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Abstract: As mental health (MH) disorders become increasingly prevalent, their multifaceted symp-
toms and comorbidities with other conditions introduce complexity to diagnosis, posing a risk
of underdiagnosis. While machine learning (ML) has been explored to mitigate these challenges,
we hypothesized that multiple data modalities support more comprehensive detection and that
non-intrusive collection approaches better capture natural behaviors. To understand the current
trends, we systematically reviewed 184 studies to assess feature extraction, feature fusion, and ML
methodologies applied to detect MH disorders from passively sensed multimodal data, including
audio and video recordings, social media, smartphones, and wearable devices. Our findings revealed
varying correlations of modality-specific features in individualized contexts, potentially influenced
by demographics and personalities. We also observed the growing adoption of neural network
architectures for model-level fusion and as ML algorithms, which have demonstrated promising
efficacy in handling high-dimensional features while modeling within and cross-modality relation-
ships. This work provides future researchers with a clear taxonomy of methodological approaches to
multimodal detection of MH disorders to inspire future methodological advancements. The compre-
hensive analysis also guides and supports future researchers in making informed decisions to select
an optimal data source that aligns with specific use cases based on the MH disorder of interest.

Keywords: machine learning; mental health; multimodal detection; passive sensing; systematic
review

1. Introduction

Mental health (MH) issues are pervasive in modern society, with the World Health
Organization estimating that around 1 in 8, or 970 million people, were living with a mental
health condition in 2019 [1]. The COVID-19 pandemic brought unprecedented times,
leading to a reported increase in rates of anxiety and major depression by 25% in 2020 [2].
Subsequently, 42.9% of people in Australia aged between 16 and 85 years had experienced
a mental disorder at some time in their lives as of 2022 [3], whereas 22.8% of adults in the
U.S. were estimated to be experiencing mental illness as of 2021 [4]. With figures estimating
that MH disorders will contribute to an economic loss of around USD 16 trillion globally
by 2030 [5], it is unsurprising that MH has become a government priority worldwide.
Specifically, the Comprehensive Mental Health Action Plan 2013–2030 [6] encompasses
several global targets to promote improved mental health and well-being, where service
coverage for MH conditions will have increased at least by half, and 80% of countries
will have integrated mental health into primary health care by 2030. The impacts of MH
issues on individuals’ lives are enormous. For example, people with mental illness reported
having difficulty carrying out daily activities or requiring much energy and focus to meet
demands at work [7], whereas those with depression experienced decreased enjoyment of
activities and social interactions due to fluctuations in mood states [8]. Anxiety has also
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been found to reduce productivity and performance due to individuals’ attention being
excessively directed towards other people’s perceptions [9]. In addition, research further
demonstrated that emotional dysregulation introduces susceptibility to physical illnesses
such as cardiovascular disease, viral infection, and immunodeficiency [10].

Despite the prevalence, several shortcomings exist in the current diagnosis and treat-
ment of mental health disorders. These include comorbidities with other conditions that
introduce complexity to diagnosis [11], the subsequent failure of clinicians to make accu-
rate diagnoses due to obscurities of overlapping symptoms [11], the reliance on patients’
subjective recollection of behaviors [12], and the shortage of human resources available for
mental health care [13]. The limitations above contribute to underdiagnosis, preventing
people in need from receiving proper treatment. In light of the need to promote more
accurate detection of MH disorders, researchers began exploring the application of artificial
intelligence and machine learning (ML) in this domain. Such efforts are motivated by the
ability of ML to analyze large amounts of data [14], distinguish data features [15], learn
meaningful relationships between data [16], and apply the identified associations to make
predictions about new data [17]. Coupling ML methods with qualitative analysis, visualiza-
tion, and other interpretation tools further enhances the understanding of ML outputs [17],
which can support clinical decisions and improve the comprehension of causes of specific
MH disorders.

Existing research has seen numerous attempts to incorporate ML in healthcare, where
effective ML methods can offer automation to harness large amounts of real-time data to
improve the quality of patient care [18]. Nevertheless, the dynamic nature of an individual’s
health, influenced by factors such as genetics, medical history, and lifestyle, remains a
complex and demanding challenge to resolve [18]. Similarly, diagnoses of MH disorders
are intricate due to the multifaceted nature of MH, involving emotional (e.g., sadness, help-
lessness), behavioral (e.g., isolation, self-talk), and physical (e.g., body aches, sleeplessness)
aspects [19]. In addition, various perceived causes could contribute to MH issues, en-
compassing psychological (e.g., low self-esteem, overthinking), socioeconomic (e.g., racial
and ethnic discrimination, poverty), and social (e.g., family conflicts, interpersonal rela-
tionships) factors [19]. As such, we hypothesize the need for multimodal data, i.e., data
with multiple modalities each referring to a form of data or a signal from a data source, to
achieve complementary effects for improved detection. For example, an existing work [20]
has seen multimodal social media data, consisting of text, images, post metadata (e.g., time
posted, likes, comments), and user metadata (e.g., profile description and image, followers),
to offer additive effect when information from all modalities are incorporated. Additionally,
the reliance of ML systems on extensive data and the heterogeneity of data from various
sources necessitates the exploration of scalable and sophisticated ML methodologies to
manage and standardize such big data, with considerations of privacy and security to
ensure the confidentiality of patients’ information [21].

The pipeline of ML methodologies on multimodal data includes feature extraction for
each modality, transformation and fusion of modality-specific features of various structures
and dimensions and ML algorithms to learn from fused representations. Our preliminary
investigation of recent surveys of ML applications to multimodal MH detection revealed
several data sources, such as social media [22–25], smartphones [26,27], and wearable
devices [27,28]. Nevertheless, we observed a limited evaluation of the current state of
knowledge in each methodological phase mentioned above, in which the understanding is
crucial to inform advancements in ML approaches. In summary, the gaps we identified
are the need for (1) more effective ML approaches to reduce the risk of underdiagnosis
and (2) ML methodologies for handling heterogeneous and extensive multimodal data to
support the detection of multifaceted MH disorders.

In this systematic literature review (SLR), we address these limitations by analyzing
individual methodological phases in greater detail. We further narrow our scope to studies
adopting passive sensing, which gathers users’ data non-intrusively via ubiquitous sensors
or devices and requires minimal user inputs. This decision is supported by our hypothesis
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that people’s natural behaviors are best captured when their daily routines are subject to
the least possible obstructions [29,30]. Less intrusive approaches have also been shown
to have better acceptance among the general population, with the need to carry/wear
dedicated equipment being reported as off-putting and causing levels of discomfort [12,31].
From a recent survey [17], we learned that two key motivations for ML applications to
mental health are the accessibility to behavioral data enabled by continuous and non-
invasive approaches and the efficiency and cost-effectiveness of timely and automated data
processing. Drawing inspiration from the survey above, we establish several criteria that we
anticipate in data collection approaches that are practical to promote subsequent effective
detection of MH disorders: (1) reliability (i.e., ensuring that the data closely represents
actual behaviors), (2) verifiable ground truth, (3) cost-effectiveness, and (4) acceptability
among the general population. Consequently, we conduct a detailed analysis of each data
source based on these criteria. This SLR aims to (1) assess the current trend of multimodal
ML approaches for detecting various MH disorders and (2) identify an optimal strategy
leveraging passively sensed multimodal data and ML algorithms. Specifically, the research
questions (RQs) we aim to address throughout our study are:

• RQ1—Which sources of passive sensing data are most effective for supporting the
detection of MH disorders?

• RQ2—Which data fusion approaches are most effective for combining data features of
varying modalities to prepare for training ML models to detect MH disorders?

• RQ3—What ML approaches have previous researchers used to successfully detect
MH disorders from multimodal data?

The SLR is structured as follows: Section 2 outlines the research methods adopted
in this review, followed by Section 3, which presents results that analyze the individual
phases of existing methodologies, including data sources, feature extraction, modality
fusion techniques, and the ML algorithms adopted. Based on the analysis, Section 4 then
synthesizes the findings to address each RQ mentioned above and draws insights into
recommendations and considerations for future researchers wishing to innovate in this
space. Lastly, Section 5 concludes the study.

2. Materials and Methods

This section presents the review protocol for our SLR based on the PRISMA 2020
Statement [32], a guideline for healthcare-related studies [33] established based on the
PRISMA 2009 Statement [34], and the Guidelines for SLRs in Software Engineering [35]
published in 2007.

2.1. Search Strategy

We performed an exhaustive search on four online databases: Scopus, PubMed,
ACM Digital Library, and IEEE Xplore. We chose these databases due to the abundance of
published papers on the topic of concern and to represent the multidisciplinarity of the topic
by having a diversity of papers across the fields of clinical science and computing science.
As previously explained, we concentrate on studies utilizing data of at least two different
modalities collected using ubiquitous devices and applying ML techniques for detecting
MH disorders. Inspired by Zhang et al.’s [36] search strategy, we systematically constructed
our search query based on aspects shown in Table 1.

We queried the databases by combining keywords within the same category with
an OR operator and those across categories with an AND operator. We also considered
different terminology variants by using wildcards (*), for instance, “well*” in our query
string, because the term “wellbeing” may be spelled as “well-being” in certain studies.
An example of our query string on Scopus is as follows:

“ALL (mental AND (health OR disorder OR illness OR well*)) AND TITLE-ABS-KEY
(“artificial intelligence” OR “machine learning” OR model) AND TITLE-ABS-KEY (detect*
OR predict* OR classif* OR monitor* OR recogn* OR identif*) AND TITLE-ABS-KEY
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(“social media” OR text* OR audio* OR speech* OR voice OR visual OR imag* OR video*
OR smartphone* OR mobile OR wearable* OR sens*) AND PUBYEAR > 2014”.

Table 1. Search categories and keywords.

Category Keywords

Mental disorder Mental health, mental disorder, mental illness, mental wellness, mental wellbeing
Method Artificial intelligence, machine learning, model
Outcome Detect, predict, classify, monitor, recognize, identify
Data source/modality Social media, text, speech, voice, audio, visual, image, video, smartphone, mobile, wearable, sensor

We decided on the cutoff publication year of 2015 due to the consideration of the
developmental trajectory of the research domain. Our preliminary observation revealed
2015 as a potential juncture where relevant studies began gaining momentum, coincid-
ing with the introduction of AVEC 2013 [37] and AVEC 2014 [38] challenges focusing on
facial expressions and vocal cues relating to specific MH conditions such as depression.
We intended to ensure that our review encompasses more recent advancements for a com-
prehensive understanding of the field’s current state. In addition, the rapid development
of technologies may render techniques from older publications obsolete or less relevant.
Likewise, the relevance of findings related to smartphones and wearable devices may have
evolved due to changes in their adoption among the general population over time.

2.2. Inclusion and Exclusion Criteria

To ensure the selection of studies that align with our research focus, we considered a
study to be relevant if it fulfilled all of the following inclusion criteria:

• The study collects data passively via ubiquitous or wearable devices, considering the
cost-effectiveness and general accessibility.

• The data is human generated, i.e., derived from individuals’ actions in an environment
or interactions with specific platforms or devices.

• The data source involves at least two different modalities.
• The study adopts ML algorithms intending to detect one or more MH disorders.
• The study is written in English.
• The study was published from the year 2015 onwards (further details in the follow-

ing section).

We excluded a study if any of the following exclusion criteria were satisfied:

• The study investigates data sources of a single modality or exclusively focuses on a
specific modality, e.g., text-based approaches.

• The study specifically targets the pediatric population, i.e., toddlers and children below
ten years old, as defined within the suggested adolescent age range of 10–24 years [39].

• The study targets a particular symptom of specific MH disorders, e.g., low mood,
which is a common sign of depression.

• Data collection requires dedicated equipment or authorized resources:

- Brain neuroimaging data, e.g., functional magnetic resonance imaging (fMRI),
structural MRI (sMRI), electroencephalogram (EEG), electromyography (EMG),
and photoplethysmography (PPG) signals

- Clinical data, e.g., electronic health records (EHRs) and clinical notes
- Genomic data
- Body motions collected using specialized motion capture platforms or motor sensors
- Makes use of Augmented Augmented Reality (AR) or Virtual Reality (VR) technology

• The study does not employ ML algorithms for detection/prediction, e.g., focusing
on correlation/association analysis, treatment/intervention strategies, or proposing
study protocols.

• The study is a survey, book, conference proceeding, workshop, or magazine
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• The study is unpublished or non-peer-reviewed.

Since our work explicitly emphasizes multimodality to observe cross-modality fusion
and interactions, we excluded studies emphasizing a single modality. For example, we do not
consider those solely analyzing textual content from social media sources (e.g., Twitter) without
incorporating broader online social behaviors, such as posting time distribution and interactions
with other users through retweets and comments. Additionally, we omitted studies involving
children, as it is well-established that factors, manifestations, and responses to MH conditions
can differ significantly between children and adults [40]. Children may also often rely on parents
and family environment for care and treatment [41,42].

While changes in MH states such as affect, emotion, and stress may serve as potential
indicators of MH disorders such as depression and anxiety [43], it is noteworthy that these
factors, when considered in isolation, do not necessarily equate to a complete MH diagno-
sis [44,45]. Therefore, we refined our focus by excluding studies that solely investigated
these states. Due to practicality concerns, we also enforced the utilization of ubiquitous
devices in data collection to ensure these tools are easily accessible and cost-effective.

2.3. Selection Process

Figure 1 shows the literature search process as a flow diagram adapted from an
example in the PRISMA guideline (https://www.bmj.com/content/bmj/339/bmj.b2700/
F2.large.jpg (accessed on 19 September 2023)). After querying the selected databases, we
re-evaluated the title, abstract, and keywords of individual studies to refine the results and
remove duplicates. Subsequently, we manually applied the eligibility criteria to determine
relevant studies for data extraction.

Figure 1. Flow diagram of study selection.

 https://www.bmj.com/content/bmj/339/bmj.b2700/F2.large.jpg
 https://www.bmj.com/content/bmj/339/bmj.b2700/F2.large.jpg
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2.4. Data Extraction

Table 2 shows the information we extracted from individual studies and the corre-
sponding mapping to the relevant research questions (RQs) where applicable.

Table 2. Data to extract to answer respective research questions.

ID Item RQ

I1 Reference (authors and year) N/A
I2 Title N/A
I3 Mental health disorder investigated N/A
I4 Data collection process RQ1
I5 Ground truth/data labeling RQ1
I6 Feature extraction process RQ2
I7 Feature transformation process if any RQ2
I8 Feature fusion process RQ2
I9 Machine learning model RQ3
I10 Results achieved N/A
I11 Analysis findings if any N/A

2.5. Quality Assessment

We adapted a suggested checklist [35] to develop quality assessment criteria, shown
in full in Table 3, that assigns a score to each study.

Table 3. Quality assessment criteria and scoring.

ID Criteria Scoring

QC1 Was there an adequate description of the context in which
the research was carried out?

The design, setup, and experimental procedure are
adequately (1), partially (0.5), or poorly described (0)

QC2 Were the participants representative of the population to
which the results will generalize?

The participants fully (1), partially (0.5), or do not (0)
represent the stated target population

QC3 Was there a control group for comparison? Control group has (1) or has not (0) been included
QC4 Were the measures used in the research relevant for

answering the research questions?
Adopted methodology and evaluation methods are fully
(1), partially (0.5), or not (0) aligned with research objectives

QC5 Were the data collection methods adequately described? Data collection methods are adequately (1), partially (0.5),
or poorly (0) described

QC6 Were the data types (continuous, ordinal, categorical)
and/or structures (dimensions) explained?

All (1), some (0.5), or none (0) of the data types and
structures of various modalities are explained

QC7 Were the feature extraction methods adequately described? Feature extraction methods are adequately (1), partially
(0.5), or poorly (0) described

QC8 Were the machine learning approaches
adequately described?

Machine learning models and architectures are adequately
(1), partially (0.5), or poorly (0) described

QC9 On a scale of 1–5, how reliable/effective was the machine
learning approach?

