cross-entropy loss function was strategically integrated into the 

architecture for the binary classification of the stop detector. Various techniques for rep-

resenting each sign through landmarks and designing the stop output will be analyzed in 

the following subsections. 

To implement the whole system including the landmark generation and the stop de-

tection layer, we have included two different output layers in the decoder (Figure 4). These 

layers are trained independently: the transformer is trained for landmark generation, and 

then only the stop layer is retrained considering the stop output. By using this approach, 

the transformer is capable of simultaneously predicting both the landmarks and the stop 

output. The end of the landmark sequence is determined by defining a threshold in the 

stop output: when the stop output is higher than the threshold, the end is detected. In the 

experiments, we will analyze the effect of this threshold. 

The primary focus of the proposed deep learning architecture based on transformers 

is generating sign language motion sequences based on landmarks, using sign phonemes 

as input. 

4.2. Motion Generation 

This section outlines the processes undertaken for generating the landmarks using 

the transformer architecture.  

4.2.1. Formatting the Data 

To generate the predicted landmarks for the transformer, we used a subset of the 

database described in Section 3.  

For the encoder’s inputs, we used the SiGML representations of the signs. We only 

used the sign phonemes corresponding to the manual aspects (hand characteristics: hand 

configurations, locations, and movements). These characteristics are compiled in a single 

line, as shown in Figure 5.  

 

Figure 5. SiGML example representation of the letter “A”. 

Secondly, for the decoder’s input we used the landmarks described in Section 3. Ad-

ditionally, we fixed the number of frames per example to 80 because of the duration of the 

longest sign. By doing so, all examples had equal number of frames, enabling us to con-

struct a three-dimensional matrix that includes all examples. This resulted in 2262 exam-

ples, with each sign consisting of 80 frames, and 57 landmarks (with two coordinates, x 

and y) that makes 114 numbers in total, as shown in Figure 6. 

 

Figure 6. Representation of the decoder input format (different colors for each frame landmarks). 
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4.2.2. Tokenizing the Encoder Inputs 

In our system, only the encoder inputs need to be tokenized. To accomplish this, we 

considered the WordPiece tokenization algorithm, used by BERT and other models, that 

splits the text, in our case the hand configurations, into smaller units called tokens [30].  

We trained the transformer considering two reserved tokens: 

• [PAD]: Padding tokens which are appended to the input sequence length when the 

input sequence length is shorter than the maximum sequence length. 

• [UNK]: Unknown tokens. 

Here is an example of tokenizing and detokenizing an entry of the encoder, where 

next indicates the end of the sequence.  

• Hand Configurations: hamflathand hamthumboutmod hamextfingeru hampalmu 

hamshoulders hamlrat hamparbegin hammovei hamarcu hamreplace hamextfin-

gerui hampalmd hamparend hamrepeatfromstart next next  

• Tokens: tf.Tensor ([49 43 38 47 41 40 34 86 90 46 131 44 35 55 36 36], shape = (16,), 

dtype = int32)  

• Recovered text after detokenizing: hamflathand hamthumboutmod hamextfingeru 

hampalmu hamshoulders hamlrat hamparbegin hammovei hamarcu hamreplace 

hamextfingerui hampalmd hamparend hamrepeatfromstart next next 

4.2.3. Landmark Generation 

Having defined the entire data processing pipeline, the last step is to construct the 

transformer model. The inputs and output of the transformer differ during training and 

inference: 

• During training, the tokenized sign characteristics are passed as inputs to the en-

coder. The decoder inputs are the landmarks of the first frames [0 to end −1 frames] 

and the output are the last frames [1 to end frames]. This way, the model is auto-

regressive (the output of the current step depends on previous steps), being trained 

in teacher forcing mode (using previous ground truth landmarks for predicting the 

next landmark). 

• During testing, the tokenized sign characteristics are also passed as inputs to the en-

coder. The main difference is in the decoder. The inputs of the decoder start with the 

landmarks of a resting position and, iteratively, the predicted landmarks generated 

by the transformer (next frame) are fed back as inputs to the decoder, allowing the 

transformer to predict the next set of landmarks based on the previous ones (auto-

regressive loop). 

Figure 7 shows two simplified block diagrams of the training and testing processes, 

respectively.  

 

Figure 7. Block diagrams of the transformer inputs. 

