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Abstract: Multi-agent reinforcement learning excels at addressing group intelligent decision-making
problems involving sequential decision-making. In particular, in complex, high-dimensional state
and action spaces, it imposes higher demands on the reliability, stability, and adaptability of decision
algorithms. The reinforcement learning algorithm based on the multi-agent deep strategy gradient
incorporates a function approximation method using discriminant networks. However, this can
lead to estimation errors when agents evaluate action values, thereby reducing model reliability and
stability and resulting in challenging convergence. With the increasing complexity of the environment,
there is a decline in the quality of experience collected by the experience playback pool, resulting
in low efficiency of the sampling stage and difficulties in algorithm convergence. To address these
challenges, we propose an innovative approach called the empirical clustering layer-based multi-
agent dual dueling policy gradient (ECL-MAD3PG) algorithm. Experimental results demonstrate
that our ECL-MAD3PG algorithm outperforms other methods in various complex environments,
demonstrating a remarkable 9.1% improvement in mission completion compared to MADDPG within
the context of complex UAV cooperative combat scenarios.

Keywords: deep deterministic policy gradient; playback of experience; group decision-making;
overestimation of value function

1. Introduction

With the emergence of intelligent algorithms, various industries are actively incorpo-
rating intelligent technologies to enhance efficiency and generate greater value. As artificial
intelligence technology advances, there will be a means to connect individual agents with
distinct functions, thereby augmenting system performance in terms of intelligence. In a
multi-agent system, each agent possesses specific perceptions, interactions, and execution
capabilities [1]. To collectively accomplish specific tasks, the multi-agent control method
serves as a coordination approach that guides the behavior of each agent while considering
inter-agent interactions and achieving common objectives. Recently, the utilization of multi-
agent group control algorithms has become prevalent in domains such as cluster control [2]
of unmanned aerial vehicles (uavs), distribution logistic path planning [3], distribution
network optimization [4], and intelligent decision-making [5].

Currently, three types of decision support methodologies primarily exist; one is the
expert system-based decision approach. An expert system refers to a computer software
system developed within a specific domain by leveraging expert knowledge and experi-
ence [6]. The emulation of the cognitive process employed by human experts in a specific
field enables commanders to receive more precise recommendations, thereby enhancing
their decision-making efficiency. In an intelligent decision-making environment, expert
system technology proves invaluable for optimizing command plans, improving situational
awareness, and ultimately facilitating efficient decision-making. Sun, L. et al. introduced
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a joint decision system based on an expert system [7], which encompasses knowledge
and rules from multiple fields and leverages the knowledge representation and reasoning
capabilities of expert systems to support effective decision-making. The expert system pos-
sesses automatic characteristics [8] and requires minimal manual intervention. However,
due to its limited self-learning ability, the expert system remains constrained by human-
defined rules during operation, serving as a computer-based substitute for repetitive and
rudimentary tasks. The second approach involves model-based swarm intelligent decision
algorithms with numerous representative studies available. For instance, Ma, Y. et al. [9]
employed an enhanced swarm algorithm in UAS teamwork defense scenarios that sig-
nificantly improved task success rates while Hu, Z.Z. et al. [10], based on an optimized
particle swarm algorithm, effectively obtained opponent target strategies and maximized
their utilization. Li, J. et al. [11] successfully achieved an efficient optimal solution for
the confrontation strategy by employing an enhanced ant colony algorithm. In terms of
situational awareness during confrontations, a swarm intelligence algorithm is utilized
to accurately identify and locate the opponent’s position and actions. As scientific and
technological advancements continue to progress, intelligent decision-making scenarios
necessitate the consideration of exponentially increasing factors, thereby demanding ex-
tensive data processing and analysis [12]. Consequently, researchers have recently been
exploring a third approach that integrates AI technology into autonomous decision-making
processes in order to address these challenges effectively. The third approach involves an
autonomous decision-making method that leverages artificial intelligence technology. This
innovative technique integrates machine learning algorithms [13] to enable self-learning
and self-optimization, surpassing the limitations imposed by known rules and models. By
effectively processing vast amounts of data, this methodology extracts valuable insights to
make precise decisions even in complex environments. However, it is important to note
that this method is currently at the research and experimental stage and has not yet reached
full maturity or widespread adoption.

In recent years, deep reinforcement learning has become an important research topic
in the field of artificial intelligence. Because it allows agents to extract relevant state infor-
mation directly from the environment and due to its excellent perceptual exploration ability,
it can optimally adapt to complex and dynamic environments, so it has been widely used
in real-time strategies. Popular multi-agent reinforcement learning algorithms integrate
value-learning and strategy-learning structures. It is worth noting that reference [14] uses
the multi-agent depth strategy gradient algorithm to solve the challenges brought by the
complex and uncertain dynamic environment encountered in the UAV cluster confrontation
process. Reference [15] proposes a multi-agent cooperative combat simulation algorithm
based on reinforcement learning to achieve a balanced decision-making method. Refer-
ence [16] introduces a valuable multi-agent reinforcement learning algorithm for training
flight controllers in aircraft simulators to improve their performance in air confrontation.
Reference [17] proposes a multi-agent reinforcement learning algorithm, combining Q-
learning and attention mechanisms to solve path-planning problems. However, the mature
reinforcement learning algorithms used so far in complex environments are mainly based
on the integration of value-learning and strategy-learning methods, so this algorithm
inherits some limitations of value-based reinforcement learning methods.

Based on the challenges encountered in current mature algorithm research and engineer-
ing practices, it has been identified that existing research exhibits the following limitations:

(1) The complexity of simulation environments leads to an expanded observation space
and action space for agents, resulting in issues such as subpar experience quality
collected by the experience playback pool, inefficient sampling, and challenging
algorithm convergence.

(2) With an increasing number of agents and environmental complexities, classical al-
gorithm evaluation modules require substantial computational resources and are
susceptible to problems like imprecise evaluations, reduced adaptability of classical
algorithms, low task completion rates, and arduous convergence.
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Although the aforementioned challenges have been effectively addressed in single-
agent reinforcement learning, there are limited approaches available to tackle these issues
within the intricate multi-agent domain. DeepMind introduced the DQN algorithm in
2013 [18], which emphasized that the value function typically represents the state value
function for assessing the agent’s action quality based on a specific strategy within the
current state. In this study, deep learning neural network technology is employed to
estimate the Q-value function, while experiential replay and target network technology are
utilized to enhance the traditional Q-learning algorithm. Despite significant advancements
achieved by the DQN algorithm, notable errors in value estimation still persist. The double
DQN algorithm [19], proposed by Hado et al. in 2016, effectively mitigates the loss caused
by overestimation inherent in the DQN algorithm and further enhances the performance of
DQN. In 2018, Scott et al. introduced the TD3 algorithm [20], which successfully addresses
the issue of Q overestimation in the DDPG algorithm and significantly stabilizes its training
process within continuous action spaces. To enhance cooperative capabilities in multi-UAV
aerial countermeasures, Zhang, D. et al. devised a collaborative maneuver decision method
based on a multi-agent double delay depth deterministic strategy gradient [21].