Effectiveness, reliability and consistency of machine
learning approach is well (5), partially (3), or poorly (0)
justified through evaluation, analysis and
baseline comparison

QC10 Was there a clear statement of findings? Experimental findings are well (1), partially (0.5), or poorly
(0) described

QC11 Were limitations to the results discussed? Result limitations are well (1), partially (0.5), or poorly
(0) identified

QC12 Was the study of value for research or practice? Research methodology or outcomes well (1), partially (0.5),
or poorly (0) contribute valuable findings or application

Most scoring, except for QC3, QC9, and QC13, adopt a three-item scale, satisfies = 1,
does not satisfy = 0, and partially satisfies = 0.5, to evaluate whether a study complies with
the corresponding criteria. The final quality score would be the summation of the score cor-
responding to the conformity of the checklist items. Acknowledging that healthy controls
are not always necessary in relevant studies, we have specifically included checklist item
QC3 due to our interest in the effectiveness of data sources and methodological approaches
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in distinguishing between individuals with and without MH disorders. Understanding
general patterns in healthy controls also serves as a baseline for benchmarking to justify
the significance of future findings related to those with MH conditions.

3. Results

This section summarizes and analyzes the results we extracted from 184 relevant
studies published from January 2015 to August 2023 based on Table 2. Table 4 displays the
combinations of MH conditions investigated and the categories of data sources involved
in all selected studies. Figure 2 shows the methodological pipeline involved in our data
extraction. The following subsections describe and explain each extracted finding in detail.

Table 4. A compilation of relevant studies for data extraction.

Mental Health Conditions Data Source

Depression

AV [43,46–108]
SM [20,25,98,109–148]
SS [99,100,104,105,149–177]
WS [149–151,155–158,164,169,171–173,178–182]

Suicidal intent

AV [100,183,184]
SM [185–189]
SS [100,147,190]
WS [181,182,191]

Bipolar disorder

AV [101–103,192–200]
SM [201]
SS [12,172,200,202]
WS [172]

Schizophrenia

AV [203]
SM [201,204]
SS [172,205–209]
WS [172,210]

Anxiety

AV [104,105,108,211]
SM [148]
SS [104,105,173–176,212]
WS [173,179,213]

Autism spectrum disorder AV [214]
WS [215]

PTSD AV [107,216]
WS [216]

Eating disorder SM [217–219]

Mental illness SM [220]

Mental wellbeing AV [221]
SS [222,223]

AV: Audio and video recordings, SM: Social media, SS: Smartphone sensors, WS: Wearable sensors.

Figure 2. Pipeline of methodological phases involved in data extraction [224–227].
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3.1. Data Source

The primary categories of data sources are (1) audio and video recordings (n = 82),
(2) social media (n = 55), (3) smartphones (n = 54), and (4) wearable devices (n = 28).

3.1.1. Audio and Video Recordings

Audio and video recordings of individuals were captured using video cameras, web-
cams, or microphones while they responded to interview questions or completed predeter-
mined tasks in person or online. For example, Gratch et al. [228] conducted semi-structured
interviews with individual participants with both neutral questions and those related to
depression or PTSD events, which the authors recorded using a camera and close-talking mi-
crophone. In contrast, NEMSI (NEurological and Mental health Screening Instrument) [229]
was proposed as a cloud-based system that automates data capture and the subsequent
audio-visual processing for feature extraction and visualization. Before commencing the
interviews, researchers [228,230] ensured that participants signed consent forms to collect
highly identifiable recording data and share their data for research purposes. The re-
searchers also offered transparency regarding the purpose of their study and data collection
before participants provided their consent.

3.1.2. Social Media

Meanwhile, social media platforms like Twitter, Reddit, Sina Microblog, Instagram,
Facebook, YouTube, Flickr, and Blued offer a safe space for information sharing, com-
munication, and expressing emotions. Various forms of user-generated content publicly
available on these platforms are texts, images, social interactions (likes, comments, men-
tions, and shares), and user profile information (followers, followings, bio descriptions,
profile images). Researchers could crawl content from these platforms using the provided
application programming interface (API) by strategically querying content posted within a
predetermined duration for observation, locating the presence of relevant phrases or key-
words within textual content, or sourcing directly from discussion space revolving around
specific MH conditions where applicable. For instance, Shen et al. [20] identified candidate
social media users based on tweets containing the character string “depress” and utilized
such tweets as anchor points to sample remaining tweets posted by the corresponding
users within a month relative to anchor tweets. Meanwhile, Mishra et al. [185] scraped
the top 100 posts from the “r/suicidalthoughts”, “r/suicidewatch”, and “takethislife.com”
forums with an abundance of posts related to suicidal ideation.

Nevertheless, we observed limited ethical considerations and explicit mentions in
existing studies regarding obtaining participants’ consent for utilizing their data for research
purposes. For example, Yates et al. [231] discussed the privacy risks with posts crawled
from Reddit as minimal since this data is publicly available on the platform. The researchers
also described their privacy measures for ensuring that annotators and other researchers
were only allowed access to anonymized posts after agreeing to adhere to the ethical
guidelines for not attempting to contact or deanonymize data samples.

3.1.3. Smartphones

Smartphone sensors, such as accelerometers, GPS, light sensors, and microphones,
could collect and infer information about smartphone usage, physical activity, location,
and an individual’s environment. Researchers have adopted existing mobile applications
that collect sensing data, such as Purple Robot [232] (Android only), SensusMobile [99]
(Android only), and LifeRhythm [233] (Android and iOS), and those with additional fea-
tures, including Behavidence https://www.behavidence.com/ (accessed on 10 December
2023) (Android application that displays similarity scores of inferred behaviors to specific
MH disorders), Insights [234] (Android application with customizable questionnaires),
MoodMirror [235] (Chinese Android application that connects with a wristband via Blue-
tooth), or BiAffect https://www.biaffect.com/ (accessed on 10 December 2023) (iOS only),
that collect keyboard typing data specifically. In contrast, some researchers developed

https://www.behavidence.com/
https://www.biaffect.com/
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mobile applications for their use cases using frameworks like AWARE [236] (collects sensor
data from Android and iOS devices and supports integration with data analysis pipeline).
These mobile applications act as a central management system, either storing data locally
in individuals’ devices or transmitting them to a central server for processing and analysis.

Prior to data collection, researchers obtained participants’ consent and provided
details about the data to be collected. Some researchers additionally conducted onboarding
sessions for installing mobile applications, offered tutorials to operate them, and provided
technical support throughout the data gathering duration [237]. Privacy measures were also
implemented to minimize identifiability and the risks of data leakage during transmission,
such as anonymizing participants, hashing phone calls and text messaging logs [237], and
employing secure transmission protocols like HTTPS and SSL.

3.1.4. Wearable Devices

Wearable devices have further enabled the collection of physical activity, movement,
sleep, and physiological signals like heart rate (HR), electrodermal activity (EDA), skin
temperature (ST), and galvanic skin response (GSR). Some examples of wearables are
Empatica E4 wristbands [149,172,178], Microsoft Band 2 [150], Fitbit Charge or Flex track-
ers [151,155,164,180–182,191], and the Galaxy S3 smartwatch [169]. Data gathered through
these devices were transmitted directly to an internet-connected server [215] or trans-
ferred via Bluetooth [210] to dedicated mobile applications that handle the transmission
as described above. As such, existing studies executed similar procedures for obtain-
ing participants’ consent before data collection and privacy measures to ensure secure
data transmission.

Table 5 describes publicly available datasets discovered or released by studies included
in this work for multimodal detection.

Table 5. Public datasets and respective data source categories.

Dataset Description Mental Health Disorders Source Category

Distress Analysis Interview
Corpus—Wizard of Oz
(DAIC-WOZ) [228]

Video recordings and text
transcriptions of interviews
conducted by a virtual interviewer
on individual participants (used in
Audio-Visual Emotion Challenge
(AVEC) 2014 [38], 2016 [47],
2017 [238], and 2019 [239])

Post-traumatic stress disorder
(PTSD), depression, anxiety AV

Turkish Audio-Visual Bipolar
Disorder Corpus [230]

Video recordings of patients
during follow-ups in a hospital Bipolar disorder AV

Engagement Arousal Self-Efficacy
(EASE) [240]

Video recordings of individuals
undergoing self-regulated tasks by
interacting with a website

PTSD AV

Well-being [241]
Video recordings of conversational
interviews conducted by a
computer science researcher

Depression, anxiety AV

Emotional Audio-Textual
Depression Corpus
(EATD-Corpus) [73]

Audio responses and text
transcripts extracted from student
interviews conducted by a virtual
interviewer through an application

Depression AV

Reddit Self-Reported Depression
Diagnosis Corpus (RSDD) [231]

Reddit posts of self-claimed and
control users Depression SM

Self-Reported Mental Health
Diagnosis Corpus (SMHD) [242]

Twitter posts of users with one or
multiple mental health conditions
and control users

ADHD, anxiety, autism, bipolar
disorder, borderline personality
disorder, depression, eating disorder,
OCD, PTSD, schizophrenia, seasonal
affective disorder

SM
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Table 5. Cont.

Dataset Description Mental Health Disorders Source Category

Multi-modal Getty Image
depression and emotion (MGID)
dataset [106]

Textual and visual documents
from Getty Image with equal
amount of depressive and
non-depressive samples

Depression SM

Sina-Weibo suicidal dataset [243] Sina microblog posts of suicidal
and control users Suicidal ideation SM

Weibo User Depression Detection
dataset (WU3D) [112]

Sina microblog posts of depressed
candidates and control users, and
user information such as
nickname, gender and
profile description

Depression SM

Chinese Microblog depression
dataset [244]

Sina microblog posts following the
last posts of individuals who have
committed suicide

Depression SM

eRisk 2016 dataset [245]

Textual posts and comments of
depressed and control users from
Twitter, MTV’s A Thin Line (ATL)
and Reddit

Depression SM

eRisk 2018 dataset [246]
Textual posts and comments from
Twitter, MTV’s A Thin Line (ATL)
and Reddit

Depression, anorexia SM

StudentLife [237] Smartphone sensor data of
students from a college

Mental wellbeing, stress,
depression SS

CrossCheck [205] Smartphone sensor data of
schizophrenia patients Schizophrenia SS

Student Suicidal Ideation and
Depression Detection
(StudentSADD [100]

Voice recordings and textual
responses obtained using
smartphone microphones
and keyboards

Suicidal ideation, depression AV, SS

BiAffect dataset [247] Keyboard typing dynamics
captured by a mobile application Depression SS

Tesserae dataset [248]

Smartphone and smartwatch
sensor data, Bluetooth beacon
signals, and Instagram and Twitter
data of information workers

Mood, anxiety, stress SS, WS, SM

CLPsych 2015 Shared Task
dataset [249]

Twitter posts of users who publicly
stated a diagnosis of depression or
PTSD with corresponding control
users of the same estimated gender
with the closest estimated age

Depression, PTSD SM

multiRedditDep dataset [128]
Reddit images posted by users
who posted at least once in the
/r/depression forum

Depression SM

Fitbit Bring-Your-Own-Device
(BYOD) project by “All of Us”
research program [250]

Fitbit data (e.g., steps, calories, and
active duration), clinical
assessments, demographics

Depression, anxiety WS

PsycheNet dataset [138]

Social contagion-based dataset
containing timelines of Twitter
users and those with whom they
maintain bidirectional friendships

Depression SM
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Table 5. Cont.

Dataset Description Mental Health Disorders Source Category

PsycheNet-G dataset [139]

Extends PsycheNet dataset [138]
by incorporating users’ social
interactions, including
bidirectional replies, mentions,
and quote-tweets

Depression SM

Spanish Twitter Anorexia Nervosa
(AN)-related dataset [251]

Tweets posted by users whom
clinical experts identified to fall
into categories of AN (at early and
advanced stages of AN but do not
undergo treatment), treatment,
recovered, focused control (control
users that used AN-related
vocabulary), and random control

AN SM

Audio-visual depressive language
corpus (AViD-Corpus) [37]

Video clips of individuals
performing PowerPoint-guided
tasks, such as sustained vowel,
loud vowel, and smiling vowel
phonations, and speaking out loud
while solving a task (used in
AVEC 2013 [37])

Depression AV

Existing call log dataset [222]

Call and text messaging logs and
GPS data collected via mobile
application and in-person
demographic and mental
wellbeing surveys

Mental wellbeing SS

Speech dataset [252]

Audio recordings of individuals
performing two speech tasks via
an external web application and
demographics obtained from
recruitment platform, Prolific [253]

Anxiety AV

Early Mental Health Uncovering
(EMU) dataset [104]

Data gathered via a mobile
application that collects sensor
data (i.e., text and call logs,
calendar logs, and GPS), Twitter
posts, and audio samples from
scripted and unscripted prompts
and administers PHQ-9 and
GAD-7 questionnaires and
demographic (i.e., gender, age, and
student status) questions

Depression, anxiety SS, AV, SM

Depression Stereotype Threat Call
and Text log subset
(DepreST-CAT) [105]

Data gathered via modifying the
EMU application [104] to collect
additional demographic (i.e.,
gender, age, student status, history
of depression treatment, and
racial/ethnic identity) and
COVID-19 related questions

Depression, anxiety SS, AV, SM

D-vlog dataset [92]
YouTube videos with equal
amounts of depressed and
non-depressed vlogs

Depression AV

AV: Audio and video recordings, SM: Social media, SS: Smartphone sensors, WS: Wearable sensors.

3.2. Data Ground Truth

Data used for supervised learning must have a ground truth (i.e., if the person to
whom the data belong suffers from a specific MH disorder) so that ML models learn
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to distinguish data points of different ground-truth labels. The means of ground truth
acquisition are (1) clinical assessment by trained psychiatrists or healthcare professionals
and (2) self-reports by people themselves.

3.2.1. Clinical Assessments

During clinical diagnoses, trained psychiatrists use clinically validated assessment
scales with known symptoms of specific MH disorders to prompt patients to share their
experiences. Establishing ground-truth knowledge varies based on experimental design
in existing studies, where trained healthcare professionals could conduct clinical assess-
ments before the data collection procedure and during other intermediate phases deemed
necessary. For example, Grünerbl et al.’s [12] study involved psychologists conducting
examinations every three weeks over the phone, using standard scale tests such as the
Hamilton Rating Scale for Depression (HAMD) or Young Mania Rating Scale (YMRS),
whereas participants were scheduled for monthly face-to-face clinical assessments with
clinicians using the 7-item Brief Psychiatric Rating Scale (BPRS) in Wang et al.’s [206]
study. On the other hand, participants could be recruited from the MH service within
a hospital setting, where existing diagnoses of specific MH conditions are known, and
clinical assessments could be reconducted during follow-ups and after discharge using
the YMRS [230].

If access to healthcare professionals is unavailable, these scales can be administered
through mobile applications or other devices to be answered and self-reported by subjects.
Examples of scales used in both clinical and self-reported assessments are the Hamilton
Depression Rating Scale (HDRS) [254], Patient Health Questionnaire-9 (PHQ-9) [255], Beck
Depression Inventory (BDI) [256], and Center for Epidemiological Studies Depression Scale
(CES-D) [257]. Researchers can compile and analyze the responses to derive ground truth
based on established guidelines. For example, the summation score of the PHQ-9 scale
corresponds to depression severity levels, where 5, 10, 15, and 20 represent mild, moderate,
moderately severe, and severe depression, respectively [258].

3.2.2. Self-Reports

In most cases where social media data has been scraped from public-facing platforms
via application programming interfaces, users are not reachable due to security and privacy
protection. As such, their MH states are not immediately acquirable since they do not
usually disclose invasive information like medical history. Researchers have relied on
textual or visual cues in users’ public posts to locate the existence of MH disorders for
the purposes of ground truth. They detected self-reports where users explicitly disclosed
being diagnosed with a specific MH disorder in their public posts by looking for sentence
structure such as “I am diagnosed with . . . ” [20].

This ground-truth acquisition method heavily relies on individuals’ willingness and
openness to share content publicly on social media platforms. Therefore, to enhance the
accuracy of ground truth labels, studies incorporated clinical opinions when annotating
and labeling social media data. These opinions were sourced from trained psychiatrists
or psychologists [112,131,145,186,219], as well as staff and students within the university
settings with backgrounds in psychology [142,185]. For example, Abuhassan et al. [218]
incorporated opinions from domain experts with specific expertise in eating disorders
(EDs), psychology, mental health, and social media. The authors obtained a comprehensive
and well-rounded annotation strategy to guide the categorization of social media users into
individuals with an explicit diagnosis of EDs, healthcare professionals, communicators (i.e.,
those who communicate, exchange, and distribute information to the public), and non-ED
individuals. The approaches above attempted to address the possibility of researchers over-
looking implicit indicators of specific MH disorders or lacking sufficient clinical knowledge
to make accurate inferences based on several posts created by each individual [135,189].
However, these efforts may not suffice, given that public content posted by individuals
might be adapted with considerations of self-presentation factors.