4.3. Stop Detection 

The stop information (indicating with 1 when to stop) is incorporated into every 

frame, as an additional column: 0 when a sign is taking place, and 1 to represent the end 

of a sign (Figure 8). 
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Figure 8. Representation of the decoder input with the stop information. 

4.4. Padding Strategies 

In this work, we implemented and evaluated several padding strategies for making 

the sign language sequences have the same length. 

In the first strategy, zero padding, all the signs of the landmark-based sequences are 

padded with zeros at the end until they reach a fixed maximum length (80 frames in our 

case). This approach extends the shorter sequences to match the length of the longest se-

quence in the dataset. The second strategy, sign padding, consists of repeating the sign 

until the sequence reaches a fixed maximum length. Finally, the third strategy, hybrid 

padding, combines both ideas, padding with zeros and repetition of the sign: an interca-

lation of several zero frames is included before repeating the sign. In this work, three zero 

frames have been included between sign sequences. 

These padding strategies only affect the landmarks. The stop information is fixed to 

0 for the first occurrence of the sign and 1 for the rest of the frames until the maximum 

length is reached. 

Figure 9 shows an example of the three padding strategies over a hypothetical origi-

nal sign with four frames and considering F as the maximum length (80 in this work). As 

observed in the figure, the stop column is equal independently of the padding strategy: it 

has zeros for the actual frames of the sign (the first time that it appears) and ones for the 

rest of the frames until the maximum length of the sign is reached. 

 

Figure 9. Representation of the different padding strategies considered in this work. The stop infor-

mation is the same in all cases. 

In the experiment section, the impact of the padding strategy will be evaluated in 

both transformer outputs: landmark generation and stop detection. 

4.5. Frame Interpolation 

The proposed approach based on a transformer predicts the landmarks of a frame 

given in the previous frames, generating the whole sequence in an iterative process. This 

prediction is more difficult when there are big differences in consecutive frames. One in-

teresting idea to facilitate the learning process of the transformer is to reduce these 
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differences by interpolating intermediate frames. We considered and evaluated a linear 

interpolation of one, two, or three intermediate frames between two original frames. 

4.6. Data Augmentation 

Data augmentation is a technique commonly used in machine learning to artificially 

increase the size and diversity of the training subset by applying different transformations 

to the existing data. This helps to improve the generalization and robustness of machine 

learning models. In the context of landmark representations, we applied two data aug-

mentation techniques: shifting and zooming. 

For shifting, we added a random number between −0.2 and 0.2 to all the landmark 

coordinates in a sign, displacing the signing subject. 

For zooming, we compressed or expanded the images by 10% from the center of the 

scene. First, the center was subtracted from the landmark points, and then we multiplied 

each coordinate of the landmark points by a random number between 0.9 and 1.1. And at 

the end, we summed the center to the landmarks. This process uniformly compresses or 

expands the size of the landmark representation from the center of the scene. 

These techniques increased the diversity of data, which could enable the model to 

better handle different positions, sizes, and scales of landmarks, improving its ability to 

accurately identify and localize landmarks in unseen and diverse data. We evaluated the 

impact of introducing these additional data during the training process. 

5. Experiments and Discussion 

The evaluation methodology in the experiments was a 5-fold cross-validation, where 

the 2262 examples were divided into five groups or folds to train, validate, and test the 

system with different data. Specifically, 80% of the data was used for training, 10% for 

validation, and 10% for testing. The data splitting and the system evaluation were re-

peated five times, with different subsets. The final results were the average of the out-

comes obtained from all iterations. 

The validation subset is used to optimize the hyperparameters of the transformer-

based architecture:  

• Optimizer: Adam optimizer 

• Number of epochs: 250 

• Batch size: 32 

• Number of attention heads: 6 

• Learning rate: 0.001 

• Dropout rate: 0.3 

• Intermediate dimension: 1024 

• Embedding dimension: 128 

In the next sections, we evaluate in detail the process of generating the landmarks 

and the detection of the stop frame. These two aspects were independently examined to 

analyze which is the optimal setup for both tasks (landmark generation and stop detec-

tion) in terms of padding strategy, interpolation, and the use of data augmentation. 