In this paper, we propose the adversarial discriminant network based on the multi-
agent depth strategy gradient to accurately and effectively analyze the relative contribution
of the agent’s input state and action. To optimize the accuracy of value function estima-
tion, we introduce two critical networks for estimating the action value function jointly.
Additionally, we propose a preferential experience replay mechanism based on cluster
stratification to enable agents to fully leverage experience information, thereby enhancing
algorithmic learning efficiency and stability. Experimental results demonstrate that our
improved algorithm exhibits superior convergence effects and task completion compared
to other reinforcement learning algorithms.

2. Related Work

Reinforcement learning excels in handling sequential decision tasks, with its fun-
damental modeling tool being the Markov decision process (MDP). An MDP typically
comprises the current state space, action space, reward function, and next state space. The
state space (S) represents the set of all feasible states. The action space (A), on the other
hand, denotes the collection of all possible actions. The reward function (R) quantifies
the value that an environment provides to an agent upon performing a specific action.
Ultimately, reinforcement learning aims to maximize this reward (u) by optimizing its
expectations. The return can be calculated using Formula (1); in this formula, t represents
the time step:

ut = Rt + Rt+1 + Rt+2 + Rt+3 + . . . + Rn (1)

In MDP, the discount return is usually used and is calculated as follows:

ut = Rt + γRt+1 + γ2Rt+2 + γ3Rt+3 + . . . (2)

In this formula, γ represents the discount rate.
In both single-agent and multi-agent cooperative and adversarial environments, the

commonly employed and effective algorithms in reinforcement learning can be broadly
categorized into three groups: value-based reinforcement learning algorithms, exemplified
by DQN; policy gradient-based reinforcement learning algorithms, represented by DDPG;
and actor–critic-based reinforcement learning algorithms, such as MADDPG.

2.1. Basic Algorithm of Value-Based Reinforcement Learning
DQN

The DQN algorithm represents an advancement of the Q-learning algorithm and
exhibits proficiency in handling intricate discrete environment tasks. The estimation of the
Q-value function is accomplished through a neural network capable of processing extensive
high-dimensional information, while its parameters are continually optimized during
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training to gradually approximate the actual Q-value function. During the training process
of the DQN algorithm, two crucial techniques are employed that have a profound impact
on subsequent reinforcement learning algorithms: the experiential replay mechanism and
target network.

The replay mechanism, commonly known as the replay buffer, serves multiple pur-
poses in facilitating smooth training by reducing sample correlation, enhancing data uti-
lization, and mitigating data imbalances. The size of the buffer is typically determined
as a hyperparameter denoted by b. It should be noted that the buffer can only retain a
maximum of b experiences, which are derived from distinct strategies independent of
each other; consequently, when the buffer reaches its capacity, the oldest experiences are
automatically removed.

The ‘Target’ function plays a crucial role in guiding the algorithm towards convergence
to a stable state during the training process, thereby facilitating the acquisition of an
improved strategy. When training the value network, it becomes essential to sample
multiple batches of experience samples from the buffer and subsequently update the
network parameters using a difference method, as described by Formula (3):

Qπ(st, at) = rt + Qπ(st+1, π(st+1)) (3)

Here, π represents the current policy. However, due to potential changes in TD targets, this
can introduce instability into the training process. To address this issue, Figure 1 illustrates
the objective function of DQN, which incorporates a Q network (Figure right) responsible
for generating and fixing the target throughout training while only updating parameters
on the left side. This configuration ensures that both target and Q networks remain fixed,
enabling stable training.
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Figure 1. The target network in DQN.

2.2. Basic Algorithm of Strategy-Based Reinforcement Learning
2.2.1. Deep Deterministic Policy Gradient

In the field of continuous control, the deep deterministic policy gradient (DDPG)
is a renowned algorithm that utilizes neural networks to generate deterministic actions.
DDPG extends the concept of DQN to accommodate continuous action spaces and shares
similarities in training with DQN. However, unlike DQN, DDPG incorporates a policy
network alongside the value network for action output and necessitates training both
networks. The depicted structure in Figure 2 represents the architecture of the action-
discriminant network. In this figure, state (s) serves as input for the policy network that
outputs an action (a), while both the action (a) and state (s) are fed into the Q network as
inputs, resulting in an output of action value.
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The DDPG algorithm also adopts the target function method. As shown in the left part
of Figure 3, there are four networks in the DDPG algorithm, namely the Q network, target
Q network, policy network, and alongside target policy network. In the DDPG algorithm,
the target Q network is responsible for generating the target Q-value, denoted as Target_Q,
denoted as TQ, which is calculated using Formula (4). In this formula, ω is the parameter
of the network.

TQ = r + γω(s′, a′) (4)
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Target policy network, Target_A, noted as TA. Calculate the next action a′ using
Formula (5):

TA = a′ = µθ(s
′) (5)

The Q network calculates the current valuation using Formula (6):

Q = Qω(s, a) (6)

The policy network calculates the actions a to be taken in the current state using
Formula (7):

a = µθ(s) (7)

When training the DDPG algorithm, both loss functions should be optimized simulta-
neously. Equation (8) can calculate the loss function (Loss1) of the target Q network and Q
network, and the Q network is optimized by the mean-variance between the Q_target and
Q_target.

Loss1 = MSE[Qω(s, a), r + γQv(s′, a′)] (8)

Equation (9) calculates the loss function (Loss2) of the policy network:

Loss2 = −Qω(s, a) (9)

In Formula (9), a = µθ(s) can be calculated using Formula (7).
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2.2.2. Multi-Agent Deep Deterministic Policy Gradient

The multi-agent deep deterministic policy gradient (MADDPG) algorithm is an ex-
tension of the DDPG algorithm designed specifically for multi-agent environments, in-
corporating adaptive improvements. This algorithm can be categorized as an actor–critic
approach due to its utilization of both action and discriminant networks. As depicted in
Figure 4, MADDPG employs individual action and discriminant networks for each agent,
which bear resemblance to those used in DDPG.
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Take Agenti, for example: the agent has additional information in addition to its state
action data, like actions (a1, a2, ai, . . . , aN) and states (o1, o2, oi, . . . , oN) of other agents. In
addition, MADDPG also uses the empirical pooling mechanism to store the data (s, a, r, s′)
generated by each agent interacting with the environment. Whenever new data are gener-
ated, these data are stored in the replay buffer, denoted as D. The training process takes
the form of centralized training with decentralized execution, i.e., each agent, according to
their strategy, obtains the current state of action and interacts with the environment to gain
experience in their own experience buffer pool D. For all agents, after interacting with the
environment, each agent randomly selects experiences from the pool to train their neural
network. To accelerate the agent’s learning process, the critic network includes inputs of
the other agents’ observation states and actions, updating the critic network parameters
by minimizing the loss. Then, the parameters of the action network are calculated via the
gradient descent method, finally realizing centralized training.