Sensors 2024, 24, 348 13 of 65

3.3. Modality and Features

A range of modality-specific features within the datasets analyzed by researchers
were found to support the identification of MH-related features in study participants.
Table 6 provides a summary of these features and their findings relevant to MH diagno-
sis. See Appendix A for a more extensive view of the features and the corresponding
extraction tools.

Table 6. Categories of modality features.

Modality Category Description Examples

Audio

Voice Characteristics of audio signals
Mel-frequency cepstral coefficients (MFCCs),
pitch, energy, harmonic-to-noise ratio (HNR),
zero-crossing rate (ZCR)

Speech Speech characteristics Utterance, pause, articulation

Representations
Extracted from model architectures
applied onto audio samples or
representations

Features extracted from specific layers of
pre-trained deep SoundNet [259] network
applied onto audio samples

Derived Derived from other features via
computation methods or models

High-level features extracted from long
short-term memory (LSTM) [260] model
applied onto SoundNet representations to
capture temporal information

Visual

Subject/object Presence or features of a person or
object

Face appearance, facial landmarks, upper
body points

Representations
Extracted from model architectures
applied onto image frames or
representations

Features extracted from specific layers of
VGG-16 network [261] (pre-trained on
ImageNet [262]) applied onto visual frames

Emotion-related Capture emotions associated with facial
expressions or image sentiment

Facial action units (FAUs) corresponding to
Ekman’s model of six emotions [263], i.e.,
anger, disgust, fear, joy, sadness, and surprise,
or eight basic emotions [264] that additionally
include trust, negative and positive

Textual Textual content or labels Quotes in images identified via optical
character recognition (OCR)

Color-related Color information Hue, saturation, color

Image metadata Image characteristics and format Width, height, presence of exchangeable image
file format (exif) file

Derived Derived from other features via
computation methods or models

Fisher vector (FV) encoding [265] of
facial landmarks

Textual

Linguistic Language in terms of choice of words
and sentence structure Pronouns, verbs, suicidal keywords

Sentiment-related
Emotion and sentiment components
extracted via sentiment analysis
(SA) tools

Valence, arousal and dominance (VAD) ratings

Semantic-related Meaning of texts Topics and categories describing text content

Representations Vector representations generated using
language models

Features extracted from pre-trained
Bidirectional Encoder Representations from
Transformers (BERT) [266] applied onto texts

Derived Derived from other features via
computation methods or models

Features extracted from LSTM with attention
mechanism applied onto textual
representations to emphasize significant words

Social media

Post metadata Information associated with a social
media post Posting time, likes received

User metadata Information associated with a social
media user account

Profile description and image,
followers, followings

Representations Representations of social network and
interactions with other users

Graph network representing each user using a
node and connecting two users mutually
following each other

Derived Derived from other features via
aggregation or encoding Number of posts made on the weekends
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Table 6. Cont.

Modality Category Description Examples

Smartphone
sensor

Calls and messages Relating to phone calls and text
messaging

Frequency and duration of incoming/outgoing
phone calls

Physical mobility Inferences from accelerometer,
gyroscope, and GPS data Walking duration, distance traveled

Phone interactions Accessing phone, applications,
and keyboards

Duration of phone unlocks, frequency of using
specific applications, keystroke transitions

Ambient
environment Surrounding illumination and noise Brightness, human conversations

Connectivity Connections with external devices and
environment

Association events with WiFi access points,
occurrences of nearby Bluetooth devices

Representations High-level representations of time
series sensor data

Features extracted from transformer to capture
temporal patterns

Derived Derived from low-level features via
computation or aggregation

Average weekly visited location clusters, sleep
duration estimated from phone being locked
and being stationary in a dark environment at
night

Wearable
sensor

Physical mobility Inferences related to physical motion
and sleep Number of steps, sleep duration and onset time

Physiological Physiological signals Heart rate, skin temperature

Representations High-level representations of time
series sensor data

Features extracted from LSTM applied onto
heart rate signals

Demographics
and Personalities

Demographic Personal demographic information Age, gender
Personality An individual’s personality Big 5 personality scores

3.3.1. Audio

Several popular approaches to extract audio features include adopting OpenSmile [267]
to extract low-level descriptors (LLDs) and employing pre-trained deep learning (DL)
models to extract high-level deep representations from either audio samples directly or
transformed spectrogram images [66]. Researchers have identified several audio features
to be significant indicators of MH conditions. For instance, Yang et al. [193] discovered
histogram-based audio LLDs to be more effective than visual features in identifying bipolar
disorder, and such indicators are more prominent in male samples. Meanwhile, from
specific features such as energy contours, kurtosis, skewness, voiced tilt, energy entropy,
and MFCCs, Belouali et al. [184] demonstrated that individuals with suicidal intent spoke
using a less animated voice with flatter energy distribution and fewer bursts. Their speech
had less vocal energy and less abrupt changes and were more monotonous. Other audio
features found to be significant indicators of depression and PTSD include audio intensity,
pitch, and spectral decrease [54,107]. Since it is beyond the scope of the current work to
dive deep into audio samples and features, we direct interested researchers to an existing
work [268] for greater details on audio processing and features that could be extracted at
varying domains (e.g., time, frequency, and cepstrum) [54].

3.3.2. Visual

Visual features were extracted by first locating individuals or objects in a video frame
or a static image, identifying the corresponding feature points (e.g., facial landmarks,
FAUs, upper body points), and then generating features using image processing tools
including OpenFace [269], OpenCV [270], and OpenPose [271]. Pre-trained models could
also be applied directly to visual samples to extract feature representations. For image
frames extracted from video recordings, researchers could further capture dynamic aspects
and transitions across a video, such as computing the speed and range of displacements
of specific feature points between successive video frames and the variation across the
entire video.
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Facial action units (FAUs) were introduced to describe facial movements [272], where
each AU corresponds to contractions of specific facial muscles (e.g., AU5 represents raised
upper eyelids, AU6 represents raised cheeks, and AU15 represents pulled-down lip cor-
ners [273] as shown in Figure 3). FAUs have shown significant promise in encoding facial
expressions, each constituted by a combination of AUs [273] as shown in Figure 4. In the
current context, Thati et al. [99] demonstrated that a few AUs correlate significantly with
depressive symptoms, specifically, AU12, AU10, and AU25, corresponding to pulled lip
corners, raised upper lips, and parted lips, respectively. Referring to both Figures 3 and 4,
this finding could be associated with a smiling expression comprising AU12 and AU25 and
low mood as demonstrated by AU10. It could potentially indicate the “smiling depression”
scenario mentioned by Ghosh et al. [132], where individuals with depression may choose
to post more happy images compared to healthy controls who expressed diverse emotions.

Figure 3. Examples of facial movements coded using facial action units [274].

Figure 4. Examples of facial expressions resulting from combinations of facial action units [274].

In addition, facial appearance and emotions in shared images were significantly in-
dicative of depression and PTSD [107,116]. While a few studies [25,132,220] showed that
individuals with depression have lower tendencies to disclose facial identity, Gui et al. [111]
found that they are more likely to post images with faces but of a lower average face
count per image. From the revelation of more images of animals and health objects from
Twitter and Reddit content, Uban et al. [128] hypothesized the possibility of individuals’
online help-seeking through viewing animal-related content that might improve psycho-
logical and emotional conditions and looking up causes of health events, diseases, and
treatment options.

Meanwhile, other research studies [25,111,220] revealed that individuals with mental
illness and depression post less colorful images of darker and grayer colors on social media
compared to healthy controls, who prefer brighter and more vivid colors such as blue
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and green. These patterns potentially align with existing knowledge [275] regarding the
influence of individuals’ mood on color preferences, where principal hues (e.g., red, yellow)
and intermediate hues (e.g., yellow-red, blue-green) evoked higher positive emotions than
achromatic colors like black and white. Specifically, Yazdavar et al. [25] demonstrated a
strong positive correlation between self-reported depressive symptoms and individuals’
tendency to perceive surroundings as grey or lacking colors. In contrast, Xu et al. [220]
further computed pleasure, arousal, and dominance scores from brightness and saturation
values. The authors then discovered that individuals with mental illness preferred less
saturated images (i.e., containing more grey [276]), which implied higher dominance and
arousal than healthy controls.

3.3.3. Textual

In addition to textual content written by individuals, researchers also obtained textual
transcripts from audio samples using speech-to-text tools on Google Cloud Platform,
AWS Transcribe [277], or Transcriber-AG https://transag.sourceforge.net/ (accessed on
10 December 2023). Tools like Linguistic Inquiry and Word Count (LIWC) [278], Suite
of Automatic Linguistic Analysis Tools (SALAT) [279], and Natural Language Toolkit
(NLTK) [280] were adopted on textual content to identify nouns, adjectives, pronouns,
or specific words referring to social processes and psychological states, where linguistic
features were generated as the occurrence of words in specific categories. Meanwhile,
sentiment-related features like sentiment polarity scores were obtained from sentiment
analysis tools, including Stanford NLP toolkit [281], Sentiment Analysis and Cognition
Engine (SEANCE) [282], and Affective Norms for English Words ratings (ANEW) [283].
High-level textual representations could also be obtained via language models, such as
BERT [266], Paragraph Vector (PV) [284], and XLNet [285], to represent each word using
a vector. The overall textual representations could be obtained via concatenating directly,
averaging, or applying attention mechanisms on word-level representations to emphasize
more significant features.

Abundant studies consistently highlighted the prominent correlations between textual
features and MH conditions. For example, the significance of linguistic features in MH
identification was accentuated by compelling evidence showing that individuals with
depression and suicidal intent used more first-person pronouns, possibly reflecting their
suppressed nature. This linguistic pattern was observed in textual content across various
social media platforms, including Weibo [109,123], Instagram [116], Twitter [25,118,121],
and Reddit [186], as well as in transcribed audio recordings [184]. Meanwhile, several other
studies [123,187] further found more frequent usage of the word “others” or third-person
pronouns (e.g., “they”, “them”, “he”, “she”) than healthy controls, which the authors
hypothesized as the tendency of depressive or suicidal individuals in acquiring physio-
logical distance and reluctant to show feelings. In addition, researchers found individuals
with depression, suicidal intent, and schizophrenia exhibiting a pronounced expression of
negative emotions compared to healthy controls. This observation is substantiated by vari-
ous features, including the frequency of negative words [20,118,123,204,220] and negative
emoticons [130,188], as well as negative sentiment scores of overall sentences [121].

In contrast, specific keywords could be indicative, such as references to personal events
like “work pressure”, “divorce”, and “break up” [118]; biological processes like “eat”,
“blood”, and “pain” [116]; or family references like “daughter”, “dad”, and “aunt” [184].
Existing studies also revealed keywords or phrases related to specific MH conditions to be
helpful. For example, in depression detection, researchers [54] identified prominent usage
of words associated with depressive symptoms, such as “depressed”, “hopeless”, and
“worthless”, referenced from the Depression Vocabulary Word List https://myvocabulary.
com/word-list/depression-vocabulary/ (accessed on 10 December 2023), as well as an-
tidepressant names [123] based on the list from Wikipedia https://en.wikipedia.org/wiki/
List_of_antidepressants (accessed on 10 December 2023). Nevertheless, MH-related key-
words may be expressed differently for various MH disorders. For instance, individuals

https://transag.sourceforge.net/
https://myvocabulary.com/word-list/depression-vocabulary/
https://myvocabulary.com/word-list/depression-vocabulary/
https://en.wikipedia.org/wiki/List_of_antidepressants
https://en.wikipedia.org/wiki/List_of_antidepressants
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with schizophrenia used more words related to perception (hear, see, feel), swearing, and
anger [204], while Tébar et al. [217] found individuals with an eating disorder (ED) pub-
lishing less ED-related content, involving fewer indicative terms like “laxative names”
and “weight concerns”, to keep their illness private. The latter study demonstrated false
positives introduced by such disparities, as healthy controls were involved in discussions
of MH disorders like PTSD or depression that share some ED symptoms or mentioned
prevalent topics in the pro-ED community.

3.3.4. Social Media

On top of user-generated texts and images on social media platforms, researchers
could infer social networks and interactions from metadata associated with users and posts,
where followers and followings could indicate “friendships”, whereas interactions like
posting, liking, and commenting could reveal social interactions and topics of interest.
While most platforms offer fundamental post information such as time posted, likes, and
comments, some details are platform-specific, such as retweets (Twitter), check-in locations
(Facebook), favorites (Twitter), profile images (Instagram), and users’ details like age
and gender (Sina Microblog). Graph architectures could then be adopted to model the
information above, for instance, by having a node for each user and an edge between two
nodes representing the presence or extent of particular social interactions.

Research attempts have demonstrated a significant association between time spent
on social media platforms [116] and depressive symptoms. This claim is supported by
compelling evidence indicating that a substantial proportion of individuals with depression
(76% [130]) and suicidal intent (73% [188]) engaged in more active posting activities on var-
ious social media platforms, including Instagram [125], Twitter [20,118], Reddit [130,188],
and Weibo [189], particularly at midnight. Some authors [20,118,134] intuited this behav-
ior as potentially linked to sleeping problems or insomnia. The corresponding posts by
these individuals were also found to receive less engagement and attention, such as likes,
retweets, and favorites [122,137]. Nevertheless, researchers observed contradicting trends
in posting behaviors. While a few studies [122,125,137,189] revealed that those with MH
disorders were generally less active on Twitter and Instagram, the opposite was observed in
other studies on Twitter [121] and Sina Microblog [109]. Such disparities could be attributed
to different user populations or sampling periods that may influence social behaviors on
these platforms. Other potentially depressive behaviors include less disclosure of personal
information [123], a greater likelihood of modifying images before posting [220], and lower
preferences for sharing location [122].

Several research attempts emphasized the role of social networks in identifying MH
disorders, where researchers incorporated public information belonging to other social
media users engaged through followings, likes, comments, and tweet replies. For instance,
Liaw et al. [134] and Ricard et al. [110] respectively involved liked content and that gener-
ated by users who have liked or commented on posts created by individuals of concern.
The prior found the amount of depression keywords in liked content to contribute the
most performance gain, whereas the latter found an improvement after incorporating
such community-generated data. Similarly, Pirayesh et al. [138] and Mihov et al. [139]
incorporated content created by homogeneous friends identified through clustering and
computation and noticed improvement after increasing the number of homogeneous
friends and their respective tweets.

3.3.5. Smartphone and Wearable Sensors

Smartphone sensor data could be utilized to gain an understanding of individuals’
mobility (e.g., accelerometer, gyroscope, GPS data), sociability (e.g., call logs, text mes-
saging logs, usage of social applications), and environmental context (e.g., ambient light
and sound, wireless WiFi and Bluetooth connections). More personalized insights could
be obtained by utilizing location semantics; grouping mobile applications into social, en-
gagement, and entertainment categories; and detecting periodicity and routines to infer
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individuals’ behaviors and routines. Wearable devices further complement smartphone
sensor data by offering sleep inferences and physiological signals like heart rate, skin
temperature, and calories. Research attempts have uncovered potentially significant in-
dicators of the presence or severity of MH disorders, which we explained in detail in the
following paragraphs revolving around three primary aspects, i.e., physical mobility, phone
interactions, and sociability.

(1) Physical Mobility Features: Studies have shown that negative MH states and greater
depression severity are associated with lower levels of physical activity, demonstrated
via fewer footsteps, less exercising [154], being stationary for a greater proportion
of time [205], and less motion variability [149], whereas a study on the student
population showed an opposite trend for increased physical activity [157]. Movements
across locations in terms of distance, location variability, significant locations (deduced
through location clusters) [177], and time spent in these places [164] were also valuable.
For instance, researchers found greater depression severity or negative MH states
associated with less distance variance, less normalized location entropy [154,158],
lower number of significant visited places with increased average length of stay [158],
and fewer visits to new places [205]. In contrast, Kim et al.’s [162] investigation
on adolescents with major depressive disorders (MDD) found that they traveled
longer distances than healthy controls. Timing and location semantics could further
contribute more detailed insights, such as the discoveries of individuals with negative
MH states staying stationary more in the morning but less in the evening [205], those
with more severe depression spending more time at home [154,175], and schizophrenia
patients visiting more places in the morning [206]. Researchers also acquired sleep
information either through inferences from a combination of sensor information
relating to physical movement, environment, and phone-locked states or through
the APIs of sleep inferences in wearable devices. Sleep patterns and regularity were
demonstrated to correlate with depressive symptoms [150,158] where individuals
with positive MH states wake up earlier [205], whereas MDD patients showed more
irregular sleep (inferred from sleep regularity index) [149].

