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Abstract: This paper studies an advanced machine learning method, specifically few-shot classifica-
tion with meta-learning, applied to distributed acoustic sensing (DAS) data. The study contributes
two key aspects: (i) an investigation of different pre-processing methods for DAS data and (ii) the
implementation of a neural network model based on meta-learning to learn a representation of the
processed data. In the context of urban infrastructure monitoring, we develop a few-shot classification
framework that classifies query samples with only a limited number of support samples. The model
consists of an embedding network trained on a meta dataset for feature extraction and is followed by
a classifier for performing few-shot classification. This research thoroughly explores three types of
data pre-processing, that is, decomposed phase, power spectral density, and frequency energy band,
as inputs to the neural network. Experimental results show the efficient learning capabilities of the
embedding model when working with various pre-processed data, offering a range of pre-processing
options. Furthermore, the results demonstrate outstanding few-shot classification performance across
a large number of event classes, highlighting the framework’s potential for urban infrastructure
monitoring applications.

Keywords: meta-learning; few-shot classification; distributed acoustic sensing; artificial intelligence;
neural networks

1. Introduction

Fiber optic distributed acoustic sensing (DAS)—based on phase-sensitive optical time-
domain reflectometry (ϕ-OTDR) [1,2]—is an emerging technology that detects acoustic
signals and vibrations along tens of kilometers with high sensitivity and high data rates.
DAS measures the strain change along an optical fiber by periodically injecting laser pules
into the optical fiber and collecting the back-reflected Rayleigh scatter caused by small
inhomogeneities along the fiber [3]. Essentially, the back-scattered light is used as an infor-
mation carrier to infer parameters of the physical environment along the optical fiber. This
technology is relevant to a large number of monitoring and surveillance applications, rang-
ing from long-haul intrusion detection and structural health monitoring to the monitoring
of railways, pipelines, and buildings [4]. The sensing principle offers several advantages
over conventional point sensors, including temporally and spatially (quasi-)continuous
measurements, remote monitoring in harsh environments, and robustness to electromag-
netic inference. However, despite these advantageous attributes, DAS measurements also
contain several challenges, primarily caused by dependence on external factors such as tem-
perature and ground coupling and the high data rates involved (easily reaching terrabytes
per day). Therefore, the efficient utilization of the data with the help of machine learning
(ML) can significantly impact the effectiveness of DAS applications.
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Deep Learning (DL) has emerged as a powerful paradigm for processing large numbers
of unstructured data over the last decade [5]. For this reason, deep neural networks (DNNs)
have recently seen growing adaptation for harnessing the extensive data generated by
DAS systems: Aktas et al. [6] proposed to feed a five-layer convolutional neural network
(CNN) with short-time Fourier-transformed (STFT) images for seismic event recognition;
Shiloh et al. [7] proposed to use a 16-layer CNN (VGG16 [8]) for the task; and [9] proposed
a convolutional long short-term memory (convLSTM) network, which combines a CNN
for extracting spatial features from multi-channel signals and an RNN to analyze the
temporal relationships over time. Peng et al. [10] achieved 94% prediction accuracy for
seven different pipeline corrosion types based on a (deep) autoencoder in conjunction with
a softmax layer.

One notable approach in [11] introduced a self-supervised DL method aimed at
improving DAS measurements via mitigating spatially incoherent noise with unknown
characteristics. In [12], different pre-processing methods for the input to various DL models
were compared, and an accuracy of 99.2% in a four-way classification task was achieved,
highlighting the importance of the initial data representation fed into a DL model. In [13],
classical ML methods and DL methods were compared, and it was concluded that the
best approach depends on the data regime: In the low-data setting (usually at a project’s
beginning), classical ML approaches dominate DL methods, as neural networks tend to
overfit on spurious correlations. In the high-data regime (usually at a later project stage),
DL methods tend to outperform, as deep neural networks can discover unexpected patterns
in the data that human experts may not have noticed.

In practice, the low-data regime is very common, though, as collecting a large la-
beled dataset is often both costly and time-consuming and sometimes infeasible due to
operational constraints. Consequently, several works have explored different solutions to
this challenge: In [7], a solution based on generative adversarial networks (GANs) was
proposed. Leveraging GANs, their method augmented the training dataset for a supervised
classifier using artificially generated DAS data. In another study [14], a purely unsuper-
vised DL method was introduced, utilizing a convolutional autoencoder to extract features
from DAS signals. Subsequently, a clustering algorithm identified the feature center of
normal data, and the distance to the new signals was used to determine anomalies.