2.2.3. Overvaluation Based on DDPG

This paper is based on the DDPG algorithm. In the DDPG algorithm, there are two
main issues that need to be addressed. Firstly, during the training process, the estimation
of the value function tends to be inaccurate, leading to instability in strategy updates and
overestimation of Q-value functions. Secondly, essential noises exist in the target strategy
which aids in exploring the state space but also contributes to high estimation errors in Q-
value functions and affects estimator accuracy. Consequently, utilizing imprecise estimates
in each update results in an accumulation of errors. This accumulated error can cause
any unfavorable state to be erroneously estimated as favorable, ultimately resulting in
suboptimal performance during strategy updates.

Scott et al., in their paper [20] (TD3), demonstrated that the action-discriminant ap-
proach updates the agent’s strategy based on an approximate estimation of the discriminant
network, resulting in an overestimation of its value. Through a comparison between the
actual and estimated Q-values obtained from different environments, they successfully
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confirmed the previous algorithm’s tendency to overvalue outcomes. Additionally, they
provide Formula (10) for accurately calculating the true Q value:

TrueQ = [Gt
∣∣St = s] (10)

where Gt is the cumulative return reward. Then the Formula (10) deformation is as follows:

TrueQ = [Rt + γ(Rt+2 + γRt+3 + . . .)
∣∣St = s] (11)

where (Rt+2 +γRt+3 + . . .) is exactly Gt+1. Therefore, the true Q-value is calculated as follows:

TrueQ = [Rt + γGt+1
∣∣St = s] (12)

Based on the methodologies employed in previous studies, this paper adopts the MAD-
DPG algorithm to evaluate the Q estimation within a highly authoritative experimental
environment pertaining to multi-agent reinforcement learning, as depicted in Figure 5. In
accordance with Scott et al.’s research, if the agent’s estimated Q-value surpasses the actual
Q-value at any given step size under a uniform time step size, it signifies an overestimation
of the algorithm’s Q-value. In the two figures depicted in Figure 5, the blue curve denotes
the estimated Q-value while the red curve represents its actual counterpart. Notably, both
curves exhibit a significant disparity with the blue curve surpassing the red one, indicating
an evident overestimation of Q-values.

(a) simple_tag environment (b) simple_adversary environment

Figure 5. The overestimation of the Q-value of MADDPG in two environments. The blue curve
represents the estimated value and the red curve represents the true value.

As shown in Figure 5a, the experiment was performed in the simple_tag environment.
In Figure 5b, the experiment is shown in the simple_adversary environment.

3. Proposed Algorithm

The multi-agent reinforcement learning environment is characterized by instability,
high dimensionality, and continuous space, which pose challenges for Q estimation in this
complex setting. Multi-agent reinforcement learning algorithms often require updating
numerous parameters and utilizing significant computing resources, leading to cumulative
bias. Additionally, issues such as the low correlation between state and action and sparse
experience can arise in the experience playback pool, making it difficult to determine
sampling points that are uniform enough or sufficient in number to affect algorithmic
efficacy. To address these problems, we propose the multi-agent dual dueling policy
gradient algorithm based on the empirical clustering layer (ECL-MAD3PG) algorithm as
an improvement over MADDPG with three key enhancements.
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3.1. The Dueling-Critic Network

As depicted in Figure 6a, the input of the critic network in the MADDPG algorithm
is compressed into multiple layers of parallel, fully connected networks. However, this
structure fails to accurately and effectively analyze the relative contributions of each
state and action. Additionally, due to the mixing of state value and action value, when
processing high-dimensional state spaces, a large number of parameters need to be learned
by the critic network to evaluate the action network’s strategy. Consequently, this leads to
substantial computational costs and overestimation issues. To address these limitations and
precisely assess the relative contribution of each action by the critical network, we propose
introducing an advantage function. This involves dividing the critic network into two
components: an advantage function and a value function, thereby forming an adversarial
discrimination network structure. The specific splitting process is as follows:

(1) Define the optimal advantage function

Q∗(s, a) is defined as the optimal action value function, V∗(s) is the optimal state
value function, and their calculation formula is as follows:{

Q∗(s, a) = max
π

Qπ(s, a)

V∗(s) = max
π

Vπ(s)
(13)

The formula for calculating the optimal advantage function is as follows:

A∗(s, a) = Q∗(s, a)−V∗(s) (14)

In the context where V∗(s) assesses the quality of the state(s) and Q∗(s, a) evaluates
the quality of the agent’s action within that state(s), Formula(20) can be considered as
equivalent to utilizing V∗(s) as a reference point, while A∗(s, a) represents the superiority
of action(a) compared to baseline V∗(s).

(2) Properties of the Advantage function

In the field of reinforcement learning theory, function V∗(s) maximizes function
Q∗(s, a) with respect to a, as given by Equation (15):

V∗(s) = max
a

Q∗(s, a) (15)

Taking the maximum of the action a on both sides of Equation (14) results in Equation (16):

max
a

A∗(s, a) = max
a

Q∗(s, a)−V∗(s) (16)

Substituting Equation (15) into Equation (16) yields Equation (17):

max
a

A∗(s, a) = 0 (17)

(3) Dueling-Critic function

According to the definition of the optimal advantage function, i.e., Equation (14), it
can be transformed into the following equation:

Q∗(s, a) = V∗(s) + A∗(s, a) (18)

Substituting Equation (17) into Equation (18) yields the formula for the optimal value
function, as shown in Equation (19):

Q∗(s, a) = V∗(s) + A∗(s, a)−max
a

A∗(s, a) (19)

Equation (19) serves as the theoretical foundation for the modification and decom-
position of the critic network. Figure 6b represents the schematic diagram, illustrating
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the improvement made to the original critic network structure in this paper through
Equation (19):
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Figure 6a illustrates the original critic network structure of the MADDPG algorithm,
which comprises fully connected layers. Figure 6b presents the novel architecture for this
problem, referred to as ‘dueling-critic’. In this configuration, the input of the critic network
remains unchanged, consisting of state (s) and action (a). However, there is a modification
in the transmission mode: both state (s) and action (a) vectors are initially gathered by a
fully connected layer before being separately transmitted to the baseline value network
V(s; θ). The data undergoes compression in the dominant network A(s, a; θ) and ultimately
undergoes vector splicing through another layer of fully connected networks. In this struc-
tural framework, the critic network effectively maintains state value functions and action
value functions, respectively. This dual-value function approach enhances the discriminant
capability of the agent’s network during the learning process, thereby strengthening the
correlation between state value and action value estimations. Consequently, it leads to more
accurate Q-value estimation while also mitigating any imbalance that may exist between
state and action values.