(2) Phone Interaction Features: Phone usage (i.e., inferred from the frequency and dura-
tion of screen unlocks) and application usage were potentially helpful. For instance,
several studies [158] found a high frequency of screen unlocks and low average un-
lock duration for each unlock as potential depressive symptoms. However, while
Wang et al. [205] demonstrated the association between negative MH states and
lower phone usage, the opposite trend was observed in students and adolescents
with depressive symptoms who used smartphones longer [150,162,164]. Researchers
also investigated more fine-grained features, such as phone usage at different times
of the day, where they found schizophrenic patients exhibiting less phone usage at
night but more in the afternoon [206]. Additionally, individuals with MH disorders
also showed distinctive application engagement, such as Opoku Asare et al.’s [166]
findings that individuals with depressive symptoms used social applications more
frequently and for a longer duration. Generally, they also showed more active ap-
plication engagement in the early hours or midnight compared to healthy controls,
who showed diluted engagement patterns throughout the day. Meanwhile, Choud-
hary et al. [212] revealed that individuals with anxiety exhibited more frequent usage
of applications from “passive information consumption apps”, “games”, and “health
and fitness” categories.

(3) Sociability Features: Sociability features, such as the number of incoming/outgoing
phone calls and text messages and the duration of phone calls, were also potential
indicators of MH disorders [164,175]. For instance, negative MH states are associated
with making more phone calls and text messaging [205,222] and reaching out to more
new contacts [222]. On the other hand, adult and adolescent populations suffering
from MDD were revealed to receive fewer incoming messages [149] and more phone
calls [162], respectively. Lastly, ambient environments could also play a role since
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individuals with schizophrenia were found to be around louder acoustic environments
with human voices [206], whereas those with negative MH states demonstrated a
higher tendency to be around fewer conversations [205] than healthy controls.

3.3.6. Demographics and Personalities

In addition, demographics and personalities might play a role in an individual’s
responses to MH disorders. For instance, several studies [25,109] proved that females have
a higher tendency to exhibit depressive symptoms than males. Individuals of different
genders may also express varying responses to MH disorders to different extents. For
instance, Yazdavar et al. [25] found that females expressed depressive symptoms more
prominently on social media, implying their strong self-awareness and willingness to share
their encounters to seek support. Meanwhile, a study [219] revealed that age, emotions, and
the usage of words related to personal concerns are among the most significant indicators for
identifying female samples with potential risks of anorexia nervosa, whereas words relating
to biological processes were more indicative for male samples. Clinical experts involved in
the study further identified gender as one of the most relevant factors to consider in locating
anorexia nervosa. Fine-grained visual elements like formant, eye gaze, facial landmarks,
and head pose may also vary across genders with depressive symptoms [70].

On the other hand, existing works [286,287] proved the potential association between
MH symptoms and personality traits, where pursuing perfection, ruminant thinking and
interpersonal sensitivity could be markers of suicide risk [287], whereas conscientious-
ness and neuroticism exhibited close relations to depression cues [121]. Researchers have
estimated the personality scores of study samples based on textual content, for example,
using IBM’s Personality Insights https://www.ibm.com/cloud/watson-natural-language-
understanding (accessed on 10 December 2023) [57,121] or computing the proportion of
words relevant to those in perfection- and ruminant-thinking-related lexicons [187]. Specif-
ically, Chatterjee et al. [188] uncovered that 56% of suicidal samples demonstrated the
association between low agreeableness and high neuroticism scores with increased suicide
ideation, compared to most healthy controls with high agreeableness and optimism scores.
Another study [130] also found that individuals with depressive symptoms generally have
higher neuroticism and lower optimism scores.

3.4. Modality Fusion
3.4.1. Feature Transformation to Prepare for Fusion

Some studies further applied transformation on extracted features to prepare for fusion
by achieving (1) normalization, (2) dimensionality reduction, and (3) feature alignment.
Normalization ensures that numerical features share similar scales and are treated equally
by ML models. The most common normalization approaches that we observed are min-max
normalization, to scale values between 0 and 1, and z-normalization [288], so that values
are zero-mean and unit-variance. Since min-max normalization was claimed to preserve
data relationships without reducing outlier effects [56], Cao et al. [187] took this inspiration
to represent a subject’s age relative to the maximum age among all subjects in the dataset.
Meanwhile, dimensionality reduction approaches were widely adopted, such as principal
components analysis (PCA), singular value decomposition (SVD), and factor analysis.
Lastly, for feature alignment, researchers transformed feature representations of individual
modalities to align their dimensions through whitening (ZCA) transform (sparse coded
feature representations) [49], global max pooling [77], or discrete Fourier transform (express
visual features in the time–frequency domain) [66]. On the other hand, several other studies
adopted neural networks to enforce the exact dimensions of multimodal representations.
For example, using fully connected (FC) layers with the same units to condense features
to a uniform dimension [70,112,179], a multilayer perceptron (MLP) [111], or bidirectional
gated recurrent unit (Bi-GRU) [106] to transform representations to specific dimensions
and a custom transformer-based architecture that applies linear projection to match various

https://www.ibm.com/cloud/watson-natural-language-understanding
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representation sizes [174]. In addition, an FC layer was also used to embed categorical
variables to be concatenated with continuous variables [170].

3.4.2. Multimodal Fusion Techniques

Multimodal fusion techniques combine features extracted from different modalities
(e.g., audio + visual + textual data) into a single representation for training an ML model.
Inspired by an existing work [69], we categorized existing fusion techniques into three
main classes, i.e., at the feature, score/decision, and model levels. We hereby emphasize
that the current discussion excludes scenarios where fusion is not required if modality-
specific features are in independent numerical forms, which ML algorithms could be
applied directly.

A feature-level fusion is also known as early fusion, where the features of all modalities
are concatenated directly before feeding into an ML model. At the score/decision level,
instead of features, researchers combined scores/decisions predicted by individual ML
models for each modality, such as probabilities, confidence scores, classification labels, or
other prediction outcomes, through operations such as AND, OR, product-rule, sum-rule,
and majority voting. Fusing these scores would either produce the final outcome or serve
as the input to a secondary ML model. There were also hierarchical score/decision-level
fusion approaches that aggregate outputs across multiple layers or stages. For example, in
Chiu et al.’s [122] user-level depression classification from social media data, the authors
first obtained day-based predictions from post-level outputs weighted based on time
intervals. Then, they deduced user-level outcomes based on whether day-based predictions
fulfilled predefined criteria.

Unlike feature-level fusion, which concatenates features directly into a single rep-
resentation, model-level fusion methods utilize an architecture or ML model to learn
joint representations that consider the correlation and relationships between feature rep-
resentations of all modalities. For instance, attention-based architectures (e.g., attention
layers, transformers with multi-head attention mechanisms) were adopted to learn shared
representations incorporating modality-specific representations with varying extents of
contributions based on their significance. Meanwhile, cross-attention mechanisms were
employed to consider cross-modality interactions. Shen et al. [20] also proposed using
dictionary learning to learn multimodal joint sparse representations, by claiming that such
representations are more effective than using features directly as the inputs of ML models.
Nevertheless, we acknowledge the limitation that our categorization is merely based on
our understanding, and specific fusion techniques in each category may implicitly involve
a combination of various fusion levels. For a complete list of studies, methods, and tools,
see Appendix B.

3.5. Machine Learning Models

Previous studies adopted ML models for binary classification on the presence of spe-
cific MH disorders, multi-class classification on the stages of MH disorders, and regression
on the score based on an assessment scale. A complete overview of these models and their
application methods is available in Appendix C. Referring to an existing study [289], we
classified them into:

• Supervised learning—trained on labeled input–output pairs to learn patterns for
mapping unseen inputs to outputs.

• Neural-network-based supervised learning—a subset of supervised learning algo-
rithms that mimics the human brain by having layers of interconnecting neurons that
perform high-level reasoning [290] to recognize underlying relationships in data [291].

• Ensemble learning—combines multiple base learners of any kind (e.g., linear, tree-
based or NN models) to obtain better predictive performance, assuming that errors of
a single base learner will be compensated by the others [292].

• Multi-task learning—attempts to solve multiple tasks simultaneously by taking ad-
vantage of the similarities between tasks [289].
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• Others—incorporates semi-supervised, unsupervised, or combination of approaches
from various categories.

3.5.1. Supervised Learning

The availability of ground-truth information, obtained via expert annotations or clini-
cal assessments, has enabled the broad application of supervised learning approaches that
learn the association between input data and their labels. In our findings, these approaches
primarily cater to univariate features, where feature engineering may be required to apply
them to multidimensional data. The more popular ML algorithms for supervised learning
are linear regression, logistic regression, and support vector machines (SVMs). Based
on comparisons conducted in existing studies, stochastic gradient descent [43] and least
absolute shrinkage and selection operator (lasso) regression [200,213] models performed
the best in respective investigations on different feature combinations, i.e., the prior on
audio, visual and textual features and the latter on wearable sensor signals, but these
models are yet to be compared under similar settings. In addition to the traditional or linear
algorithms mentioned above, the following subsection discusses a subset of supervised
learning approaches utilizing neural networks.

3.5.2. Neural-Network-Based Supervised Learning

A neural network (NN) [290] is fundamentally made up of an input layer, followed by
one or more hidden layers, and an output layer. Each of these layers consists of neurons
connected through links associated with weights. An FC layer is included in specific
architectures to perform high-level reasoning since it connects all neurons in the previous
layer to every neuron in the current layer to generate global semantic information [291].
Meanwhile, an architecture is considered a deep neural network (DNN) when more hidden
layers are involved. Although NN architectures could be utilized for various learning
approaches, such as supervised, semi-supervised, unsupervised, and reinforcement learn-
ing [293], this subsection only concerns those utilized for supervised learning tasks. In such
contexts, an NN algorithm approximates a function that maps data received by input neu-
rons to outputs via output neurons by adjusting weights between connected neurons [290].
Therefore, NNs can receive numerical data and yield outputs of any dimension, aligning
with the corresponding number of neurons in the input and output layers, respectively.

Throughout this work, we have observed vast applications and versatilities of NN-based
models in feature extraction, modality fusion, and ML prediction, which could be applied
directly to multidimensional signals or transformed feature representations. As such, we
raise the attention of future researchers to the potential overlapping between the NN-based
approaches adopted in the three stages above. For example, the outputs of specific hidden layers
in such models applied to raw signals or low-level features could be extracted as high-level
feature representations, whereas those from the output layers could be utilized as prediction
outcomes. The NN model in such scenarios could then be treated as either a feature extraction
technique or an algorithm. The same applies to specific sophisticated architectures proposed to
capture cross-modality interactions in model-level fusion, where these networks learn fused
representations while simultaneously generating predictions.

The abundance incorporation of LSTM [294] for its capability of capturing temporal
information across long sequences emphasized its potential. Transformer-based mod-
els [295], such as BERT [266] (including its variants like RoBERTa [296], ALBERT [297],
EmoBERTa [298]) and XLNet [285], also gained popularity due to their capability to effec-
tively capture contextual information through positional encodings [129] and attention
mechanisms to learn different significance weights of relevant information. In contrast,
some researchers incorporated attention mechanisms into existing NN architectures such
as FC layers, LSTM, and GRU to achieve such emphasis. Despite demonstrating satisfac-
tory efficacy, existing researchers obtained inconsistent findings regarding the influence
of NN architecture complexity on the resulting effectiveness. For example, stacking NN
architectures, like GRUs [119], CNNs [60], and LSTM [215], improved performance on top
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of utilizing baseline architectures such as those on both hand-crafted univariate features
and raw signals. However, a few studies proved simple shallow NN-based models to
succinctly outperform deeper architectures, for instance, AlexNet outperforming VGG-16
and RestNet101 [122], and a 2-layer Bi-LSTM which outperformed LSTM and GRU of
varying layers [220].

Overall, the capabilities of NNs in learning high-dimensional data offer promising
effectiveness and flexibility in mental healthcare involving heterogeneous data for capturing
multifaceted aspects of MH disorders. Nevertheless, such models require large, high-
quality datasets since they can only learn patterns within the training data [290]. Due to
the complex and non-linear structure with multiple hidden layers, black-box NNs further
introduce challenges in obtaining interpretable explanations of how the algorithms arrive
at an output [16,299].

3.5.3. Ensemble Learning

Ensemble learning algorithms have shown remarkable effectiveness by combining
base models with similar or complementary learning principles [173]. Similar to supervised
learning, such algorithms were applied to univariate inputs, which could be hand-crafted
numerical features or predicted outputs (e.g., regression scores, probabilities, binary labels)
from other baseline models. The few popular ensemble learning approaches are tree-based,
such as random forest (RF) [300], eXtreme Gradient Boosting (XGBoost), AdaBoost [301],
and Gradient Boosted Regression Tree [302], which utilize decision trees as fundamental.
XGBoost and AdaBoost were gradually favored by researchers due to their better predictive
performance. Specifically, few studies [134,158,184,212] revealed XGBoost as the most effec-
tive among SVM, RF, K-nearest neighbor, logistic regression, and DNN models. In contrast,
researchers also proposed novel hierarchical ensemble architectures by stacking algorithms
(e.g., XGBoost [194], Extreme Learning Machine (ELM) [192]) into layers where models in
subsequent layers receive outputs from previous layers as inputs for ensemble predictions.
For example, Mishra et al. [185] and Liu et al. [123] adapted the feature-stacking [303] ap-
proach by utilizing logistic regression to combine predictions of various first-level learners,
like SVM, KNN, and Lasso regression, applied independently to different feature sets. In
addition, Tabassum et al. [168] combined an LSTM-based model applied to hourly time
series sensor data and an RF on statistical features aggregated across the data collection
duration to benefit from the strengths of respective learning algorithms.

3.5.4. Multi-Task Learning (MTL)

Unlike ensemble learning, MTL involves a single model (of any category mentioned
above) trained to solve several simultaneous tasks to exploit task-specific similarities and differ-
ences. Examples of task combinations are (1) regression and classification [74,102,118,141,193],
(2) depression prediction and emotion recognition [46,106,132], and (3) gender-specific predic-
tions [70]. Though most of the included studies adopted NN-based models, such as CNN [61,62],
LSTM [46,106], and DNN architectures [102,193], MTL could also be achieved with linear models,
for example, the multi-output support least-squares vector regression (m-SVR) [304] trained to
map multivariate inputs to multivariate outputs [207]. Meanwhile, Oureshi et al.’s [70] findings
further justified the role of demographics in locating MH disorders, such that incorporating
gender prediction as an auxiliary task improved the overall performance.

3.5.5. Others

We observed a few studies applying unsupervised techniques, with clustering us-
ing K-nearest neighbors being the most common approach. A few other researchers also
adopted anomaly detection using existing unsupervised techniques like Isolation Forest
(ISOFOR) [166], or statistical measures such as t-tests for detecting outliers among prelimi-
nary prediction outcomes [163]. The research attempts mentioned above revealed that these
unsupervised approaches appear more promising on smartphone sensor data than con-
ventional ML approaches, including SVM, RF, GDBT, and MLP. In addition, AbaeiKoupaei
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et al.’s work [196] was the only semi-supervised learning we identified in this study, in
which the authors employed a ladder network classifier [305] consisting of stacked noisy en-
coder and denoising autoencoder [306]. There were also novel approaches adapting various
concepts, including recommender system (RS) [173,307], node classification [173], and feder-
ated learning [168]. Additionally, some studies employed computations to learn association
parameters [83,189] or deduce prediction outcomes from distance-based homogeneity [85].

3.6. Additional Findings
3.6.1. Modality and Feature Comparisons

Most studies on multimodal detection justified the effectiveness of combining mul-
tiple modalities due to their complementary outcomes, which outperformed unimodal
approaches. Notably, we noticed a single exception in a finding [174] that textual modality
alone is succinctly effective, such that combining it with audio and visual modalities slightly
deteriorated the overall performance. Deeper analyses also revealed that specific modalities
could be more influential than others. From audio-visual recordings, semantic content
in audio transcriptions generated via textual features was found to be more indicative
of depression than audio and visual features in several studies on depression, bipolar
disorder, and suicidal ideation. Specifically, we found such prominence arising from textual
representations using various embedding techniques like GloVe [49], Universal Sentence
Encoder [59], Paragraph Vector [102], and ELMo [116].