In this study, we focus on an urban monitoring application involving data collected
from a 12.5 km long optical fiber in a metropolitan region. This area encompasses a
variety of infrastructures, such as streets, road crossings, highways, and bridges. Our
goal is to develop an ML framework to discern the normal operating conditions of these
infrastructures from anomalies such as fatigue or damage, specifically in the low-data
regime. For each specific asset, we create an event class to monitor its condition under
normal circumstances, free from intrusions or anomalies. Anomalies, which include third-
party intrusion (TPI) like machinery and manual shovel diggings, should be systematically
detected and identified. The challenge here lies in multi-class classification while addressing
the imbalanced training data issue, where certain classes have only limited training samples
available. Moreover, our ML framework should be extendable and allow for the inclusion
of new classes with minimal effort. Recent advancements in learning algorithms have
demonstrated the potential of few-shot learning [15,16] for rapid adaptation to new tasks
with limited labeled samples.

To address the aforementioned challenges, we introduce an ML framework leveraging
few-shot learning through meta-learning [17] for classifying DAS data. Our approach
involves the development of various pre-processing techniques for DAS data, with the
resulting features being fed into a neural network to further refine the data representation.
This representation then serves as the input for a few-shot classifier, which allows us to
classify new query samples based on a limited number of support samples.

The remainder of this paper is structured as follows: Section 2.1 summarizes the used
DAS system and configuration, Section 2.2 introduces the various pre-processing methods
applied, and Section 2.3 provides a comprehensive overview of our few-shot classification
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with meta-learning framework. We subsequently evaluate the framework’s performance in
Section 3, followed by the conclusion in Section 4.

2. Method
2.1. DAS System and Configuration

The DAS system [1–3] used in this study consists of a phase-sensitive DAS interrogator
connected to an optical fiber acting as the acoustically sensitive element. The measurement
process begins with the emission of a coherent light pulse into the optical fiber. As this
pulse propagates through the fiber, it interacts with the impinging acoustic field. The
scattered light, returned to the source due to Rayleigh scattering, carries information about
the encountered perturbations. Acoustic signals induce variations in the optical path length,
altering the backscattered light. The calculated phase signal of the backscattered light serves
as an indicator of the acoustic or vibrational interactions. Consequently, the measured
phase signal can be directly attributed to the acoustic or vibrational energy impinging on
the fiber, facilitating accurate localization and characterization of events.

Figure 1 depicts a schematic diagram of a phase-sensitive DAS system employed in
this study. To capture the acoustic signal patterns in the field, the sensor fiber is installed
in an optical cable and laid in the ground. The measurement data are acquired by using
an AP Sensing N52 DAS device, deployed in a metropolitan area. A sequence of coherent
probe pulses is launched into the sensor fiber where events occur. Subsequently, the phase
of the backscattered signal from the fiber is digitized and processed with the DAS device.
Data are sampled at a repetition rate of 5000 Hz with a spatial resolution of 5 m.

Figure 1. A phase-sensitive DAS diagram.

2.2. Data Preparation

DAS data are obtained along an optical fiber and hence fundamentally have a two-
dimensional structure comprising a time and a position axis. For each timestamp, a
one-dimensional data array is generated along the sensing fiber, where the size of this data
array is equivalent to the number of spatial sensing channels. These spatial channels of
DAS maintain a repetition rate, serving as the sampling frequency for the detection signal.

We utilize various pre-processing methods to transform the phase data of DAS into
valuable signal features, which are subsequently employed for training DNN models to
learn a data representation. In our pursuit of exploring different time–frequency resolutions
of the signal, we apply a discrete wavelet transform (DWT) [18] to decompose the phase
data, taken every 60 s, from a specific spatial channel into distinct sub-bands. In this study,
we employ the Daubechies-4 wavelet (db4) with four vanishing moments to facilitate pre-
cise time and frequency localization. Our chosen DWT is applied to decompose the phase
data from each specific spatial channel into 4 sub-bands, specifically covering the frequency
ranges of 0–16 Hz, 16–32 Hz, 32–64 Hz, and 64–128 Hz. The first type of feature is derived
from the wavelet coefficients from these sub-bands for each channel, henceforth referred
to as the decomposed phase (dePhase). The second set of features involves calculating
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the power spectral density (PSD) through the short-time Fourier transform (STFT) applied
to the sub-bands. In addition, we introduce another set of features known as frequency
band energy (FBE). These features are derived from PSD through the summation of the fre-
quency dimension within each sub-band. It is worth noting that PSD includes an additional
frequency dimension compared to FBE.