3.2. Priority Experience Replay Mechanism with Conditional Constraints

As the complexity of the experimental environment in the reinforcement learning
algorithms increases, it leads to a rise in the number of agents within the system and an
expansion in the dimensions of states and observations. This severely impacts the efficiency
and quality of algorithm training. Wu Mingxi et al. [22] have proposed that traditional
experience replay methods store all experiences obtained from agent–environment interac-
tions, directly into the experience pool. During training, experiences are randomly sampled
from this pool for learning. The original experience replay mechanism does not distin-
guish which experiences are more valuable. Storing every experience without discernment
means that while high-quality experiences can be beneficial for further training of the
algorithm, the sampling process may select a large number of low-quality experiences.
This leads to a reduced training efficiency, consuming significant time. PER (proposed by
Yang, S. et al. [23]) alleviates the aforementioned problems. The basic idea behind PER is
just to adopt one replay buffer for the sake of conserving experiences, assigning a priority
level to each one, replacing uniform sampling with non-uniform sampling. In this mecha-
nism, the priority level is represented by the absolute value of the temporal difference error,
i.e.,

∣∣δj
∣∣. A larger

∣∣δj
∣∣indicates that the algorithm’s evaluation of the state action value at

that moment is inaccurate, so that experience should be given a higher weight. During
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sampling, there are two methods to compute the sampling probability. The first method
calculates the probability using Formula (20):

pj ∝
∣∣δj
∣∣+ε (20)

In this formula, ε is defined as a small number to inhibit the sampling possibility from
reaching 0, ensuring that the overall specimens are plotted via a non-zero probability. The
second sampling method sorts

∣∣δj
∣∣ in descending order, and then calculates the sampling

probability using Formula (21):

pj ∝
1

rank(j)
(21)

In this expression, rank(j) is the index of
∣∣δj
∣∣, and the larger

∣∣δj
∣∣ is, the smaller rank(j)

becomes. The principles behind the two sampling methods mentioned above are consistent:
the larger

∣∣δj
∣∣ is, the higher the probability of the sample being selected. Because this is

non-uniform sampling, different samples have different sampling probabilities, leading
to a bias in the algorithm’s prediction. At this point, the learning rate should be adjusted
to offset the bias caused by different sampling probabilities. The structure of the priority
experience replay is presented in Table 1.

Table 1. Priority experience playback array.

Number Experience List TD Error pj Learning Rate

.... .... .... .... ....
j− 1 (sj−1, aj−1, rj−1, sj) δj−1 pj ∝

∣∣∣δj−1

∣∣∣+ε α · (b · pj−1)
−β

j (sj, aj, rj, sj+1) δj pj ∝
∣∣∣δj

∣∣∣+ε α · (b · p)−β

j + 1 (sj+1, aj+1, rj+1, sj+2) δj+1 pj ∝
∣∣∣δj+1

∣∣∣+ε α · (b · pj+1)
−β

.... .... .... .... ....

In Table 1, b represents the array size, which must be manually set. If the number
of samples exceeds b, the oldest samples in the replay pool need to be removed. Using
this approach, as the algorithm learns, it can sequentially select experiences for training
from the replay buffer in order of priority, from highest to lowest, thereby maximizing the
utilization of experience information and enhancing both learning efficiency and stabil-
ity. This grants the algorithm several advantages: it retains essential experiences in the
replay buffer, ensuring that these experiences still have a high priority under the current
policy, and can be learned first, preventing the propagation of erroneous information. In
traditional experience replay processes, since the sampled experiences are entirely random,
some critical experiences may not be selected, leading to learning outcomes that fall short
of expectations. In contrast, priority experience replay maintains the diversity of the ex-
perience pool by setting priorities, ensuring that experiences with greater variance and
representativeness are reused more frequently, thereby enhancing the stability of learning.
However, when multi-agent reinforcement learning algorithms are applied to relatively
complex real-world tasks, they face intricate state and observation dimensions. This places
a high demand on the efficiency of the algorithm’s training. Although the priority experi-
ence replay mechanism can prioritize the extraction of high-quality experiences, it suffers
from high time complexity. As a result, in practice, the algorithm efficacy improvement is
often not significant, and it heavily consumes the system’s computational power.

The conventional method of experience playback is limited by its random sampling
approach, which occasionally results in the omission of crucial experiences and even
yields subpar-quality recovered experiences. Consequently, this hampers the anticipated
learning outcomes. In order to enhance the quality of experiences stored in the experience
playback pool, it is imperative to investigate the recycling mechanism and experience
sampling mechanism that governs this pool. Building upon the original experience replay
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pool depicted in Figure 7a, this paper proposes a preferential replay mechanism based
on experience clustering and stratification. This is achieved by incorporating a condition
module prior to the retrieval of experiences from the original experience pool, as illustrated
in Figure 7b. The purpose of the condition module is to effectively cluster the array
of experiences, wherein batches of experiences are grouped based on their priority and
subsequently evaluated for their eigenvalues. These eigenvalues are then stored within the
experience pool in descending order, ensuring that experiences with higher values take
precedence over those with lower values. In this manner, during the interactive learning
phase with the environment, the algorithm can effectively prioritize experiences from the
condition module in a hierarchical order based on their significance. Additionally, by
employing clustering techniques, it can further establish hierarchical priorities to fully
leverage experience information and enhance both learning efficiency and stability.
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The specific workflow of the priority playback mechanism based on empirical cluster-
ing stratification is as follows:

Step 1: The agent interacts with the environment to obtain a collection of empirical
data, and the algorithm assigns priority to the data based on the magnitude of the TD error
it exhibits. This prioritized list of data is represented as (sj, aj, rj, sj+1, δj).

Step 2: Cache multiple sets of experience data lists in the ‘Condition’ module and
conduct clustering operations to group experiences and calculate the lambda value for
each group.

Step 3: According to the characteristic value (δj), the experiential data are stored in the
playback pool (buffer) in ascending order of magnitude.