On the contrary, several revelations highlighted the great potential of audio MFCC
features. For example, a study [65] attempting to detect depression in audio samples of
less than 10 seconds, another [72] conducted on Chinese language audio samples, and
one on detecting bipolar disorders [103] found MFCC features more effective than textual
embeddings. Nevertheless, more fine-grained comparisons are required to justify the
efficacy of one modality or modality-specific feature over the other due to the varying
influence of experimental contexts and setups in data collection and feature extraction.

3.6.2. Personalized Machine Learning Models

In conjunction with an existing finding that individuals with similar depression scores
may portray behavioral differences under similar contexts [156], several researchers attempted
to achieve individual personalization by training subject-specific models [164,169,205,207], fine-
tuning subject-specific layers [161] in a global NN architecture, and deducing personalized
predictions by incorporating information from other samples homogeneous to each individual
based on correlation coefficients [156] or demographics [208] such as age [209].

Meanwhile, existing attempts at gender-based subgroup personalization also high-
lighted the potential significance of gender in identifying MH disorders. Researchers
achieved such personalizations via training the same ML models on gender-specific sam-
ples [92,94,219], fine-tuning and building individual ML models for each gender sub-
group [48,161], or incorporating gender prediction as an auxiliary task in an MTL ap-
proach [70]. Nevertheless, existing researchers found contradicting findings of models
constructed from gender-specific samples. For instance, Pampouchidou et al. [48] and
Samareh et al. [54] proved that gender-based classification models outperformed gender-
independent ones, whereas others [92,94] demonstrated that global models trained on all
genders predicted gender-specific evaluation instances more effectively than those trained
on gender-specific data. Attempts above [92,219] further uncovered challenges in effec-
tively predicting female samples, where the outcomes indicated that gender-specific models
trained and evaluated on female samples perform worse than those of male samples.

4. Discussion
4.1. Principal Findings

This section addresses the research questions based on findings in the previous section.
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4.1.1. RQ1—Which Sources of Data Are Most Effective for Supporting the Detection of
MH Disorders?

Our findings have explored evidence of associations between specific modality-specific
features and various MH symptoms. In Figure 5, we categorized MH symptoms into
psychological, physical, social, and physiological aspects [19] and mapped these aspects to
the capabilities of data sources in capturing them. The figure illustrated that no multimodal
data source can capture all aspects of MH symptoms and that deducing the most effective
data source relies on the symptoms researchers wish to investigate that are relevant to
specific MH disorders (see Table 4 for existing studies utilizing specific data source to
investigate each MH disorder). We acknowledge that the figure only includes mapping
relevant to passive data sources included in the current study and that other active sensing
approaches may be valuable and complementary.

Figure 5. Mapping of data source to mental health symptoms.

Psychological symptoms related to moods, emotions, and feelings were shown to be
effectively captured by textual features, which could be obtained from transcriptions of
audio-visual recordings and the content of social media posts. For example, individuals
with MH disorders expressed stronger negative emotions via texts with overall negative
sentiment or more negative words and emoticons, as well as through MH-specific key-
words related to symptoms, treatment, and medications (e.g., antidepressant names and
phrases associated with depressive symptoms for depression). While these textual features
have been proven indicative, researchers found visual cues to provide complementary
information by encapsulating finer details of individuals’ implicit inner emotions. For ex-
ample, the significant association between FAUs and depressive symptoms may indicate
how individuals present their facial expressions in response to MH symptoms. In addi-
tion, individuals’ publicly shared images may reflect their psychological conditions; for
instance, preferences for darker colors may represent lower moods, or images of animals
may represent self-coping mechanisms to improve emotional states.

Meanwhile, for physical symptoms, the unobtrusiveness and ubiquity of smartphones
and wearable devices have great potential to capture individuals’ natural behaviors, which
could reflect the physical manifestations of MH-specific symptoms. For example, the
association of higher depression severity with lower physical mobility, demonstrated
via being stationary for a greater proportion of time or traveling to fewer places sensed
using GPS and accelerometer, may suggest depressive symptoms of losing interest in
surroundings, lethargy, or social isolation. Wearable sensors could complement by offering
sleep-related information like sleep states and duration to infer sleep quality. In addition,
individuals’ social media activities could reflect their personal routines and behaviors, for
example, higher susceptibility to insomnia or sleeping problems implied through frequent
posting activities during midnight. In contrast, a decline in social interactions is an example
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of social symptoms that might indicate a reduction of interest in surroundings. Such
social interactions could include both verbal communications detected via microphones
in smartphones and social interactions made through social media platforms and social
mobile applications. Lastly, wearable devices are the only passive data source capable of
tracking changes in physiological symptoms, including heart rate, skin temperature, and
calories burnt.

Nevertheless, our findings in Section 3.3.6 highlighted the influence of demographics
and personalities on individuals’ behaviors, where specific subgroups may openly share
their symptoms to seek external support [25], while some may show reluctance through
prominent usage of the word “others” or third-person pronouns on social media [123,187].
Additionally, Shen et al. [109] proved the divergence in Twitter and Sina Microblog user
behaviors, where those with depressive behaviors posted less frequently on Twitter, but the
opposite trend was observed in Sina Microblog users. There was also a higher occurrence of
positive words in textual content in the latter than in the prior. Such disparity in expressivity
could be attributed to different populations’ cultural and language differences since Sina
Microblog users are primarily from Asian countries. Meanwhile, an increased regularity in
physical activities could be a coping mechanism for young adults [157] but is not necessarily
the case for other contexts or populations having a depressive symptom of lacking interest
in activities, as shown in several other studies [110,149,150,152,158].

In addition to modality-specific effectiveness, discussed in Section 3.3, there is a need
for deeper considerations beyond data source, which are associated with the experimen-
tal contexts of data collection approaches and the individuals to which the data belong.
We established several criteria to evaluate data collection approaches in greater detail in
Section 4.2 below.

4.1.2. RQ2—Which Data Fusion Approaches Are Most Effective for Combining Data
Features of Varying Modalities to Prepare for Training ML Models to Detect MH Disorders?

Based on our categorization of modality fusion techniques, namely feature, score/decision,
and model levels, we recommend employing feature or model-level fusion based on researchers’
specific use cases. Our observations suggest that score-level fusion might be less effective, as
modality features are modeled separately by individual ML algorithms, thereby ignoring the
potential correlation of features across different modalities. As previously discussed, certain
modalities may be more effective than others in unimodal settings. Since score-level fusion
only considers the intermediate prediction outcomes of modality-specific ML models, the more
effective modalities may overshadow the less significant ones in the final outcomes, even
though all modalities are complementary. The following paragraphs provide more detailed
recommendations to decide between feature and model-level fusion.

Feature-level fusion is readily applicable to simple univariate features, where direct
concatenation is straightforward and efficient to implement. Researchers should align their
decision with research objectives by considering whether the features succinctly capture the
information they intend to investigate with sufficient details and the capability of adopted
ML algorithms to model the correlation among such features to answer specific research
questions. For example, a high-level aggregation by computing the average steps, distance
traveled, and time spent at an individual’s home across the entire study duration produces
a simple univariate vector representation for feature-level fusion, but such information may
not be relevant for a study intending to capture daily variations in individuals’ physical
behaviors. If researchers intend to prioritize efficiency and low computational complexity,
specific computation methods should be investigated to effectively elicit low-dimensional
representations that capture time-based variations. For instance, autocorrelation analysis
captures feature periodicities across specific durations [157] where the resulting correlation
coefficients could be utilized as higher-level representations of time series data.

On the other hand, model-level fusion has been shown in several attempts [69,71,73,308] to
generate more effective high-level feature representations than hand-crafted univariate features
due to their capability of capturing temporal and contextual dependencies while modeling cross-
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modality interactions. The decisions of whether to adopt model-level fusion and the architecture
to employ should consider the complexity of the research problems. For example, deep NN
architectures with more extensive layers may be more effective if researchers are interested in
investigating the influence of particular factors across long durations. However, researchers
should be aware of the greater computational costs associated with more complex architectures
and the black-box nature of certain NN-based architectures, which reduce the interpretability of
modeled interactions.

We have observed an increased adoption of various NN architectures among re-
searchers to model feature information at varying complexity levels. Several architectures
have shown outstanding efficacy by incorporating both temporal and contextual inter-
actions within and across modalities, underscoring the importance of generating fused
representations that encapsulate such information. For instance, Yan et al. [170] applied
Convolutional Sequence Embedding Recommendation (CASER) [309], which leverages
convolutional filters of CNNs. In CASER’s horizontal convolutional layer, the authors
applied convolutional filters horizontally to capture daily-level sequential patterns as
local features for all feature points at the previous time step, followed by max-pooling
to extract the most meaningful information. In the vertical convolutional layer, feature-
level patterns were generated as the weighted sum of each feature point at specific time
steps, with the convolutional filter acting as weights. The outputs of both convolutional
layers were then concatenated into fully-connected layers to produce fused representa-
tions. This architecture demonstrated more effective capture of hidden series patterns than
aggregated statistical features (e.g., average, minimum, or maximum across a duration).
In contrast, Zhou et al. [93] proposed a time-aware attention multimodal fusion (TAMF)
network. This architecture includes a sparse MLP, utilizing its weight sharing and sparse
connections to mix information from modality-specific representations in both vertical and
horizontal directions. The resulting outcome is a mixed attention vector, which is separated
into attention vectors of each modality. The final fused representations were obtained
by summing modality-specific representations weighted by respective attention vectors.
TAMF was claimed to model the importance of different modalities at different times, with
well-rounded consideration of cross-modality interactions.

4.1.3. RQ3—What ML Approaches Have Previous Researchers Used to Successfully Detect
MH Disorders from Multimodal Data?

We could not deduce a single one-size-fits-all model that is the most effective for
various multimodal tasks. This is because the effectiveness of ML algorithms relies on
the nature and structure of the data, the task to achieve, and how data information is
learned and fully utilized. Nonetheless, our observations revealed that ML models adopted
in existing studies are primarily supervised learning algorithms, which utilize ground
truth as the “gold standard”, and several models worth investigating are Lasso regres-
sion, XGBoost, LSTM-based models, and transformer-based models like XLNet, based
on their prominent predictive performance in existing studies. Notably, we noticed a
similar trend of rising adoption of NN-based models in recent studies, which appear more
valuable than linear statistical algorithms in modeling multidimensional time series signals.
As previously discussed in Section 3.5.2, existing researchers have proposed various novel
architectures to incorporate temporal, contextual, and cross-modality dependencies, such as
injecting time-based representations into transformer models to improve performance fur-
ther [129]. We also observed the significance of utilizing relevant data information, where a
few studies [111,186] demonstrated that irrelevant textual and visual content introduced
noise that obstructs traces of MH disorders and caused further performance deterioration.
While the studies above selected more relevant information through techniques like rein-
forcement learning [111], other studies utilized attention mechanisms to exert significance
weights based on relevance instead of eradicating less relevant information. Specifically, at-
tempts [128,146] at hierarchical attention asserted onto deep representations of social media
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content from word level and subsequently to post and user levels highlighted the great
prospect of such mechanisms.

Despite both audio-visual and sensor data being time series data, we noticed relatively
limited applications of NN architectures on sensor data. Most studies employed conven-
tional linear or statistical ML algorithms (e.g., logistic regression, SVM, XGBoost), which
learn from univariate inputs, by aggregating extracted features across the whole duration.
Such approaches potentially neglected the associations of features across time since sev-
eral recent studies [162,170,176] proved the superiority of NN-based models applied to
higher-dimensional time series sensor data, where features are aggregated at hourly, daily,
or weekly features, over conventional univariate approaches. These outcomes suggested
an aspect worth investigating for future researchers to better harness the potential of ML
algorithms, for example, by applying an LSTM-based model to hourly time series data
and RF to univariate features derived from the prior data to leverage the strengths of
both algorithms [208].

While most studies predominantly focused on optimizing performance metrics like
accuracy, precision, and recall, they often overlooked practical considerations for real-
world applications of ML models, such as complexity, explainability, and generalizability.
Despite the inherent biases in ML algorithms [310], only two included studies examined
potential biases at the individual and gender levels. For ML models to be seamlessly
integrated into real-time detection applications for clinical use, they must be lightweight
in terms of complexity and computational cost, considering that available memory and
computation resources may be restricted [311], especially in individuals’ local devices.
Specifically, in the MH domain, this criterion is significant to enhance efficient computations
on the fly and timely delivery of personalized interventions and recommendations without
imposing excessive processing power [311]. Ultimately, achieving this can potentially
improve individuals’ accessibility to mental healthcare resources and subsequently promote
their treatment-seeking.

In addition, with the growing attention to the interpretability and explainability of ML
models [299], these criteria offer transparency to ML models’ decision-making to establish
trust in these algorithms and elevate their practicality in real-life applications. Specifi-
cally, in high-stake MH applications where black-box predictions potentially bring harmful
consequences, explanations of ML outputs can provide meaningful insights for healthcare
professionals to understand and validate the relevance of ML outputs in complementing
clinical diagnosis. Considering the inherent biases in ML algorithms [310], transparency
in working mechanisms (local explainability), feature contributions (global explainabil-
ity [299]), and potential shortcomings are necessary for healthcare professionals to guide
and manage the influence of ML outputs on clinical decisions.

Meanwhile, generalizability improves the transferability of ML models to external sce-
narios beyond local training environments. Given the potential influence of demographics
and personalities on manifestations of MH-related behaviors, existing surveys [17] have
highlighted the risks of under-representation of certain groups in training datasets, in
which the demographic disparities may be magnified in the subsequent applications to the
MH domain. Generalizability can enhance the applicability of ML models to other contexts
and heterogeneous populations, subsequently improving the accessibility of the general
population to MH resources. As an existing work [312] demonstrated the difficulties of
aligning cross-study settings for improved generalizability, Thieme et al. [17] emphasized
avoiding overclaiming premature generalization from datasets lacking clinical validation
and diversity. As such, future researchers should validate and communicate potential
limitations in the generalizability of research outcomes. For example, researchers should
account for the diversity within a population by validating outcomes across different sub-
groups with various demographics and characteristics and reporting on the metadata of
the community from which the data is collected.
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4.2. Evaluation of Data Sources

Following the address of RQ1 in Section 4.1.1 above, we established several criteria to
further analyze the different categories of data sources.

4.2.1. Criterion 1—Reliability of Data

The reliability of a data source relies on how well it captures people’s real-life behaviors.
This criterion is crucial to contribute relevant data for supporting clinical diagnosis since
failure to reflect realistic behaviors may result in misdiagnosis of MH disorders, potentially
leading to severe complications.

We perceived that smartphone and wearable sensor data are the most reliable due to
their ubiquity and a lower possibility of people “tricking” sensors into gathering perceiv-
ably desired data. Prior to data collection, participants will configure dedicated mobile
applications in their smartphones, allow permission to access specific sensor data, and
establish wireless connections for wearable devices to their smartphones, where applicable.
Afterwards, they will interact with their devices as usual throughout the data collection
process with minimal active inputs. Given that they are open to and allow monitoring over
a longer period, the awareness of monitoring may be reduced following the initial novelty
effect, thereby enhancing the “honesty” of corresponding data. Nevertheless, researchers
should consider data quality that can be affected by sensors of different devices with vary-
ing sensitivity. The fit of wearable devices may also affect the accuracy and amount of data
collected. For example, improper wearing or wearables slipping off [313] during sleep may
end up collecting poor, noisy data. In addition, participants may forget to reapply sensors
(e.g., following a shower) or feel discomfort from wearing it on their wrists or other parts
of their body.

Both audio-visual recordings and social media data potentially suffer from biases
introduced by individuals’ self-presentation concerns. For example, a person may behave
differently under the pressure of continuous supervision, also known as the Hawthorne
effect [314], to look generally appealing or hide any indicative behaviors potentially due to
fear of judgment. Similarly, social media users might curate their public posts to appear
presentable due to factors like the consciousness of unfavorable public perception or social
stigma. In addition, a study [187] found that users express their thoughts differently in
the hidden tree hole posts than in usual Sina Microblog posts. A tree hole is a microblog
space whose author has committed suicide, and other users tend to comment under the last
post of the passed one about their inner feelings and thoughts. Such posts were revealed to
contain more self-concern and suicide-related words, thereby challenging the detection of
MH through regular or public posts.