Figure 2 depicts the three different types of extracted features within the decomposed
frequency band of 16Hz-32Hz. Figure 2a displays 60 s of the decomposed phase plotted
against distance. The power spectrum density, averaged over 60 s, is illustrated in Figure 2b,
while Figure 2c presents the frequency band energy over 60 s. We can observe disturbances
along the optical fiber using dePhase and FBE over time. It is worth noting that in Figure 2
higher scaled values are indicative of more pronounced disturbances. The same color scale
for FBE is consistently applied throughout the entire paper. For instance, in the upper right
corner of Figure 2a,c, we can observe a diagonal line representing a strong disturbance
caused by a passing train. Furthermore, the PSD features offer insights into the energy
distribution across the specific frequency range (16 Hz–32 Hz) for a particular position.
More specifically, at approximately 9200 m, Figure 2b clearly illustrates a remarkable power
density in the 26 Hz–27 Hz frequency range, which is characteristic of excavator engine
noise. Distinctive patterns are also noticeable in Figure 2a,c around 9200 m, with regard
to the dePhase and FBE responses over time. These representative features play a crucial
role in training ML models, enabling them to learn patterns and interpret these learned
patterns as the indicators of underlying events responsible for generating the disturbances.

(a) dePhase (b) PSD (c) FBE

Figure 2. Various signal features—(a) dePhase, (b) PSD, and (c) FBE—are extracted from a fiber section
within the 16 Hz–32 Hz frequency band.

2.3. Few-Shot Classification with Meta-Learning

We aim to develop an ML framework capable of learning insights into various events,
enabling us not only to monitor the condition of infrastructure but also to detect intrusion
events that may pose threats. As urban areas continually evolve, there arises a need to
detect various forthcoming events, particularly those posing potential threats to infras-
tructure, such as machinery digging and cable theft. However, these new tasks involve
a limited number of labeled samples due to the resource-intensive and impractical na-
ture of collecting data. Few-shot learning through meta-learning [15,16] has emerged as
a promising approach in the setting where ML models are trained on diverse learning
tasks to tackle new tasks with minimal effort. In this work, we construct a framework
for handling DAS data based on the architectures highlighted in [15,16]. This approach
involves training an embedding model to learn a representation of multiple event classes,
serving as a feature extractor, and a head classifier that is adapted to identify any new class
on top of the learned representation.

Figure 3 depicts our few-shot classification framework designed for DAS data. This
framework is composed of two fundamental stages: the embedding-learning stage that
employs a neural network as an embedding model and the few-shot classification stage
that utilizes a classifier, such as a logistic regression or support vector machine [19].
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Figure 3. Few-shot classification framework of DAS data.

2.3.1. Representation Learning with an Embedding Model

The embedding model is trained for a multi-class classification task during the
embedding-learning stage. We use Wide ResNet28 (WRN28) [20,21] as our embedding
model for learning representations across different classes of transformed DAS data. Input
features, including dePhase, PSD, or FBE, are fed into the WRN28 network to capture their
representation features. It is important to remark that in this study, we examine the per-
formance of each signal feature independently as it is fed into the embedding model. Our
objective is to learn all signal responses required for monitoring infrastructure conditions
along the fiber cable. Therefore, we categorize the signal features, as shown in Figure 2,
into various classes. In this study, we simplify the labeling process by considering the
events that happen every 500 m as one class, i.e., the 12.5 km cable length is equally divided
into 25 sections as 25 distinct classes. This approach allows us to continuously monitor
changes in infrastructure conditions over time, as we expect that the measured signals
exhibit regularity under normal conditions.