5.1. Motion Generation 

To assess the quality of motion generation, we used the dynamic time warping 

(DTW) distance that compares ground truth and generated motion sequences. The goal of 

this metric is to find the best mapping between the predicted sequence of landmarks and 

the ground truth sequence. This best mapping corresponds to the minimum accumulated 

distance, computed by the DTW using dynamic programming. This distance is divided 

by the length of the sign (in frames). The required distance between two landmark frames 

is defined by Equation (1), where the subscripts “O” and “P” indicate the original and 

predicted frames, respectively, and the subscript “i” denotes the landmark number. In this 
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work, we used the DTW functionality obtained from the dtaidistance.dtw_ndim.distance 

Python function [31]. 

DTW(O, P) = ∑ √(xOi − xPi)
2 + (yOi − yPi)

2

N

i=0

 (1) 

It is important to highlight that, in this subsection, we compute the DTW distance per 

frame between the predicted landmark-based motion sequence and the ground truth, as-

suming a perfect detection of the stop frame. As needed by the analysis, we will include 

the effect of automatically detecting the stop frame. 

Figure 10 shows two DTW values obtained for two frame sequences to provide a 

visual reference of this performance metric. The left part shows a low DTW value for a 

well-predicted sign and the right part shows a very high value for a badly generated sign 

(big differences between predicted and ground truth frames). 

 

Figure 10. Examples of DTW values and the corresponding frame sequences (every landmark has 

a different color). 

In the next subsection, we compare the different padding strategies, interpolation 

approaches, and data augmentation techniques. 

5.1.1. Evaluation of Padding Strategies 

Figure 11 shows the DTW distance distributions along the testing subset using violin 

charts. As shown, the zero padding strategy, where we included zeros after the sign, pro-

vided higher values of DTW distance between the predicted landmark-based motion se-

quence and the ground truth. However, sign padding and hybrid padding obtained better 

distributions of DTW values (lower DTW distances). Comparing these last two strategies, 

we can conclude that the best one is sign padding because of its lower DTW value. The 

violin charts efficiently illustrate the distributions of the DTW distances for all predicted 
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examples. This representation allows us to compare different distributions obtained in 

different experiments. These DTW distributions provide more information than consider-

ing only the DTW average in each experiment. For example, we observed different pat-

terns when comparing the padding strategies: using zero padding, the DTW values were 

distributed in two distinct Gaussian distributions, while when employing hybrid pad-

ding, the DTW values were spread across a broader Gaussian shape, punctuated by a few 

outliers. In contrast, DTW distances when employing sign padding were concentrated 

within a narrower Gaussian, with lower DTW values compared to the two previous strat-

egies. 

 

Figure 11. DTW results for the validation subset considering the different padding strategies. 

Additionally, Table 1 includes the average DTW values and the standard deviation 

for each analyzed scenario. 

Table 1. DTW mean and standard deviation depending on the padding strategy. 

 Zero Padding Sign Padding Hybrid Padding 

DTW mean and std 0.3738 ± 0.2269 0.1880 ± 0.0857 0.2406 ± 0.1423 

We hypothesize that sign padding works better than the other two strategies because 

we provide the transformers with more examples and opportunities to learn how to gen-

erate the landmarks of the next frame. 

5.1.2. Evaluation of Interpolation Strategies 

Having concluded that the best padding strategy for landmark generation is sign 

padding, this section will examine the effect of interpolation. As commented previously, 

the purpose of introducing intermediate frames is to smooth the landmark sequences and 

facilitate the learning process of the transformer-based architecture. 

Figure 12 illustrates the distributions obtained for the DTW distance when adding 

one interpolated frame (“IntPol-1”), two interpolated frames (“IntPol-2”), and finally, 

three interpolated frames (“IntPol-3”). In this figure, narrower Gaussian distributions 

were obtained when interpolations were computed compared to the no interpolation ex-

periment. 
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Figure 12. DTW results for the validation subset considering the different interpolation strategies 

using the sign padding strategy. 

Table 2 presents the average DTW values and standard deviation for each interpola-

tion. 

Table 2. DTW mean and standard deviation depending on the interpolation approach. 