Step 4: In the sampling stage, experience is selectively sampled based on its value(δj),
enabling the agent to prioritize experiences from groups with higher eigenvalues.

Step 5: The modified algorithm employs empirical data to enhance the optimization
of network parameters.

4. Environment Setup and Experimental Analysis

In this study, we employ experimental environments with varying levels of environ-
mental complexity to validate the progressive and adaptable nature of our ECL-MAD3PG
algorithm. Specifically, we evaluate the performance of our algorithm by comparing it
against PerMAD3, MADDPG, and MATD3 algorithms in MPE. Additionally, we inde-
pendently develop a multi-agent UAV cooperative countermeasure platform to assess the
superiority and reliability of our ECL-MAD3PG algorithm when compared to PerMAD3,
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MADDPG, and MATD3 algorithms. The experiments are conducted on a Core i7-11700K
processor running a Win10 system. Our algorithm is partially implemented using Python
3.8 programming language along with PyTorch deep learning framework and third-party
libraries such as NumPy and Pygame.

4.1. Multi-Agent Particle Environment

In this paper, we focus on the multi-particle environment (MPE), a two-dimensional,
time-discrete, and spatially continuous multi-agent environment developed by OpenAI.
MPE is specifically designed to simulate and verify a range of multi-agent reinforcement
learning algorithms. It achieves this by controlling the movements of various particles
within a two-dimensional space, enabling the accomplishment of diverse tasks. To provide
a comprehensive experimental analysis, we compare MPE with two well-established
and widely used classical multi-agent environments. Figure 8a indicates the simple_tag
environment, while Figure 8b indicates the simple_adversary environment.
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4.1.1. Simple_Tag Environment

Figure 8a depicts the Simple_Tag environment from the official examples, also known
as a predator–prey environment. As described in the official documentation, this environ-
ment contains four agents and two black obstacles, the quantity of which can be customized.
Typically, the green prey agents move faster, and they receive a negative reward if hit by
the red adversary agents. The three predators move slower and must employ effective
strategies to successfully capture the prey while avoiding obstacles. The game ends for the
round if the prey is captured or if any agent goes out of bounds. By default, there is one
prey, three predators, and two obstacles.

(1) Action Space Design

Both the prey and predators share the same action space, as outlined in Table 2. The
action space has a dimension of 5, with the following specific actions: move up, move
down, left, right, and stop.

Table 2. Action state table.

Field Description

move_up Up
move_down Down

move_left Left
move_right Right

Stop Stop



Sensors 2023, 23, 9520 13 of 25

(2) State Space Design

Both the prey and predators have largely identical state spaces, as detailed in Table 3.
The state space for the agents has a dimension of 7.

Table 3. Observation table.

Field Description

Self_vel Self Velocity
Self_pos Self Position

landmark_rel_pos Position of obstacles relative to oneself
other_agent_rel_pos Position of same-type agents relative to oneself
Opp_agent_rel_pos Position of opposing agents relative to oneself
Other_agent_rel_vel Velocity of same-type agents relative to oneself
Opp_agent_rel_vel Velocity of opposing agents relative to oneself

(3) Reward Function Design

Superior green prey agents move faster and receive a negative reward when hit by
the red adversary agents (a penalty of −10 for each collision). Adversary agents, which
move slower, are rewarded when they successfully collide with the superior agent (+10 for
each collision). When predators and prey are within a certain range, both predators and
prey receive rewards. The game round ends if the prey is captured or if any agent goes out
of bounds.

(4) Key parameters of the ECL-MAD3PG algorithm

After conducting multiple iterations, a comprehensive set of parameters that exhibit
optimal performance for the ECL-MAD3PG algorithm in this experimental setting have
been documented and are presented in Table 4.

Table 4. Simple_tag hyperparameter table.

Hyperparameter Value

Actor Learning Rate 1× 10−3

Critic Learning Rate 1× 10−4

Buffer Size 3× 105

Batch Size 64
Noise 0.1

Discount rate 0.85

4.1.2. Simple_Adversary Environment

Figure 8b depicts the Simple_Adversary Environment from the official examples. In
this environment, there is one red opposing agent, N actor agents, and N landmarks, with
N being the default set to 2. In this task, all agents can observe the sites of landmarks and
other agents. One of the landmarks is the ‘destination landmark’, which is highly crucial.
Only the actor agents know about it, and their goal is to coordinate with each other to
deceive the red agent and prevent it from reaching the ‘destination landmark’. The game
round ends if an agent goes out of bounds.

(1) Action Space Design

The action space is consistent for both the opposing agent and actor agents, as outlined
in Table 5. The action space has a dimension of 5, with specific actions being move up,
move down, left, right, and stop.
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Table 5. Action state table.

Field Description

Move up move_up
Move down move_down

Left move_left
Right move_right
Stop Stop

(2) State Space Design

The state space for the opposing agent and actor agent is essentially the same. The
state space for actor agents is provided in Table 6, with a state space dimension of 7.

Table 6. Observation table.

Field Description

Self_vel Self Velocity
Self_pos Self Position

Goal_rel_pos Position of the goal
Other_landmark_pos Position of the other landmark
other_agent_rel_pos Position of same-type agents relative to oneself
Opp_agent_rel_pos Position of opposing agents relative to oneself
other_agent_rel_vel Velocity of same-type agents relative to oneself
Opp_agent_rel_vel Velocity of opposing agents relative to oneself

(3) Reward Function Design

The actor agents cooperate with each other, and if any one is close enough to the target
location, all actor agents receive the same reward. The opposing agent can also receive a
reward if it is close enough to the target location, but it needs to guess which one is the
target.

(4) Key parameters of the ECL-MAD3PG algorithm

After conducting multiple iterations, a comprehensive set of parameters that exhibit
optimal performance for the ECL-MAD3PG algorithm in this experimental setting have
been documented and are presented in Table 7.

Table 7. Simple_adversary hyperparameter table.

Hyperparameter Value

Actor Learning Rate 1× 10−3

Critic Learning Rate 2× 10−4

Buffer Size 3× 105

Batch Size 64
Noise 0.1

Discount rate 0.9

4.2. The Multi-UAV Cooperative Combat Simulation Platform

In this study, a sophisticated cooperative countermeasure platform (MACCSP) involv-
ing multiple unmanned aerial vehicles is devised to validate the robustness and consistency
of the algorithm. In this particular environment, the primary objectives of multi-UAV coop-
eration encompass utilizing a diverse range of sensors carried by the UAVs to thoroughly
explore the protected objects belonging to the blue unit. During this exploration process, it
becomes imperative to locate and interfere with the radar system employed by the blue
square unit in order to ascertain a relatively secure flight path for the pilot positioned
behind the drone cluster. The four illustrations depicted in Figure 9 aptly demonstrate and
simulate the entire scene’s progression.
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Figure 9a depicts the initial state of the scene, wherein red units are positioned on the
left and blue units on the right. Figure 9b illustrates the exploration simulation process
undertaken by a UAV cluster within the red unit. Subsequently, in Figure 9c, we observe
the UAV cluster exploring both red and blue unit radar systems while simultaneously
interfering with them. This interference leads to a reduction in their detection radius.
Finally, as depicted in Figure 9d, upon completion of exploration and jamming tasks, the
UAV cluster successfully acquires a relatively secure flight path to evade radar detection.