4.2.2. Criterion 2—Validity of Ground Truth Acquisition

A well-justified ground truth is vital to represent people’s actual MH states. From a
responsible innovation perspective, unrealistic ground truth can cause under or over-
estimations in MH detection, which may escalate to introduce dangers, especially in
disorders with crisis points, such as suicidal ideation or an eating disorder.

Clinical assessments are the only method yielding representative ground truth thus
far because self-reports, whether in the form of responses in assessment scales or self-
declaration in social media posts, are subject to self-presentation and recall biases. How-
ever, we noticed a possibility of verifying ground truth from self-reports by utilizing
behaviors detected via smartphone and wearable sensing. These approaches typically re-
quest individuals to answer clinically validated assessment scales based on guidelines like
the Diagnostic And Statistical Manual Of Mental Disorders, Fifth Edition (DSM-V) [315] to
serve as baseline ground truth. The response to each assessment question corresponds to
recalled behaviors over a specific duration. Taking Wang et al.’s work [150] as inspiration,
behaviors inferred from sensor data can be mapped to individual DSM-V symptoms to
verify ground-truth labels. Conversely, some researchers primarily rely on social media
users’ self-identification of MH disorder diagnosis to acquire the ground truth of their



Sensors 2024, 24, 348 29 of 65

MH states, usually through identifying keywords associated with specific MH disorders.
Such acquisition risks under-identification since it depends on whether people took the
initiative and felt comfortable sharing the information. Solans Noguero et al. [219] further
proved that suicide-related lexicons were less comprehensive due to the likelihood of
omitting explicit vocabulary and failing to identify implicit hints.

A reliable ground truth should always be supported by clinical validation, such as
through a diagnosis by trained practitioners, reference of clinical evidence, or having
clinical experts verify manual annotations, since relevant clinical knowledge is necessary to
ensure the validity of ground-truth labels. Specifically, in the use case of social media data,
where individuals’ data were crawled directly from these platforms, there are both practical
and ethical considerations that need to be addressed when claiming a ground truth has
been established. While time-consuming, future studies could consider ways to directly
approach social media users where possible to verify their MH states and to actively gain
their consent for their data to be used (or ensure that users are aware of the research aims
at the very least).

4.2.3. Criterion 3—Cost

We inspected costs in terms of (1) data accessibility, (2) external costs incurred for
dedicated data collection equipment and tools, (3) processing power for transforming and
analyzing data, and (4) storage space. These considerations are crucial in evaluating the
practicality of research outcomes in real-life applications so that a cost-effective method
can be easily deployed to benefit the target population.

We deduced that social media data are the cheapest to acquire from all aspects above.
It is the most accessible since researchers can crawl public data online without accessing
users individually or getting hold of their private information, given that they comply with
the platforms’ terms and conditions (whether this is deemed ethical is another question).
Relatively small processing power and storage space are required since crawled data
is in the form of data entries. Additionally, features can be extracted from textual and
visual content using processing tools available, such as LIWC [278], NLTK [280], and
SEANCE [282] for texts and OpenFace [269], OpenCV [270], and OpenPose [271] for images.
Audio-visual recordings are the most costly because they encapsulate rich data information
that requires large storage space and extensive computation power to process audio and
visual elements. In addition, this approach requires video cameras and microphones,
which might have to be purchased beforehand, and consumes more effort in setting up the
equipment at one or more locations based on device reception and coverage.

Since most populations generally own smartphones [316], the potential equipment
cost for smartphone sensing is lowered. However, a substantial cost might be incurred
if researchers are to provide smartphones to study participants without smartphones or
to ensure consistency. In contrast, wearable devices are cheaper but less ubiquitous than
smartphones since some participants do not see the necessity of possessing wearable
devices (e.g., fitness watch, smartwatch) and consider them a luxury item. Though both
approaches involve time series sensor signals, which may be high dimensional, the storage
cost is still relatively economical compared to multidimensional video files. Nevertheless,
we observed a novel application of federated learning in Tabassum et al.’s [168] work,
which is potentially feasible for resolving storage and privacy concerns. The authors
processed collected data and extracted features locally in individuals’ devices to obtain
local features and parameters. These were then utilized to fine-tune local individual-specific
ML models, which share and exchange higher-level parameters with a global-centric model.
This approach significantly lowered transmission cost and storage space since server
transmission is reduced from complex multidimensional data to numerical features and
parameters while minimizing the risks of privacy leaks during transmission since raw
data was discarded after local processing. As such, researchers should consider the factors
discussed in Section 4.1.3 to ensure that ML models residing in local devices are highly
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deployable, such as being efficient and lightweight, to avoid consuming excessive local
processing power.

4.2.4. Criterion 4—General Acceptance

The general acceptability of people towards specific data collection approaches has the
most direct influence on research involving human data. This criterion can be attributed to
people’s openness and comfortability in allowing their data to be collected, which are often
supported by their perceptions and concerns about the methods. The control they have
over the sharing of their data may also be a contributing factor.

We inferred wearable sensing as the most acceptable because it gathers the least iden-
tifiable data (e.g., physiological signals like heart rate and skin temperature, activity levels,
and sleep patterns) that is most unlikely to disclose people’s personal information. On the
other hand, acceptability towards smartphone sensing is debatable. A study [100] discov-
ered GPS to be the most acceptable compared to calendars, call logs, text logs, and contacts,
and only one-third of study participants shared their smartphone logs. However, this is
not necessarily the case for some with safety concerns about revealing their locations (e.g.,
not wanting to disclose their homes or concerns over being stalked [317]), and allowing
access to call and text logs can also be perceived as privacy-invasive. In both smartphone
and wearable sensing contexts, participants may or may not have control over the kinds
of data collected from them, i.e., which sensors are enabled, depending on the approach
design and configuration by researchers.

The acceptance of social media users for researchers to utilize their data for research
purposes is also controversial. Researchers have presumed that social media users are
open to and permit others to access their data since they opted to make it public in the
first place [318]. Even though users have complete control of their public content, they are
unaware and may oppose their data being accessed and analyzed for research without
consent. Meanwhile, we hypothesize that audio-visual recordings are the least acceptable
because it is highly invasive, and not all individuals are comfortable having their footage
taken and monitored continuously. Even though existing research [313] found a general
acceptance of being recorded using privacy-preserving video cameras that only capture
participants’ silhouettes, such cameras may not apply to the current context that requires
identifiable elements, like facial expressions, body gestures, and movements. Researchers
have complete control of the data collection process, and there were contradictory opinions
from participants themselves on whether they should have control over when and what is
being recorded, e.g., by allowing them to pause at specific critical times [313].

As much as the ability to manage data sharing based on personal comfort can improve
the acceptability of data collection, researchers should be aware of the resulting risks
of biases and sparsity in data. A reduction in the unobtrusiveness of passive sensing
and an increased likelihood of skewness will occur if participants constantly manage
their data sharing. There will also be data sparsity issues if participants can selectively
activate/deactivate specific sensors at random times. There are other means of establishing
people’s trust in researchers to raise their confidence that their shared data will be kept
secure and handled cautiously with safety procedures. For example, this can be achieved
by offering transparency of what is being collected, why, and how they will be stored
and handled.

4.2.5. Overall Findings

Overall, smartphone sensing emerged as the most promising avenue. Our findings
demonstrate abundant significant correlations between sensor features and MH symptoms,
offering the potential to translate such connections into an individual’s physical manifesta-
tions in response to specific MH disorders. While symptoms associated with specific MH
disorders may manifest differently, the capability of smartphone sensors to capture natural
behaviors and variations across time provides a strong advantage.
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However, the integration of smartphone sensing into MH applications demands fur-
ther research due to several critical considerations that are yet to be addressed. Ethical con-
cerns arise regarding whether it is privacy-infringing for researchers to access individuals’
private or personal behaviors, which they may be unwilling to disclose. Consequently, they
may deliberately hide or alter their behaviors to “trick” the data collection system or
withdraw due to privacy concerns. These issues contribute to the potential unreliability
and sparsity of the resulting data, introducing challenges for technical researchers to seek
solutions for data-driven ML algorithms, especially in supervised learning with a heavy
reliance on ground truth labels. Despite the rich information in time series sensor-based
data, there is still room for research to investigate techniques that fully harness its potential.
While existing studies have demonstrated the efficacy of neural network architectures in
modeling such high-dimensional data, the low explainability and high complexity of such
architectures remain a critical challenge. Additionally, existing elicitation techniques are
often informed by standard guidelines like DSM-V, potentially disregarding behaviors
yet to be discovered. As such, it is imperative to establish a common ground between
researchers and clinical experts that enables collaboration to investigate and interpret ML
outputs to ensure clinically relevant outcomes.

We hereby acknowledge that the above represents our perspectives based on the
current understanding and analysis and that it is essential for future researchers to crit-
ically evaluate and adapt the insights based on the evolving landscape of technology
and methodological approaches to their specific use cases in the MH domain. We out-
line some guidelines in the following subsection to assist future researchers in making
informed decisions.

4.3. Guidelines for Data Source Selection

In light of the various influencing factors of MH conditions and the necessary consid-
erations for high-stakes applications involving vulnerable individuals, we have devised
guidelines that future researchers can use in conjunction with Figure 5 above for selecting
an optimal data source or combinations of data sources based on specific use cases.

1. Define research objectives and scope: Clearly defined research objectives and questions
can guide researchers to determine the kind of information required to achieve the
research goals and, subsequently, to evaluate the extent of the data source in accurately
representing or capturing relevant information. Determining the scope of the study
is crucial to pinpoint and assess the relevance of data information to ensure that
collected data effectively contributes to the desired outcomes.

2. Determine the target population: Identifying the target population and its characteristics
involves various aspects, including the targeted MH disorders, demographics, cultural
backgrounds, and geographical distribution. These aspects are mutually influential
since individuals’ behaviors and data may vary based on reactions to different MH
disorders, with further influence caused by cultural backgrounds and demographics,
such as age, gender, and occupation. Additionally, geographical distribution and
economic backgrounds may influence an individual’s accessibility to a specific data
collection tool. This consideration ensures that the data collected is representative
and applicable to the population of interest, enhancing the overall effectiveness of the
approach.

3. Identify candidate data sources and evaluate their feasibility: Evaluating the feasibility of
each data source in light of the research objectives and target population identified
above assists researchers in making informed decisions. Given the contexts and
environments in which the target population is situated, researchers can assess which
data source is the most practical and relevant. For example, researchers may consider
employing remote sensing to introduce the unobtrusiveness of data collection for
high-risk MH disorders or overcome geographical challenges. This assessment should
consider its feasibility in terms of cost and accessibility, and it should be informed
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by Figure 5 to ensure that the selected data source can effectively capture relevant
MH symptoms.

4. Consult stakeholders: Engaging stakeholders, including healthcare professionals, pa-
tients, and families, provides various perspectives of parties involved in supporting
individuals with MH disorders. These consultations verify and offer insights into the
acceptability and feasibility of data sources and help ensure that researchers’ decisions
align with ethical considerations and stakeholders’ comfort.

5. Ethical considerations and guidelines: Researchers should further consult institutional
review boards and established guidelines to ensure the compliance of data collection
procedures with ethical standards and research practices. This step is crucial to
safeguard participants’ rights and privacy, enhancing the credibility of the study.

6. Assess the significance of ground truth information: Evaluating the significance of ground
truth information informs how researchers gauge its impact on the study and whether
specific workarounds are necessary to enhance ground truth reliability and validity
during data collection. This evaluation will then aid researchers in designing the
data collection procedure and determining the extent of reliance on ground truth to
support future analysis, reasoning, and deductions.

5. Conclusions

This study examines existing methodologies for non-intrusive multimodal detection
of MH disorders and critically evaluates various data sources in terms of reliability, ground
truth validity, cost, and general acceptance. Given the complexity of identifying the most
effective data source for detecting MH disorders, our guidelines offer a systematic approach
for future researchers to make informed decisions about a data source that aligns with
research objectives, is relevant to the target population, and adheres to ethical standards.
In addition, our analysis highlights the potential of neural network architecture in model-
level fusion for capturing higher-complexity cross-modality interactions. We also observe
the prospect of utilizing such architectures as ML algorithms to handle high-dimensional
data, though practical aspects, such as complexity, explainability, and generalizability,
should be scrutinized beyond effectiveness.

We acknowledge the inherent limitations in our approach, recognizing that our search
strategy might have omitted potential data sources not explicitly defined within our pre-
determined categories. Though our findings verified the significance of multimodality
compared to unimodality in most cases, there is no absolute answer since the overall
efficacy depends on modality-specific features. In addition, there are risks associated with
our assumption that passive sensing captures natural behaviors and is more acceptable.
The deliberate exclusion of active sensing based on this assumption limits our understand-
ing of potential insights that active sensing approaches can offer. In conjunction with our
previous discussion on seeking validation in ground truth information, active inputs may
be valuable and necessary to achieve robust validation. As we critically evaluated each data
source, we observed a refutation of our assumption, such that passive sensing approaches
can be privacy-invasive and are not necessarily well accepted. This is due to the uncertain-
ties and unobtrusiveness of such approaches, which may introduce a sense of insecurity
among individuals from whom the data is collected. Building upon the acknowledgements,
the current study has recognized smartphone sensing as a promising avenue for further
exploration as our next step forward. In light of the ethical considerations and limitations
identified, we plan to conduct interviews and focus groups with individuals with MH
disorders to gather feedback on the acceptability of smartphone sensing and potential
workarounds for addressing privacy concerns. Simultaneously, consulting healthcare pro-
fessionals will provide valuable perspectives on incorporating smartphone sensing into
clinical practice. As we embark on the journey into smartphone sensing, we extend an
open invitation for collaboration with fellow researchers, healthcare professionals, and
stakeholders passionate about advancing in this domain.
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Nevertheless, our work aspires to bring significant implications for stakeholders,
including researchers, mental healthcare professionals, and individuals with MH disor-
ders. Our overview of current methodologies for handling multimodal data serves as
a starting point for future MH researchers to explore methodological advancements for
more effective and timely detection approaches. Our guidelines for data source selection
provide a systematic approach for researchers to make informed decisions aligned with
use cases or specific symptoms of interest. In addition, our critical analysis of passive
multimodal data sources and modality-specific features provides insights to explore the
effectiveness of other modality combinations for specific MH disorders. Subsequently, this
inspires the development of specific tools that leverage external or multiple data sources to
support mental healthcare professionals in their clinical practice (e.g., drawing inspiration
from the beHEALTHIER platform [319] which integrates different types of healthcare data,
including health, social care, and clinical signs, to construct effective health policies). We
envision engaging with MH professionals through workshops, webinars, or other collabo-
rative efforts to bridge the gap between research and practice. Additionally, our practical
insights emphasize implementing ML approaches in real-world settings, paving the way
for practical implementations that enhance the accessibility for individuals with MH disor-
ders. The outcomes related to the correlation between specific inferred behaviors and MH
symptoms also contribute to a better understanding of MH symptoms. Moving forward,
we anticipate close collaboration with mental healthcare professionals and individuals
with specific MH disorders to design a multimodal approach that facilitates more effective
detection. Regardless, we acknowledge the need to establish a middle ground to effectively
communicate technical concepts and implications to both stakeholder groups.
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AdaBoost Adaptive Boosting
ADHD Attention Deficit Hyperactivity Disorder
BDI Beck Depression Inventory
CES-D Center for Epidemiological Studies Depression Scale
CNN Convolutional neural network
DNN Deep neural network
DSM-V Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition
ED Eating disorder
GAD-7 General Anxiety Disorder-7
GPS Global Positioning System
GRU Gated recurrent unit
HDRS Hamilton Depression Rating Scale
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LSTM Long short-term memory
MDD Major depressive disorder
MFCC Mel frequency cepstral coefficients
MH Mental health
ML Machine learning
MLP Multi-layer perceptron
MRI Magnetic Resonance Imaging
MTL Multi-task learning
NN Neural network
OCD Obsessive-compulsive disorder
PHQ-9 Patient Health Questionnaire-9
PTSD Post-traumatic stress disorder
RF Random forest
SLR Systematic literature review
SVM Support vector machine
XGBoost Xtreme Gradient Boosting

Appendix A. Existing Modality Features

Table A1. Audio features.