Figure 4 illustrates an FBE waterfall plot of some sections associated with various
infrastructure types, e.g., street or bridge, which are excited by external actuators such as a
car or train. Vibrations from the bridge can originate from specific components like a cable-
stayed pillar. Additionally, the DAS system can also capture anomalies like TPI threats, e.g.,
mechanical and manual shovel diggings. Even though the trained embedding model has
not been specifically trained on the anomalies data yet, the output features extracted via
the embedding model can be fed into the classifier to categorize novel anomalies based on
known support samples. This process is further elaborated upon in the subsequent section,
which describes the few-shot classification stage of our approach.

2.3.2. Few-Shot Classification

This stage aims at training a few-shot classifier to quickly add new tasks, even when
provided with a limited number of labeled samples per class. The classifier should deter-
mine the class to which a new query sample belongs, utilizing a support set consisting of
a small number of examples from the class. The classifier leverages the reuse of features
extracted by the embedding model, which therefore plays a critical role in the classifier
performance. A good embedding model yields high-quality representative features, ulti-
mately contributing to superior few-shot classification performance. The classifier could be
a simple model, e.g., a nearest-neighbor classifier, a logistic regression, a support vector
machine [19], or a prototypical network [22]. In essence, the classifier can generalize to
new classes, which are not encountered during the embedding-learning training, by ef-
fectively learning from a small number of support samples to make inferences about the
query sample.

Figure 5 presents three FBE plots of novel event classes representing anomalies that
are not part of the initial training dataset. Specifically, Figure 5a,b illustrate instances of
Excavator (at ∼9220 m) and Shovel (at ∼9290 m) diggings, respectively. These activities
pose potential threats to critical infrastructure such as power cables and pipelines. Fur-
thermore, as illustrated in Figure 5c, at a distance of ∼9620 m in the bridge section, we
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observe a Shaking disturbance that can potentially damage power or communication cables
along the bridge. These new activities are not part of the embedding-learning training
dataset; however, the classifier has the ability to adapt and classify them as new classes,
provided some support training samples. Consequently, we can identify new event classes
by updating the few-shot classifier without the need to retrain the embedding model.

Figure 4. An FBE plot within a cable section showing various activities, including car, train, bridge,
and cable-stayed pillar.

(a) Excavator (b) Shovel (c) Shaking

Figure 5. Examples of FBE plots illustrating anomalies in three new classes: (a) Excavator, (b) Shovel,
and (c) Shaking.

3. Experiment

We conduct experiments using the dataset previously described. The embedding
model is trained on a 25-class classification task, referred to as Meta-classes, and the
few-shot classifier is subsequently tested on new tasks. Three types of signal features, the
aforementioned dePhase, PSD, and FBE, are derived from the phase data. The data used
for training the embedding model are collected over a four-month period without any
anomalous events. Additionally, the phase data from several days featuring new events,
such as Excavator digging, Shovel digging, and cable Shaking, are used to evaluate the
few-shot classifier. The classifier leverages the representation features generated via the
embedding model. In our work, we decompose the phase data into 4 bands every 60 s. To
incorporate a broader context, we group 100 spatial channels together, resulting in each
data sample containing 4 bands × 60 s × 100 channels of DAS data. PSD introduces an
additional frequency dimension, achieved by applying the overlapped STFT with an FFT
length of 128, yielding 65 frequency bins. In this study, we set the time resolution for PSD
and FBE to 16 times per second.
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To assess the training progress of the embedding model, we plot the learning curves,
including training and validation, for the embedding training across the three different
features extracted from the DAS data. In Figure 6, the loss and accuracy curves are plotted
against 100 learning iterations for dePhase, PSD, and FBE, respectively. The curves indicate
that the embedding model with the PSD feature as input achieves faster convergence
compared to the models using the dePhase and FBE features. Moreover, the learning curves
associated with the PSD feature exhibit both the lowest converged loss and the highest
converged accuracy. This suggests that the PSD signal features offer better information for
training the embedding model.

Figure 6. Loss and accuracy curves for embedding-learning on dePhase, PSD, and FBE datasets.

The evaluation of the embedding model involves three metrics: Accuracy, Precision,
and Recall on the Meta test set, including dePhase, PSD, and FBE, respectively.

• Accuracy quantifies the overall correct classification of the embedding model, repre-
senting the ratio of correct predictions to the total samples.

Accuracy =
Number of Correct Samples
Total Number of Samples

(1)

• Precision assesses the accuracy of positive predictions, indicating the proportion of
correctly classified positive (True Positives) samples among those predicted positive
samples (True and False Positives).