4.2.1. Establishing the Red Team Model

The probability of the red team’s UAVs detecting the radar signals from the blue team:

P= 1− exp

−C
t1∫

t0

[
(xt − ς)2 + (yt − ξ)2

]−2
dt

 (22)

Formula (22) indicates the probability of detecting the blue protection target within
time (t0, t1), where ς represents the target’s horizontal coordinate and ξ represents the
target’s vertical coordinate.

(a) Initial state (b) The working status of drones

(c) Drone successfully interferes (d) Generate Path

Figure 9. Experimental process in MACCSP.

4.2.2. Establishing the Blue Team Model

When the target enters the radar’s detection range, it is detected by the radar with a
certain probability determined by the energy interaction between them. For the purpose
of this study, we exclusively examine and analyze both slow scanning and fast scanning
techniques employed in radar systems.

(1) Slow Radar Scans

During slow radar scans, the radar’s detection of the target can be considered as
discrete observations. In this case, the radar’s detection probability PD is represented
as follows:

PD = 1−
m

∏
i=1

(1− Pdt) (23)



Sensors 2023, 23, 9520 16 of 25

In Formula (23), ‘m’ represents the number of radar object contacts over the continuous
period, and it can be computed using Formula (24)

m =

[
t

tsearch

]
(24)

tsearch represents the radar’s cycle. In Formula (23), Pdt denotes the probability of
detecting the target during the i-th contact. In the absence of electronic interference, this
can be calculated using Formula (25)

Pdt =

[
n0SNt + 1

n0SNt

]n−1
exp

{
− Y0

n0SNt + 1

}
(25)

(2) Rapid Radar Scanning

During rapid radar scanning, it can be regarded as a continuous observation. In the
absence of interference, the probability of the radar detecting a point target is as follows:

P = 1− exp

−C
t∫

0

R(t)−4dt

 (26)

Let U = C
t∫

0
R(t)−4dt denote the detection potential. Up to time t, the detection

potential of the radar to the target detection zone is as follows:

U = C
t∫

0

R(t)−4dt = C
t∫

0

[
X2

0 + (Y0 + Vδt)2
]−2

dt (27)

Let y0 + Vδt = X0 tan ϕ, then:

U(X0) =
C

VδX3
0

φ∫
φ0

cos2 φdφ =
C

2VδX3
0
[(φ− φ0) + 0.5(sin 2φ− sin 2φ0)] (28)

The probability of detecting the target in this segment is as follows:

PX0 = 1− e−U(x0) (29)

The probability of radar blocking the red drone:

P = 1− exp

{
αWβ

d

σ
β
d

}
(30)

Here, α, β, and σ are proportional parameters.

4.2.3. Action Space Design

With the aim of reducing the dimensionality of the UAV swarm’s action space, this
paper introduced a combination of discretization and simplification for certain actions. The
actions of the agents are presented in Table 8, having a dimension of 8.

Table 8 specifies the interference frequency bands for the UAV as follows: low fre-
quency band (0.03 GHz–1 GHz), medium frequency band (1 GHz–15 GHz), and high-
frequency band (15 GHz–30 GHz). By combining actions based on the aforementioned
table, an action space vector of length 3780 can be generated. All action choices are encoded
in the one-hot encoding format.
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Table 8. Action state.

Field Description

Flying Actions Forward, Backward, Left, Right, Hover
Flying Speed Low, Medium, High

Reconnaissance Direction Left Front, Direct Front, Right Front
Interference Intensity 0, Low, Medium, High

Interference Frequency Band Low, Medium, High
Interference Target Consistent with the number of radars.

4.2.4. State Space Design

As for the UAV, its state space comprises two sections: the first section is the circum-
stance state space S, representing the whole circumstance state; the second part is the
agent’s observation O, representing the UAV’s own state, as well as its observations of
the environment. Table 9 is the global state space and Table 10 is the local state space.

Table 9. Environment state table.

Field Description

Target Location The location of the blue-protected unit
Radar Location Coordinates of the ground radar

Radar Frequency Frequency of the ground radar’s
signal emission

Radar Detection Range Real-time detection distance of the radar

Table 10. Agent observation table.

Field Description

Position UAV coordinates
Orientation UAV flight direction

Speed UAV flight speed
Direction UAV’s targeted reconnaissance direction
Intensity UAV’s interference intensity

Frequency band UAV’s interference frequency band
Flight Time UAV’s remaining life value

Flag Is interference activated
Target Located radar position

4.2.5. Reward Function Design

Considering that UAVs need to cooperate to complete the task, if the distance between
them is too far, communication will be impossible. Therefore, a distance reward R1 between
the UAVs should be set up.

R1 =

{
100× ( C

D − 1) D > C
0 D ≤ C

}
(31)

In the formula, C represents the communication distance between UAVs; D represents
the actual distance between UAVs. The reward when approaching the target is given by:

R2 =

{
500× Dblue−dnow

dlast−Dred
dnow > Dblue − 2

100× (1− dnow
Dblue

) other

}
(32)

Reward R3 for being detected by the radar:

R3 = −10 (33)
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Reward R4 for detecting a radar:

R4 = 20 (34)

Reward R5 for interfering with the radar:

R5 = 1000× (1− Dblue_now
Dblue

) (35)

In the formula, Dblue_now denotes the detection distance of the radar after interference,
and Dblue represents the maximum detection distance of the radar.

Reward R6 for the drone blocked:

R6 = −100 (36)

Reward R7 for opening up the pilot paths:

R7 = 100 (37)

Total reward R:
R = R1 + R2 + R3 + R4 + R5 + R6 + R7 (38)

4.2.6. Design of the Task Completion Degree

According to the simulation task, it can be devised to ascertain the successful targeting
of the blue square position in each round. In case of a successful attack, Di = 1; otherwise,
Di = 0. The formula for evaluating the level of task accomplishment is as follows:

The main task of this scene is as follows: The red drone fleet flies in front to detect
and interfere with the radar of the mine, opening up a suitable flight route for the pilots
flying behind to reach the blue protection unit. In each round, we observe whether a path
is generated. If there is a path generation, it is set to Di = 1, otherwise Di = 0. The formula
for calculating the degree of task completion is as follows:

σD =
n
N

(39)

where: n represents the number of rounds in which Di = 1 , and N denotes the total number
of rounds.