 No IntPol IntPol-1 IntPol-2 IntPol-3 

DTW mean and std 0.1880 ± 0.0857 0.0640 ± 0.0215 0.0523 ± 0.0177 0.0456 ± 0.0149 

From these results, we can conclude that the interpolation helps the training process 

obtain a significant reduction in the DTW distance: the average distance is around 0.05, 

and all examples are lower than 0.2. As shown, when increasing the number of interpo-

lated frames, we observed a saturation behavior of the system with a small difference be-

tween two and three interpolations. We think that using only two interpolated frames can 

be a good compromise between performance and time processing. 

5.1.3. Data Augmentation 

Finally, we evaluated the system incorporating synthetic data in the training of the 

transformer. In the next figure (Figure 13), we show the DTW distance distribution for the 

original sign padding strategy (without interpolation or data augmentation), sign pad-

ding with interpolation (without data augmentation), and sign padding with interpola-

tion and data augmentation. As shown in this figure, similar Gaussian distributions were 

obtained when including the data augmentation compared to using only the interpola-

tion. 
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Figure 13. DTW results for the validation subset including the different techniques. 

Table 3 shows the average DTW values and the standard deviations. 

Table 3. DTW mean and standard deviation considering data augmentation. 

 Sign Padding 
Sign Padding + 

IntPol- 2 

Sign Padding + IntPol-2 

+  

Data Augmentation 

DTW mean and std 0.1880 ± 0.0857 0.0523 ± 0.0177 0.0677 ± 0.0340 

As shown, we did not obtain any improvement when introducing the augmented 

data during the training of the transformer. Analyzing the results, we observed a good 

match between the training and testing subsets (all examples have the same point of view), 

and introducing modified data did not improve the results. In future work, we will con-

sider more different subsets for training and testing. 

5.2. Stop Detection Evaluation 

To evaluate the stop detection module, since this detection is a binary classification 

task, standard evaluation metrics for two classes were used for evaluating the perfor-

mance: accuracy, receiver operating characteristic (ROC) curves, and area under the curve 

(AUC). Accuracy is defined as the ratio between the number of correctly classified samples 

and the number of total samples. ROC is a curve representing the true positive rate (TPR) 

versus the false positive rate (FPR) obtained at several thresholds settings. AUC refers to 

the ratio of the area under the ROC curve. This measure represents the separability be-

tween two classes. The higher the AUC, the better the model distinguishes between the 

two classes of the binary classification problem. 

For accuracy values, we also considered confidence intervals [32] to analyze the sta-

tistical significance of the differences between the two experiments. We can establish a 

significant distinction between the results of two experiments when their confidence in-

tervals do not overlap. Equation (2) represents the computation of confidence intervals 

attached to a specific metric value and N samples when the confidence level is 95%. 

𝐶𝐼(95%) = ±1.96√
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 × 100 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

𝑁
 (2) 
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To analyze the statistical significance of the AUC differences in the two experiments, 

we provided two-tailed p-values. 

As in the previous section, we analyzed the impact of the different padding strate-

gies, interpolation approaches, and data augmentation techniques for the stop detection.  

5.2.1. Evaluation of Padding Strategies 

To determine the best padding strategy, we analyzed the AUC values with the corre-

sponding p-values. Table 4 presents the AUC values for each padding strategy, along with 

the study of the two-tailed p-value between the sign padding and hybrid padding strate-

gies, as they are the best strategies. Figure 14 shows the ROC curves for the three padding 

strategies. 

Table 4. AUC. Padding strategies. 

 Zero Padding Sign Padding Hybrid Padding 

AUC 0.93282 0.93571 0.94025 

p-value 0.013971                 0.00007 

 

Figure 14. ROC curves for the stop output detection depending on the padding strategy. 

As observed, all padding strategies showed very good results with AUCs over 0.93. 

The hybrid padding strategy provided the highest AUC value. Furthermore, the p-value 

analysis confirmed the significance of the difference between hybrid padding and the rest 

of strategies. 

5.2.2. Evaluation of Interpolation Strategies 

After selecting the hybrid padding strategy, we proceeded to analyze the effect of 

interpolation on stop detection. Similarly to the previous section, we analyzed AUC val-

ues and ROC. Table 5 shows the AUC values and p-value analysis for the three interpola-

tion approaches using a hybrid padding strategy, and Figure 15 shows the associated ROC 

curves. As observed in Table 5, the p-value between the AUC of “No Inter” and “IntPol-1” 

experiments, and the p-value between the AUC of “IntPol-2” and “IntPol-3” were higher 

than 0.001, which implies that the differences between these experiments were not statis-

tically significant. However, the p-value between the AUC of “IntPol-1” and “IntPol-2” 

was lower than 0.001, which determines a significant improvement: including two inter-

polated frames provided significant better results than using no interpolation. 
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Table 5. AUC. Interpolation. 