Features Tools Studies Feature Category

Low-level descriptors: jitter, shimmer,
amplitude, pitch perturbation

quotients, Mel-frequency cepstral
coefficients (MFCCs), Teager-energy
cepstrum coefficients (TECCs) [320],

Discrete Cosine Transform
(DCT) coefficients

OpenSmile [267], COVAREP [321],
YAAFE [322], Praat [323], Python
libraries (pyAudioAnalysis [324],

DisVoice [325]), My-Voice
Analysis [326], Surfboard [327],

librosa [328]

[12,48,51,72,74,78,81,87,
88,90–92,94,97,99,101,

104,107,108,184,192,195–
199,211,214]

Voice

Existing acoustic feature sets:
Interspeech 2010 Paralinguistics [329],

Interspeech 2013 ComParE [330],
extended Geneva Minimalistic

Acoustic Parameter Set
(eGeMAPS) [331])

OpenSmile [267] [51,57,59,61,63,74,81,97,
103,192,194–198] Voice

Speech, pause, laughter, utterances,
articulation, phonation, intent

expressivity
Praat [323], DeepSpeech [332] [12,48,79,107,184,193,

203,211] Speech

Vocal tract physiology features N/A [49] Speech

Embeddings of audio samples

VGG-16 [261], VGGish [333],
DeepSpeech [332], DenseNet [334],

SoundNet [259], SincNet [335],
Wav2Vec [336], sentence
embedding model [337],

HuBERT [338], convolutional
neural network (CNN),

bidirectional LSTM (BiLSTM),
ResNet [308], graph temporal
convolution neural network

(GTCN) [339]

[59,60,67,72,74,80,86,89,
93,96,100,136,174,195] Representations

Graph features: average degree,
clustering coefficient and shortest

path, density, transitivity, diameter,
local and global efficiency

Visibility graph (two data points
visible to each other are connected

with an edge)
[81] Representations
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Table A1. Cont.

Features Tools Studies Feature Category

Statistical descriptors of voice/speech
features: mean, standard deviation,

variance, extreme values, kurtosis, 1st
and 99th percentiles, skewness,

quartiles, interquartile range, range,
total, duration rate, occurrences,

coefficient of variation (CV)

Manual computation, histograms,
DeepSpeech [332]

[12,55,56,91,92,99,107,
193,197,214] Derived

Bag-of-AudioWords (BoAW)
representations of

voice/speech features
openXBOW [340] [59,74] Representations,

Derived

High-level representations of
features/representations (capture
spatial and temporal information)

Gated recurrent unit (GRU) [341],
LSTM, BiLSTM, combination of
CNN residual and LSTM-based
encoder–decoder networks [75],
time-distributed CNN (T-CNN),

multi-scale temporal dilated
convolution (MS-TDConv) blocks,

denoising autoencoder

[61,65,67,73,75,77,87,94,
100,199]

Representations,
Derived

Session-level representations from
segment-level

features/representations

Simple concatenation, Fisher
vector encoding, Gaussian Mixture

Model (GMM)
[192,199,214] Representations,

Derived

Facial/body appearance, landmarks,
eye gaze, head pose

OpenFace [269], OpenCV [270],
Viola Jones’ face detector [342],

CascadeObjectDetector function in
MATLAB’s vision toolbox, Haar
classifier [270], Gauss–Newton

Deformable Part Model
(GN-DPM) [343], OpenPose [271],

ZFace [344], CNN [46],
Faster-RCNN (Region CNN) [147],

multilevel convolutional
coarse-to-fine network

cascade [345],
Inception-ResNet-V2 [346],

VGG-Face [68], DenseNet [334],
Affectiva https://go.affectiva.

com/affdex-for-market-research
(accessed on 10 December 2023),

DBFace https:
//github.com/dlunion/DBFace
(accessed on 10 December 2023),
FaceMesh https://developers.

google.com/android/reference/
com/google/mlkit/vision/

facemesh/FaceMesh (accessed on
10 December 2023), dlib [347]

[25,53,55,56,68,79,80,83,
91,92,94,98,99,101,108,

174,193,199,201,203,220]
Subject/Object

Appearance coefficients of facial
image and shape

Active Orientation Model
(AOM) [348] [50] Subject/Object

Probability distribution of 365
common scenes Places365-CNN [349] [220] Subject/Object

https://go.affectiva.com/affdex-for-market-research
https://go.affectiva.com/affdex-for-market-research
https://github.com/dlunion/DBFace
https://github.com/dlunion/DBFace
https://developers.google.com/android/reference/com/google/mlkit/vision/facemesh/FaceMesh
https://developers.google.com/android/reference/com/google/mlkit/vision/facemesh/FaceMesh
https://developers.google.com/android/reference/com/google/mlkit/vision/facemesh/FaceMesh
https://developers.google.com/android/reference/com/google/mlkit/vision/facemesh/FaceMesh
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Table A2. Visual features.

Features Tools Studies Feature Category

Feature descriptors: local binary
patterns, Edge Orientation

Histogram, Local Phase Quantization,
Histogram of Oriented Gradients

(HOG)

OpenFace [269] [47,48,53,195] Subject/Object,
Derived

Geometric features: displacement,
mean shape of chosen points,

difference between coordinates of
specific landmarks, Euclidean

distance, angle between landmarks,
angular orientation

Manual computation,
subject-specific active appearance

model (AMM), AFAR
toolbox [350]

[47,51,54,56,70,79,83,91,
99,195,198,203]

Subject/Object,
Derived

Motion features: movement across
video frames, range and speed of

displacements (facial landmarks, eye
gaze direction, eye open and close,

head pose, upper body points)

3D convolutional layers on
persons detected at frame-level,

Motion history histogram
(MHH) [351], feature dynamic

history histogram (FDHH),
residual network-based dynamic

feature descriptor [75]

[52,53,68,75,147,193] Subject/Object,
Derived

Facial action units (FAUs),
facial expressions

OpenFace [269], Face++ [352],
FACET software [353], AU

detection module of AFAR [350]
[25,79,91,99,194,196,198] Subject/Object,

Emotion-related

FAU features: occurrences, intensities,
facial expressivity, peak expressivity,

behavioral entropy

MHH, Modulation spectrum (MS),
Fast Fourier transform (FFT) [83,99,101,107,194,354] Emotion-related,

Derived

Emotion profiles (EPs) SVM-based EP detector [355] [101] Emotion-related

Sentiment score ResNeXt [356] [186] Emotion-related

Turbulence features capturing
sudden erratic changes in behaviors N/A [192] Derived

Deep visual representations from
images or video frames

VGG-16 [261], VGG-Face [357],
VGGNet [261], AlexNet [358],
ResNet [308] ResNet-50 [359],

ResNeXt [356], EfficientNet [360],
InceptionResNetV2 [346], CNN,
dense201 [195], self-supervised
DINO (self-distillation with no

labels) [361], GTCN [339],
unsupervised Convolutional

Auto-Encoder (CAE) (replaces
autoencoder’s fully connected

layer with CNN) [195]

[53,58,60,74,82,84,85,89,
93,95,98,106,111,115–117,
122,125,126,129,131,132,
135,160,187,195,201,220]

Representations

High-level (frame-level)
representations of low-level features

(LLDs, facial landmarks, FAUs)

Stacked Denoising Autoencoders
(SDAE) [306], DenseXception

block-based CNN [221] (replace
DenseNet’s convolution layer with

Xception layer), CNN-LSTM,
denoising autoencoder,

LSTM-based multitask learning
modality encoder [62], 3D

convolutional layers, LSTM

[55,62,87,98,199,221] Representations,
Derived
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Table A2. Cont.

Features Tools Studies Feature Category

Session-level representations from
frame-level features/representations

Average of frame-level
representations, Fisher vector (FV)

encoding, improved FV
coding [265], GMM, Temporal
Attentive Pooling (TAP) [75]

[55,75,117,199] Representations,
Derived

Texts extracted from images python-tesseract [362] [25,126,128,140] Textual

Image labels/tags

Deep CNN-based multi-label
classifier [113], Contrastive

Language Image Pre-training
(CLIP) [363], Imagga [364]

(CNN-based automatic
tagging system)

[113,124,128,129] Textual

Bag-of-Words (BoVW) features Multi-scale Dense SIFT features
(MSDF) [365] [124,195] Textual, Derived

Color distribution-cool, clear, and
dominant colors, pixel intensities

Probabilistic Latent Semantic
Analysis model [366] (assigns a
color to each image pixel), cold

color range [367], RGB histogram

[20,140,145,204,220] Color-related

Brightness, saturation, hue, value,
sharpness, contrast, correlation,

energy, homogeneity

HSV (Hue, Saturation, color) [368]
color model

[20,106,109,113,145,204,
220] Color-related

Statistical descriptors for each HSV
distribution: quantiles, mean,
variance, skewness, kurtosis

N/A [145,204] Color-related,
Derived

Pleasure, arousal, and dominance Compute from brightness and
saturation values [276] [220] Emotion-related,

Derived

Number of pixels, width, height, if
image is modified (indicated via

exif file)
N/A [204] Image metadata

Table A3. Textual features.

Features Tools Studies Feature Category

Count of words: general,
condition-specific (depressed,

suicidal, eating disorder-related)
keywords, emojis

N/A
[20,104,109,123,126,127,
130,133,134,137,145,146,

187,188,218,219]
Linguistic

Words referring to social processes
(e.g., reference to family, friends,

social affiliation), and psychological
states (e.g.,

negative/positive emotions)

Linguistic Inquiry and Word
Count (LIWC) [278], LIWC 2007

Spanish dictionary [369], Chinese
Suicide Dictionary [370], Chinese
LIWC [371], TextMind [372], Suite
of Automatic Linguistic Analysis

Tools (SALAT) [279]—Simple
Natural Language Processing

(SiNLP) [373]

[20,79,109,118,121,128,
186,194,196–

198,204,211,219,374]
Linguistic

Part-of-speech (POS) tags: adjectives,
nouns, pronouns

Jieba [375], Natural Language
Toolkit (NLTK) [280],

TextBlob [376], spaCy, Penn
Treebank [377], Empath [378]

[61,100,104,123,126,135,
184,185,189,195,218,219] Linguistic
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Table A3. Cont.

Features Tools Studies Feature Category

Word count-related representations: Term
Frequency–Inverse Document Frequency
(TF-IDF), Bag of Words (BoW), n-grams,

Term Frequency–Category Ratio
(TF-CR) [379]

Word2Vec embeddings, language
models

[115,116,118,124,128,130,
140,143,144,148,185,186,188,

198,217,374]

Linguistic,
Representations

Readability metrics: Automated
Readability Index (ARI), Simple Measure
of Gobbledygook (SMOG), Coleman–Liau
Index (CLI), Flesch reading ease, Gunning

fog index, syllable count scores

Textstat [380] [218,220] Linguistic

Lexicon-based representations [381] Depression domain lexicon [382],
Chinese suicide dictionary [370] [120,135,189] Representations

Sentiment scores, valence, arousal, and
dominance (VAD) ratings

NLTK [280], IBM Watson Tone
Analyzer, Azure Text Analytics, Google

NLP, NRC emotion lexicon [383],
senti-py [384], Stanford NLP

toolkit [281], Sentiment Analysis and
Cognition Engine (SEANCE) [282], text

SA API of Baidu Intelligent Cloud
Platform [123], Valence Aware

Dictionary and Sentiment Reasoner
(VADER) [385], Chinese emotion

lexicons DUTIR [386], Affective Norms
for English Words ratings

(ANEW) [283], EmoLex [? ],
SenticNet [388], Lasswell [389], AFINN

SA tool [390], LabMT [391],
text2emotion [392], BERT [266]

[20,54,61,86,110,115,118,119,
121,123,126–

128,130,132,133,137,143–
146,148,184–

186,188,194,196–
198,218,219,374]

Sentiment-related

Happiness scores of emojis Emoji sentiment scale [393] [110] Sentiment-related
Emotion transitions from love to joy, from
love to anxiety/sorrow (inspired by [394]) Chinese emotion lexicons DUTIR [386] [187] Sentiment-related

Word representations

Global vectors for word representation
(GloVe) [395], Word2Vec [396],

FastText [397], Embeddings from
Language Models (ELMo) [398],

BERT [266], ALBERT [297],
XLNet [285], bidirectional gated

recurrent unit (BiGRU) [341], itwiki
(Italian Wikipedia2Vec model), Spanish

model [399], EmoBERTa [298]
(incorporate linguistic and emotional
information), MiniLM [400] (supports

multiple languages), GPT [401],
TextCNN [402], Bi-LSTM [294]

[49,60,65,67,69,72,73,77,78,
81,82,87,88,90,95–

98,100,106,111–113,116,122,
125,128,129,131,135,136,138,

142,145,147,148,185–
187,201,214,218,308]

Semantic-related,
Representations

Sentence representations
Paragraph Vector (PV) [284], Universal

Sentence Encoder [403],
Sentence-BERT [404]

[52,59,70,71,89,102,103,174,
199]

Semantic-related,
Representations

Topic modeling, topic-level features
Scikit-learn’s Latent Dirichlet

Allocation module [405], Biterm Topic
Model [406]

[20,43,114,118,119,126,130,
134,136,137,146,185,188,194,

217,219]
Semantic-related

Description categories

IBM Watson’s Natural Language
Understanding tool (https://cloud.

ibm.com/apidocs/natural-language-
understanding#text-analytics-features

(accessed on 10 December 2023))

[132] Semantic-related

High-level representations from low-level
features/representations (e.g.,

sentence-level from word-level, to capture
sequential and/or significant information)

BiLSTM with an attention layer,
stacked CNN and BiGRU with

attention, summarization [119] using
K-means clustering and BART [407],
combination of LSTM with attention
mechanism and CNN, BiGRU with

attention

[73,95,97,119,136,145,159,
201]

Representations,
Derived

https://cloud.ibm.com/apidocs/natural-language-understanding#text-analytics-features
https://cloud.ibm.com/apidocs/natural-language-understanding#text-analytics-features
https://cloud.ibm.com/apidocs/natural-language-understanding#text-analytics-features
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Table A3. Cont.

Features Tools Studies Feature Category

User-level representations from post-level
representations

CNN-based triplet network [408] from
existing Siamese network [409]

(consider cosine similarities between
post-level representations between

each individual and others in the same
and different target groups), LSTM

with attention mechanism

[128,138] Representations,
Derived

Session-level representations from
segment-level representations Fisher vector encoding [199] Representations,

Derived

Subject-level average, median, standard
deviation of sentiment scores,
representations, POS counts

N/A [110,185,186] Derived

Subject-level representations in
conversation

Graph attention network—vertex as
question/answer pair incorporating

LeakyReLU on neighbors with
respective attention coefficients, edge

between adjacent questions

[97] Representations,
Derived

Table A4. Social media features.

Features Tools Studies Feature Category

Posts distribution (original posts, posts
with images, posts of

specific emotions/sentiments)-
frequency, time

N/A [109,112,122,123,126,130,
134,137,142,145,188,218,219] Post metadata

Username, followers, followings,
status/bio description, profile header and
background images, location, time zone

N/A
[109,115,118,122,123,126,

130,134,137,142,145,171,188,
218,219]

User metadata

Likes, comments, hashtags, mentions,
retweets (Twitter), favourites (Twitter) N/A [115,126,135,137,142,171,

185,189]
Social interactions,

Post metadata

Stressful periods with stress level and
category (study, work, family,

interpersonal relation, romantic relation,
or self-cognition)

Algorithm [410] applied on users’
posting behaviors [187] Post metadata,

Derived

Aggregate posting time by 4 seasons,
7 days of the week, 4 epochs of the day

(morning, afternoon, evening, midnight),
or specific times (daytime, sleep time,

weekdays, weekends)

N/A [125,130,135,186,188,189,
219]

Post metadata,
Derived

Encoding of numerical features Categorize into quartiles (low, below
average, average, high) [115] Representations,

Derived

Social interaction graph-node: user-level
representations concatenated from

post-level representations, edge: actions of
following, mentioning, replying to

comments, quoting

node2vec [411], Ego-network [412] [139,185] Social interactions

Personalized graph-user-level node:
user-level representations made up of

property nodes, property node
(individual), personal information,

personality, mental health experience, post
behavior, emotion expression and social

interactions, user–user edge: mutual
following-follower relationship,

user-property edge: user’s characteristics

Attention mechanism to weigh
property by contribution to

individual’s mental health condition
(user-property edge) and emotional

influence (user–user edge)

[187] Social interactions

Retweet network node: user-level
representations, directed edge: tweets of a

user is retweeted by the directed user

Clustering-based neighborhood
recognition-form communities with
densely connected nodes, expand
communities using similarity with

adjacent nodes

[141] Representations



Sensors 2024, 24, 348 40 of 65

Table A5. Smartphone sensor features.