4.2.7. Key Hyperparameters of the PerMAD3 Algorithm

After conducting multiple iterations, a comprehensive set of parameters that exhibit
optimal performance for the ECL-MAD3PG algorithm in this experimental setting have
been documented and are presented in Table 11.

Table 11. UAV electronic countermeasure hyperparameter table.

Hyperparameter Value

Actor Learning Rate 5× 10−3

Critic Learning Rate 5× 10−4

Buffer Size 5× 105

Batch Size 256
Noise 0.1

Discount rate 0.9

4.3. Experimental Analysis in Multi-Agent Particle Environments

The ultimate objective of reinforcement learning is to acquire the optimal strategy by
means of agent–environment interactions, aiming to maximize cumulative return. Hence,
a crucial metric for comparing the superiority of reinforcement learning algorithms lies
in their average reward returns. In this study, we employ the multi-agent particle swarm
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environment (MPE) as our primary experimental platform and train four algorithms
within two multi-agent environments: simple_tag and simple_adversary on the MPE
platform. Figure 10 presents two graphs illustrating the average reward curves of these
four algorithms across the aforementioned multi-agent environments. The x-axis represents
the number of training rounds undergone by each algorithm, while the y-axis denotes their
corresponding average reward values.

In the experimental setting of simple_tag, we sequentially execute four algorithms,
namely ECL-MAD3PG, PerMAD3, MADDPG, and MATD3. The resulting average reward
values are depicted in Figure 10a; as illustrated in the figure, all four algorithms undergo an
equal number of training rounds (8,000,000 times), and eventually converge to a stable state.
The four algorithms are currently in the initial learning phase, spanning from round 0 to the
310,000th round. During this stage, the agent effectively optimizes neural network parame-
ters by continuously engaging with the environment and acquiring high-quality empirical
data through recovery and sampling. A comparative analysis between our algorithm and
Per-MAD3 at this stage reveals that our average reward curve surpasses that of Per-MAD3
algorithm both in terms of value and rate of improvement. This observation indicates that
our proposed cluster-based hierarchical priority playback mechanism outperforms the
original PER scheme in this specific environment. Similarly, when comparing our algorithm
with MATD3, we find that our proposed dual adversarial discriminant network exhibits
superior performance compared to the dual value network scheme (MATD3) within this
particular environment.

(a) simple_tag environment (b) simple_adversary environment

Figure 10. Comparison curve of real the Q-value and estimated Q-value before and after algorithm
improvement. The algorithm proposed in this paper is ECL-MAD3PG.

In the experimental environment of simple_adversary, we sequentially execute the
ECL-MAD3PG, PerMAD3, MADDPG, and MATD3 algorithms and plot the average reward
value in Figure 10b. As depicted in the figure, all four algorithms are trained for an equal
number of rounds (3,000,000 times), and each method demonstrates a tendency toward
stability after training. The four algorithms are currently in the initial learning phase,
ranging from round 0 to 800,000. During this stage, the agent can enhance the parameters
of the neural network through continuous interaction with the environment, enabling
recovery and sampling of high-quality empirical data. By comparing our algorithm with
PerMAD3 at this stage, it becomes evident that our average reward curve surpasses that
of PerMAD3 algorithm both in terms of value and rate of improvement. This observation
indicates that our proposed cluster-based hierarchical priority playback mechanism outper-
forms the original PER scheme in this particular environment. Similarly, when comparing
our algorithm with the MATD3 algorithm, we find that our proposed dual adversarial
discriminant network exhibits superior performance compared to the dual value network
scheme (MATD3) within this environment.

As illustrated in Figure 10, the four algorithms underwent distinct training rounds
in two separate environments and eventually converged to a stable return value after a
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specific number of iterations. By analyzing the fluctuation pattern of the return value curve
depicted in Figure 10a, this study computed the average reward values for each algorithm
within rounds 300,000 to 8,000,000, which were subsequently recorded in Table 12. Similarly,
based on the observed changes in the return value curve exemplified in Figure 10b, this
research calculated and documented the average reward values for all four algorithms from
round 500,000 to round 3,000,000 in Table 13.

Table 12. The average reward value from 3,000,000 to 8,000,000.

Algorithm Average Reward

ECL-MAD3PG 1047.166
PerMAD3 1009.641
MATD3 845.795

MADDPG 616.031

Based on the values presented in Table 12, it can be inferred that the algorithm
proposed in this study (ECL-MAD3PG) exhibits a superior reward value compared to
alternative algorithms, thereby indicating its enhanced performance within this specific
environment.

Moreover, based on the values presented in Table 13, it can be inferred that the algo-
rithm proposed in this study (ECL-MAD3PG) exhibits a superior reward value compared
to alternative algorithms, thereby indicating its enhanced performance within this specific
environment.

Table 13. The average reward value from 500,000 to 3,000,000.

Algorithm Average Reward

ECL-MAD3PG −543.053
PerMAD3 −2370.871
MATD3 −1654.441

MADDPG −3071.483

In addition, experiments are conducted to enhance the accuracy of Q-value estimation.
In this study, the actual Q-value of the agent in each state is computed using Formula (12),
and both the real value and predicted value obtained from the algorithm’s value network
are recorded and stored separately. By plotting the Q-value curve, a comparative analysis
is performed to evaluate the algorithm’s estimation capability. Figure 11 illustrates two
graphs depicting Q estimation before and after implementing algorithmic improvements.
The degree to which the problem of Q overestimation is mitigated is typically assessed
using metrics such as the mean absolute error or root-mean-square error. These metrics
are employed to measure the disparity between the currently estimated Q-value and the
true Q-value. A close-to-zero value of this error indicator indicates that the algorithm
effectively reduces Q overestimation. Based on experimental data collected in two different
environments, Figure 11 presents two groups of results for calculating the root-mean-square
error between the current estimated Q-values and actual Q-values using both algorithms.
The corresponding outcomes are summarized in Table 14.

According to the statistical results presented in Table 14, in both experimental environ-
ments, the ECL-MAD3PG algorithm proposed in this paper demonstrates the root-mean-
square errors (RMSEs) between the estimated Q-values and the true Q-values that are closer
to 0 compared to the MADDPG algorithm. This indicates that the ECL-MAD3PG algorithm
possesses the capability to mitigate the issue of Q-value overestimation.
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(a) simple_tag environment (b) simple_adversary environment

Figure 11. Comparison curve of the real Q-value and estimated Q-value before and after algorithm
improvement. The “Our” in this figure represents our proposed algorithm “ECL-MAD3PG”.