 No Inter IntPol-1 IntPol-2 IntPol-3 

AUC 0.94025 0.94133 0.94379 0.94297 

p-value 

0.264679   

 0.000526  

  0.161873 

 

Figure 15. ROC curves for stop detection depending on the interpolation approach using the hybrid 

padding strategy. 

As observed, introducing interpolated frames obtained improvements compared to 

no interpolation. These results are consistent with the improvement already obtained in 

landmark generation. When comparing the number of interpolated frames, we observed 

a better AUC with two interpolated frames, but the differences were not significant. We 

can conclude that interpolating with two frames is a good compromise between perfor-

mance and processing time, and it is also consistent with the best scenario regarding in-

terpolation obtained in landmark generation.  

5.2.3. Evaluation of Data Augmentation 

Lastly, similar to the evaluation of motion generation, we assessed the effect of ap-

plying data augmentation by employing the hybrid padding strategy and adding two 

rows of interpolation. This analysis will help us to understand the impact of data augmen-

tation on the overall performance. 

Table 6 shows the AUC values and the p-value between the hybrid padding + inter-

polation of two frames strategy and the hybrid padding + interpolation of two frames + 

data augmentation strategy. 

Table 6. AUC. Data Augmentation. 

 Hybrid Padding 
Hybrid Padding + 

IntPol-2 

Hybrid Padding + IntPol-2 + Data Aug-

mentation 

AUC 0.94025 0.94379 0.97653 

p-value 
0.000097  

 <0.000001 
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As observed, applying data augmentation resulted in a better AUC value for the stop 

detector due to the increase in the number of examples in the training process. Addition-

ally, the analysis of the p-value confirmed statistical independence between the results. 

This significant difference supports the conclusion that the interpolation and data aug-

mentation strategies improved the performance of the stop detector.  

Despite obtaining better results with data augmentation in the stop detector, subse-

quent experiments continued without this strategy. This decision was based on the obser-

vation that data augmentation did not provide any improvement in landmark generation. 

Thus, to maintain consistency and focus on the most effective strategies, data augmenta-

tion was not applied to subsequent experiments for landmark generation. 

5.2.4. Evaluation of the Decision Threshold 

In order to extend the analysis, we showed the detection accuracy depending on the 

decision threshold. We also showed the average length (in number of original frames) of 

the ground truth and predicted sequences, and the length difference between them. We 

carried out this analysis with the architecture obtained in the previous subsections (hybrid 

padding with two interpolated frames). Table 7 shows the different values of validation 

accuracy for different thresholds, along with their confidence intervals.  

Table 7. Threshold analysis for the stop output detection: validation accuracy, confidence interval, 

average number of predicted frames, average number of frames in the reference, and average dif-

ference (best results in bold font). 

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Val. Accuracy 89.06 89.89 90.28 90.49 90.64 89.37 86.50 85.49 83.85 

Confidence Interval ±0.218 ±0.210 ±0.207 ±0.205 ±0.203 ±0.215 ±0.238 ±0.250 ±0.257 

Average # Pred. 15.03 16.08 16.99 18.53 19.23 21.17 25.32 26.99 29.37 

Average # Refer. 21.60 21.60 21.60 21.60 21.60 21.60 21.60 21.60 21.60 

Average Difference −6.35 −5.52 −4.61 −3.07 −2.37 −0.43 3.72 5.39 7.77 

The table also includes the difference between the number of predicted frames by the 

transformer and the number of frames of the ground truth. This analysis also allowed us 

to examine the effect of the threshold on this aspect. 

When increasing the threshold, the average number of predicted frames increases. 

Considering that the automatic system can generate signs with a different pace compared 

to the ground truth (faster or slower sign representations), we decided to select the thresh-

old based on the detection accuracy. In this case, we can conclude that the threshold re-

porting the best validation accuracy was 0.5. 

In Figure 16, a violin plot is displayed representing the predicted frames, the refer-

ence frames, and their differences for a 0.5 threshold. It can be observed that while there 

are some signs with slight differences, many signs have a similar number of frames. 