Precision =
True Positives

True Positives + False Positives
(2)

• Recall measures the completeness of positive predictions that is defined as the fraction
of positive class samples (True Positives and False Negatives) that are correctly
classified (True Positives).

Recall =
True Positives

True Positives + False Negatives
(3)
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Table 1 reports the results of these three metrics for the multi-class classification perfor-
mance of the embedding model on the Meta test set for each signal feature. We can observe
that the performance of the test set on PSD gives the highest Accuracy, Precision, and
Recall, followed by the performance of the test set on FBE and dePhase. The performance
indicates that the embedding model delivers better performance with the frequency domain
data, i.e., on PSD and FBE, in comparison to the performance with the phase data (dePhase).

Table 1. Multi-class classification performance of the embedding model on the Meta test sets.

Metric [%] dePhasedePhasedePhase PSDPSDPSD FBEFBEFBE

Accuracy 97.65 98.85 98.80

Precision 96.39 98.13 98.06

Recall 97.43 98.36 98.36

We now evaluate the performance of the few-shot classifier across various few-shot
classification tasks. Specifically, three types of anomalous activities are tested as new
classes—examples of these new classes are shown in Figure 5. We employ a multinomial
logistic regression, which is an extension of logistic regression designed to handle multi-
class classification problems. This model utilizes the embedding features extracted from
the output of the embedding model. We examine two settings, each with a limited number
of support samples: one support sample (1-shot) and three support samples (3-shot). Ad-
ditionally, we evaluate four combinations of tasks, as detailed in Table 2, which involves
pairing each new task with the Meta-classes present in the embedding model’s training
dataset. A set of classes, namely, TPI-classes, is created for evaluating the classifier per-
formance exclusively with the new classes. Table 2 presents the few-shot classification
performance achieved by the few-shot classifier. In general, the best performance is consis-
tently observed for PSD, except in the case of the Shaking task with 3-shot, where the best
result is achieved using FBE. It is noteworthy that the best results are highlighted in bold
text in both Tables 1 and 2. These results underscore the important role of the embedding
model in achieving superior few-shot classification performance. Furthermore, when con-
sidering the number of support samples, the performance across all signal features with
3-shot consistently outperforms that with 1-shot.

Table 2. Few-shot classification performance achieved by the few-shot classifier across various tasks.

Few-Shot Tasks Metric [%]
dePhasedePhasedePhase PSDPSDPSD FBEFBEFBE

1-Shot 3-Shot 1-Shot 3-Shot 1-Shot 3-Shot

Excavator + Meta

Accuracy 95.70 96.18 98.90 99.92 97.97 99.20

Precision 93.30 94.07 97.88 99.82 96.67 98.78

Recall 94.85 95.56 97.91 99.83 97.26 98.82

Shovel + Meta

Accuracy 95.44 98.20 98.60 99.72 98.32 98.68

Precision 92.78 97.30 96.70 99.61 96.91 97.46

Recall 94.49 98.20 96.83 99.63 97.07 97.46

Shaking + Meta

Accuracy 93.20 94.68 98.96 98.84 98.04 99.32

Precision 91.20 92.75 98.06 97.97 96.67 99.22

Recall 92.75 94.40 98.08 97.99 97.08 99.08

TPI-classes

Accuracy 70.00 79.95 92.42 93.91 91.80 92.75

Precision 70.06 78.05 80.50 93.53 78.36 87.82

Recall 70.92 78.32 80.71 93.65 78.78 87.88
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4. Conclusions

We have introduced a few-shot classification framework for DAS data within the con-
text of urban infrastructure monitoring, utilizing three different pre-processing methods,
dePhase, PSD, and FBE, as the input data. The experimental results have demonstrated
that the embedding model effectively learns the representation of DAS data across a large
number of classes. These representation features significantly contribute to enhancing the
classification performance of the few-shot classifier. We have conducted various experi-
ments to evaluate both the embedding model and the classifier’s performance. The results
show that the framework delivers outstanding few-shot classification performance, with
the PSD features consistently outperforming FBE and dePhase. Moreover, high classification
accuracy is achievable with either three or one support samples. Increasing the number of
support samples leads to further enhancements across signal features. Our study consis-
tently demonstrates superior performance with three support samples in comparison to
one support sample.
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