Table 14. Comparison of the root-mean-square errors between the predicted Q-values and the real
Q-values for the four methods.

Simple_Tag Environment Simple_Adversary Environment

MADDPG ECL-MAD3PG MADDPG ECL-MAD3PG

25.956 9.021 4.154 2.742

In conclusion, the comparisons of four algorithms in two different environments
demonstrate that the ECL-MAD3PG algorithm not only improves the average return
performance but also mitigates the issue of Q-value overestimation, commonly associated
with policy gradient reinforcement learning algorithms. Consequently, this algorithm
exhibits strong convergence and reliability.

4.4. Analysis of Experiments in Electronic Warfare Environments

To validate the adaptability and superiority of our algorithm, we developed a sophisti-
cated multi-agent reinforcement learning experimental environment called the multi-UAV
cooperative combat simulation platform (MACCSP). Within this platform, four algorithms,
namely ECL-MAD3PG, PerMAD3, MADDPG, and MATD3, were individually trained
for 2 million rounds. The reward values obtained from each round were meticulously
recorded and saved. In order to evaluate the algorithm’s performance in complex tasks
within a multi-agent reinforcement learning environment, two key metrics were employed:
the average reward value and the degree of completion of collaborative tasks by the UAV
cluster. Figure 12 presents both experimental results and statistical findings to support
our claims.

Figure 12a illustrates that in the MACCSP environment of comparable complexity,
the average return of all four algorithm groups tends to stabilize after approximately
250,000 rounds. The attainment of convergence, post-simulation, indicates a reasonable
platform design. Table 15 records the average reward value for each algorithm group
following the aforementioned round count, revealing superior performance by the ECL-
MAD3PG algorithm relative to its counterparts. In addition, Figure 12b demonstrates
that the ECL-MAD3PG algorithm outperforms other algorithms in terms of achieving
the highest level of task completion in the UAV cluster coordination. In summary, the
ECL-MAD3PG algorithm exhibits notable advantages and remarkable adaptability within
complex environments.
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(a) Average reward curve (b) Statistics of task completion times

Figure 12. Experimental results of four algorithms in MACCSP.

Table 15. The average reward value of rounds, from the 500,000th to the 2,000,000th.

Algorithm Average Reward

ECL-MAD3PG −1
PerMAD3 −38
MATD3 −39

MADDPG −66

In addition, Figure 12b demonstrates that the ECL-MAD3PG algorithm outperforms
other algorithms in terms of achieving the highest level of task completion in the UAV
cluster coordination. In summary, the ECL-MAD3PG algorithm exhibits notable advantages
and remarkable adaptability within complex environments.

5. Discussion

In this study, we compare three algorithms: ECL-MAD3PG (our proposed algorithm),
PER-MADDPG, MADDPG, and MATD3, in three different environments. We calculate the
average reward value for each algorithm in these environments and plot a curve to illustrate
the trend of change in these values. As our work builds upon MADDPG, the algorithm is
still influenced by certain hyperparameters, which may require multiple adjustments to
achieve convergence.

Notably, we find that the learning rate of the discriminant network significantly im-
pacts training effectiveness. However, other parameters such as the policy network learning
rate, experience replay pool size, and noise can be set to commonly used values without
significant impact on results. Taking the “simple_tag” environment in the MPE platform
as an example, Figure 13 presents the experimental results of two groups of discriminant
network learning rates using the ECL-MAD3PG algorithm. Comparing these results with
those depicted by the ECL-MAD3PG curve in Figure 10a, it can be inferred that while the
average reward value of the algorithm increases with an augmented discriminant network
learning rate, convergence becomes challenging. Subsequent experiments demonstrate
that within this environment, a learning rate ranging from 1× 10−4 to 2× 10−4 yields
relatively favorable outcomes. Beyond this range, excessively large learning rates lead to
heightened volatility in algorithmic results and even failure to converge. The default values
for parameters such as the policy network’s learning rate, experience playback pool size,
and noise exhibit minimal influence on experimental outcomes.
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(a) Critic network learning rate: 3× 10−4 (b) Critic network learning rate: 2× 10−4

Figure 13. In the “simple_tag” environment, two groups of different discriminating network learning
rate experiment. The algorithm is using ECL-MAD3PG.

By employing operations akin to fine-tuning the learning rate of the discriminant
network, this study successfully determined the optimal experimental parameters through
a series of rigorous experiments conducted in three distinct environments. The obtained
results are meticulously documented and are presented in Table 16 for reference.

Table 16. The relatively stable parameters of ECL-MAD3PG in three environments.

Environment Critic Network Learning Rate Policy Network Learning Rate Buffer Size Noise

simple_tag 1× 10−4 1× 10−3 3× 105 0.1

simple_adversary 2× 10−4 1× 10−3 3× 105 0.1

MACCSP 5× 10−4 5× 10−3 5× 105 0.1

After conducting multiple experiments in three different environments, the obtained
results were documented in this table. The findings indicate that ECL-MAD3PG exhibits
superior performance in relatively simple environments when employing a smaller discrim-
inant network learning rate. Conversely, in more complex environments, ECL-MAD3PG
demonstrates enhanced efficacy with the utilization of a larger discriminant network learn-
ing rate.

6. Conclusions

In this paper, we propose the ECL-MAD3PG algorithm, which addresses the issue of
estimation error in the agent action value evaluation caused by function approximation
of its internal discriminant network, based on the multi-agent depth strategy gradient
algorithm. This leads to reduced reliability and stability of the model, resulting in conver-
gence difficulties. With the increasing complexity of the environment, there is a decrease
in the quality of experience collected by the experience playback pool, leading to ineffi-
ciency in the sampling stage and further hindering algorithm convergence. To overcome
these challenges, our proposed ECL-MAD3PG algorithm incorporates a multi-agent dual
confrontation policy gradient approach, along with empirical clustering stratification.

(1) This paper proposes a dual adversarial critic network structure to accurately and
effectively analyze the relative contribution of the input state and action of the agent
and estimate the optimal value network, so as to optimize the algorithm and its critic
component
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(2) This paper proposes a preferential experience playback based on experience cluster-
ing, which makes full use of the experience information obtained by the interaction
between the agent and the environment, improves the quality of the recovered experi-
ence, and thus improves the learning efficiency and stability of the algorithm.

(3) In this paper, we independently design a complex multi-UAV cooperative confronta-
tion environment, and verify the adaptability and stability of the algorithm, and
the task completion rate of the algorithm is improved by 9.1% compared with other
classical reinforcement learning algorithms.
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