 

Figure 16. Number of predicted and reference frames. 
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6. Final Experiment 

In this section, we present the results with the test subset combining motion genera-

tion and stop detection (with a 0.5 threshold) in the same system. For this purpose, we 

considered a scenario where both systems performed well, and we chose the sign padding 

strategy, as it was the best scenario for landmark generation, along with two interpolated 

frames. Table 8 displays the DTW value obtained along with its standard deviation and 

the comparison between the analysis made in the previous section.  

Table 8. DTW mean and standard deviation including the stop detector. 

 Sign Padding 
Sign Padding + 

Stop Detector (0.5) 

Sign Padding  

+ IntPol-2 

Sign Padding + IntPol-2 

+ Stop Detector (0.5) 

DTW mean 

and std 
0.1880 ± 0.0857 0.1908 ± 0.0992 0.0523 ± 0.0177 0.1057 ± 0.0659 

Figure 17 displays a violin plot representing these values along with their distribu-

tions, where we observed that when including the stop detector, the distributions of DTW 

values were wider comparing to the ones when it was not included.  

 

Figure 17. DTWs results comparing best scenarios with the final experiment. 

As observed, when adding the stop detector, the DTW worsened compared to the 

best scenario analyzed in the previous sections. However, even with the addition of the 

stop detector, we achieved a DTW value lower than the one obtained in the scenario where 

only the sign padding strategy was applied without the stop detector (using perfect sign 

limits). The degradation when using the stop detector was not constant in all experiments; 

for example, when considering the stop detector without interpolation, we observed a 

higher performance degradation (average DTW of 0.1908 ± 0.0992) than in the case with 

interpolation (average DTW of 0.1057 ± 0.0659). This result is because both systems (land-

mark generation and stop detector) share the same transformer (a relevant part of the 

deep learning architecture), and the quality of the transformer has a strong influence on 

the performance of both tasks. 

Considering previous research focusing on generating pose animation from natural 

language, a previous work [12] provided an average positional error of 49.5 mm. In our 

system, the landmarks are scaled within the range of 0 to 1, and the frames represent an 

individual from the hip upward, equating to approximately 1.2 m. Through our analysis, 

we determined an accumulated error of 0.1 across the 57 landmarks (for our best system). 

This error corresponds to an average error of 2.1 mm per landmark. This result implies a 

noticeable improvement comparing to the previous work. Moreover, certain landmarks, 

such as those related to the face and shoulders, remain relatively static (very low errors), 

whereas others, like those included in arms and hands, exhibit higher errors. Neverthe-

less, the error in these points is lower than 10 mm. 
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7. Conclusions 

This work proposed a sign language motion generation system using sign character-

istics or phonemes as inputs. The sign characteristics are represented using HamNoSys, a 

notation system for any sign language developed at the University of Hamburg. The sign 

phonemes provide information about sign characteristics like hand configuration, locali-

zation, or movements. This information is necessary to generate sign motion with a high 

level of detail. The proposed architecture based on the transformer also includes a stop 

detection module for predicting the end of the generation process. Both aspects, motion 

generation and stop detection, were evaluated in detail considering specific performance 

metrics.  

In order to improve the proposed architecture, different padding strategies, interpo-

lation approaches, and data augmentation techniques were considered and evaluated. Re-

garding the padding strategies, the repetition of the sign (instead of including zeros) em-

powered the learning process of the transformer reporting significant performance im-

provements. The introduction of interpolated frames smoothed the frame sequence, facil-

itating the learning process of the transformer and reporting major improvements. This 

was the most significant contribution. The introduction of data augmentation in the train-

ing did not provide significant improvements due to the fact that the data used for training 

and testing are very similar. More difficult scenarios must be addressed to demonstrate 

its utility. 

Regarding the limitations of the work, the motion generation is limited to sign-level 

representation, instead of complete sentences in sign languages. In future works, we will 

explore the idea of generating motion from complete sentences instead of from individual 

signs. Additionally, we would like to reproduce the experiments with bigger datasets. Fi-

nally, we could incorporate an additional motion evaluation metric based on a deep learn-

ing classifier. The idea is to develop a sign recognition system and evaluate how well this 

system can recognize the generated signs. 
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