Features Tools Studies Feature Category

Phone calls and text messages: frequency,
duration, entropy N/A

[104,105,149,155,156,159,
161,162,166,169–171,175,190,

205,206,209,222,223]
Calls and messages

Phone unlocks: frequency, duration
Manual computation, RAPIDS [413]-a

tool for data pre-processing and
biomarker computation

[99,149,150,155,156,158,158,
160–162,166,167,171,176,190,

205,206,208,212,374]
Phone interactions

Phone charge duration N/A [163] Phone interactions

Running applications: type, frequency,
duration of usage N/A

[99,149,150,155,156,158,160–
162,166,169–

171,190,205,206,208,212,374]
Phone interactions

Activity states (e.g., walking, stationary,
exercising, running, unknown):

frequency, duration

Android activity recognition API,
activity recognition model

(LSTM-RNN [414], SVM), Google
Activity Recognition Transition API
(using gyroscope and accelerometer)

[150,152,154,160,163,169,
170,176,177,190,205,206] Physical mobility

Distance traveled, displacement from
home, location variance and entropy, time

spent at specific places, transitions
Manual computation, RAPIDS [413]

[99,150,151,153–155,158,160–
162,165,166,175–

177,200,205,206,208,209]
Physical mobility

Location cluster features: number of
clusters, largest cluster as primary

location, most and least visited clusters

DBSCAN clustering [415], Adaptive
K-means clustering [416]

[150,151,153,154,160,165,
176,177,205,208] Physical mobility

Speed Compute from GPS and/or
accelerometer [153,165,166,209] Physical mobility

Intensity of action Compute rotational momentum from
GPS and gyroscope [162] Physical mobility

GPS sensor, calls and phone screen
unlock features

RAPIDS [413]-a tool for data
pre-processing and biomarker

computation
[158,164]

Physical mobility,
Calls and messages,
Phone interactions

WiFi association events (when a
smartphone is associated or dissociated

with a nearby access point at a location’s
WiFi network)

N/A [153] Connectivity

Occurrences of unique Bluetooth
addresses, most/least frequently detected

devices
N/A [99,151,155,156,175] Connectivity

Surrounding sound: amplitude,
conversations, human/non-human voices N/A [150,163,166,205–209] Ambient

environment

Surrounding illuminance: amplitude,
mean, variance, standard deviation N/A [99,163,190,205,208,209] Ambient

environment

Silent and noise episodes: count, sum,
minimum decibels

Detect via intermittent samples until
noise state changes [166] Ambient

environment

Sleep duration, wake and sleep onset
Infer from ambient light, audio

amplitude, activity state, and screen
on/off

[150,160,161,167,169,170,
175,176,206]

Derived, Physical
mobility

Keystroke features: count, transitions,
time between two consecutive keystrokes N/A [166,202] Phone interactions

Time between two successive touch
interactions (tap, long tap, touch) N/A [166] Phone interactions

Day-level features

Statistical functions (mean, median,
mode, standard deviation, interquartile

range) at the day-level or day of the
week (weekdays, weekends)

[151,152,154,156,159,163,
164,170,176,206] Derived
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Table A5. Cont.

Features Tools Studies Feature Category

Epoch-level features
Statistical functions at partitions of a

day-morning, afternoon,
evening, night

[149,151,152,156,159,163,
166,176,206] Derived

Hour-level features Statistical functions at each hour of the
day [208,209] Derived

Week-level features Statistical functions at the week-level,
distance from weekly mean [162,164] Derived

Rhythm-related features: ultradian,
circadian, and infradian rhythms,

regularity index [417], periodicity based
on time windows

Manual computation, Cosinor [418]-a
rhythmic regression function

[151–
153,155,157,158,176,207] Derived

Degrees of complexity and irregularity Shannon entropy of sensor features [166] Derived

Statistical, temporal and spectral time
series features

Time Series Feature Extraction Library
(TSFEL) [419] [104,105] Derived

High-level cluster-based features: cluster
labels, likelihood scores, distance scores,

transitions

Gaussian mixture model (GMM) [420],
partition around methods (PAM)

clustering model [421]
[208,209] Derived

Network of social interactions and
personal characteristics: node type

corresponds to a modality/category (e.g.,
individual, personality traits, social status,

physical health, well-being, mental
health status)

Heterogeneous Information Network
(HIN) [422] [173] Representations

Representations capturing important
patterns across timestamps Transformer encoder [295] [179] Representations

Table A6. Wearable sensor features.

Features Tools Studies Feature Category

Duration and onset of sleep status
(asleep, restless, awake, unknown),

sleep efficiency, sleep debt
API of wristband [149,151,155,156,164,171,180–

182,191,374] Physical mobility

Number of steps, active and
sedentary bouts, floor climb API of wristband [150,151,155,156,164,171,179–

182,191,374] Physical mobility

Heart rate (HR), galvanic skin
response (GSR), skin temperature
(ST), electrodermal activity (EDA)

API of Wristband [149,150,164,169,170,172,178,179,
182,191] Physiological

Outliers of systolic and diastolic
periods: centering tendency,

spreading degree, distribution
shape and symmetry degree

values from blood
volume pressure

N/A [178] Physiological, Derived

Motion features from
accelerometer data:

acceleration, motion
N/A [149] Physical mobility

Heart rate variability (HRV), rapid
eye movement, wake after sleep
onset, metabolic equivalent for
task (MET) for physical activity

API of Oura ring [158] Physiological, Physical mobility

High-level features from HR, GSR,
and ST signals CNN-LSTM [215] Representations

Basal metabolic rate
(BMR) calories API of wristband [179,180] Physiological
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Table A7. Demographic and personality features.

Features Tools Studies Feature Category

Gender, age, location Sina microblog user account [187] Demographic

Gender, age, relationships, education
levels

bBridge [423], big data platform for
social multimedia analytics [20] Demographic

Age, gender

Age and gender lexica [424],
M3-inference model [425] performs

multimodal analysis on profile images,
usernames, and descriptions on social

media profiles

[121,143,144] Demographic

Big 5 personality scores
IBM’s Personality Insights [426],

BERT-MLP model [427] on textual
content

[57,121,130,143,144,188] Personality

Proportion of perfection and ruminant
thinking-related words in textual

content (inspired by [287])

Perfection and
ruminant-thinking-related lexicons [187] Personality

Interpersonal sensitivity: amount of
stressful periods associated with

interpersonal relations

Algorithm [410] applied on users’
posting behaviors [187] Personality

Appendix B. Existing Modality Fusion Techniques

Table A8. Modality fusion techniques.

Category Method Tools Studies

Feature level Concatenate into a
single representation N/A

[67,84,85,89,96,97,105,132,142,143,
145,146,166,170,179,197,199–

201,217]

Score/Decision level

Sum-rule, product-rule, max-rule,
AND and OR operations, or

majority voting on
modality-level scores

N/A [48,51,56,77,87,98,126,173,193,198,
201]

Weighted average or sum of
modality-level scores N/A [51,68,147,198,200]

Average confidence scores from
lower-level prediction N/A [121]

Combine predictions of
individual modalities as inputs to

secondary ML models

SVM, decision tree, random forest,
novel ML models

[48,52,56,64,71,72,74,103,122,155,
193]

Hierarchical
score/decision-level fusion

Weighted voting fusion
network [428] [122,195]

Summation of question-level
scores from rules enforced on
modality-specific predictions

N/A [88]

Model level

Map multiple features into a
single vector

LSTM-based encoder–decoder
network, LSTM-based neural

network, BiLSTM, LSTM, fully
connected layer, tensor

fusion network

[46,59,75,80,86,95,187]

Concatenate feature
representations as a single input

to learn high-level representations

Dense and fully connected layers
with attention mechanisms, CNN,

multi-head attention network,
transformer [295], novel

time-aware LSTM

[70,73,77,89,91,92,94,125,189,214]
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Table A8. Cont.

Category Method Tools Studies

Model level

Learn shared representations from
weighted modality-specific

representations

Gated Multimodal Unit
(GMU) [429], parallel attention
model, attention layer, sparse

MLP (mix vertical and horizontal
information via weight sharing

and sparse connection),
multimodal encoder–decoder,
multimodal factorized bilinear

pooling (combines compact
output features of multi-modal

low-rank bilinear [430] and
robustness of multi-modal

compact bilinear [431]),
multi-head intermodal attention

fusion, transformer [295],
feed-forward network, low-rank
multimodal fusion network [432]

[62,65,67,76,93,100,102,106,113,
117,131,135,136,142–

144,174,218,433]

Learn joint sparse representations Dictionary learning [20]

Learn and fuse outputs from
different modality-specific parts

at fixed time steps

Cell-coupled LSTM with L-skip
fusion mechanism [101]

Learn cross-modality
representations that incorporate
interactions between modalities

LXMERT [434], transformer
encoder with cross-attention
layers (representations of a

modality as query and the other
as key/value, and vice versa),
memory fusion network [435]

[82,92,129]

Horizontal and vertical kernels to
capture patterns across

different levels
CASER [309] [170]

Appendix C. Existing Machine Learning Models

Table A9. Machine learning models.

Category Machine Learning Models Application Method Studies

Supervised learning

Linear regression, logistic regression, least
absolute shrinkage and selection operator
(Lasso) regularized linear regression [436],

ElasticNet regression [437], stochastic
gradient descent (SGD) regression, Gaussian

staircase model, partial least square
(PLS) [438] regression (useful for collinear

features), generalized linear models

Learn relationship between features to
predict continuous values (scores of
assessment scales) or probabilities

(correspond to output classes)

[20,43,49,53,55,68,70,99,104,105,126,130,134,
140,150,154,163,164,167,175,179,182,188,200,

211–213,219,222,223]

SVM

Find a hyperplane that best fits features
(regression) or divides features into classes

(classification), secondary model in
score-level fusion

[47,50,79,99,104,105,115,121,130,134,140,148,
162,163,169,178,179,188,198,210,219,223]

One class SVM [439] Anomaly detection by treating outliers as
points on the other side of hyperplane [165]

Three-step hierarchical logistic regression Incremental inclusion of three feature
groups in conventional logistic regression [181]

Discriminant functions-Naive Bayes,
quadratic discriminant analysis (QDA),

linear discriminant analysis (LDA),
Gaussian naive Bayes

Determine class based on Bayesian
probabilities, detect state changes [12,99,104,140,148,152,163,222]

Decision tree Construct a tree that splits into leaf nodes
based on feature [99,134,140,148,164,178]

Mixed-effect classification and regression
trees-generalized linear mixed-effects model

(GLMM) trees [440]

Capture interactions and nonlinearity
among features while accounting for

longitudinal structure
[191]
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Table A9. Cont.

Category Machine Learning Models Application Method Studies

Neural network

Fully connected (FC) layers, multilayer
perceptron (MLP), CNN, LSTM, BiLSTM,

GRU, temporal convolutional network
(TCN) [441] (with dilation for long

sequences)-with activation function like
Sigmoid, Softmax, ReLU, LeakyReLU, and

GeLU

Predict scores of assessment scales
(regression) or probability distribution over

classes (classification)

[60,78,80,84–88,90–
94,96,98,105,111,113,117,131,133,135,136,142–
144,146,162,163,167,168,170,172,174,178,179,

190,197,199,201,218,219,221,223,308]

DCNN-DNN (combination of deep CNN
and DNN), GCNN-LSTM (combination of

gated convolutional neural network, which
replaces a convolution block in CNN with a

gated convolution block, and LSTM)

The latter neural network makes predictions
based on high-level global features learned

by the prior
[52,308]

Cross-domain DNN with feature adaptive
transformation and combination strategy

(DNN-FATC)

Enhance detection in the target domain by
transferring information from a

heterogenous source domain
[109]

Attention-based TCN Classify features using relational
classification attention [442] [72]

One-hot transformer (lower complexity than
original sine and cosine functions)

Apply one-hot encoding on features for
classification [72]

Transformer [295]
Apply self-attention across post-level

representations, attention masking masks
missing information

[129]

Transformer-based sequence classification
models-BERT, RoBERTa [296], XLNet [285],

Informer [443] (for long sequences)

Perform classification using custom
pre-trained tokenizers augmented with

special tokens for tokenization
[121,179]

Hierarchical attention network (HAN) [444]

Predict on user-level representations derived
from stacked attention-based post-level

representations, each made up of
attention-based word-level representations

[128]

LSTM-based encoder and decoder

Learn factorized joint distributions to
generate modality-specific generative factors

and multimodal discriminative factors to
reconstruct unimodal inputs and predict

labels respectively

[82]

GRU-RNN as baseline model with FC layers
as personalized model

Train baseline model using data from all
samples and fine-tune personalized model

on individual samples
[161]

CNN-based triplet network [408] Incorporate representations of homogeneous
users [138]

Stacked graph convolutional network

Perform classification on heterogeneous
graphs by learning embeddings, sorting

graph nodes, and performing
graph comparisons

[139]

GRU-D (introduce decay rates in
conventional GRU to control

decay mechanism)

Learn feature-specific hidden decay rates
from inputs [171]

Ensemble learning

Random forest (RF) [300], eXtreme Gradient
Boosting (XGBoost), AdaBoost [301],

Gradient Boosted Regression Tree [302]
(GDBT) (less sensitive to outliers and more

robust to overfitting)

Predict based on numerical input features
[51,99,104,105,114,126,130,134,140,148,151,

155,157,160,163,164,167,169,178,179,182,183,
188,203,204,206,212,219,222,223]

RF
Secondary model that predicts from

regression scores and binary outputs of
individual modality predictions

[71,81]

Balanced RF [445] (RF on imbalanced data) Aggregate predictions of ensemble on
balanced down-sampled data [209]

XGBoost-based subject-specific hierarchical
recall network

Deduce subject-level labels based on whether
the output probability of XGBoost at a

specific layer exceeds a
predetermined threshold

[194]

Stacked ensemble learning architecture

Obtain the first level of predictions from
KNN, naive Bayes, Lasso regression, ridge

regression, and SVM, then use them as
features of a second-layer logistic regression

[123]

Feature-stacking (a meta-learning
approach) [303]

Use logistic regression as an L1 learner to
combine predictions of weak L0 learners on

different feature sets
[185]
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Table A9. Cont.

Category Machine Learning Models Application Method Studies

Ensemble learning

Greedy Ensembles of Weighted Extreme
Learning Machines (GEWELMs),

WELM [446] (weighted mapping for
unbalanced class), Kernel ELM

ELM [447] as a building block that maps
inputs to class-based outputs via least square

regression
[63,127,192]

Stacked ensemble classifier Use MLP as meta learner to integrate
outputs of CNN base learners [126]

Cost-sensitive boosting pruning
trees-AdaBoost with pruned decision trees

Weighted pruning prunes redundant leaves
to increase generalization and robustness [137]

Weighted voting model

Weight predictions of baseline ML models
(DT, Naive Bayes, KNN, SVM, generalized

linear models, GDBT) based on class
probabilities and deduce final outcome from

the highest weighted class

[140]

Ensemble of SVM, DT, and naive Bayes N/A [89]

Combination of personalized LSTM-based
and RF models

Train personalized LSTM on hourly time
series data (of another sample most similar

to the sample of concern based on
demographic characteristics and baseline

MH states), and RF on statistical and
cluster-based features

[208]

Multi-task learning

CNN
Train jointly to produce two output branches,
regression score and probability distribution

for classification
[61,62]

LSTM-RNN, attention-based LSTM
subnetwork, MLP with shared and

task-specific layers

Train for depression prediction with emotion
recognition as the secondary task [46,106,132]

LSTM with Swish [448] activation function
(speeds up training with the advantages of
linear and ReLU activation), GRU with FC
layers, DNN with multi-task loss function

Perform both regression and classification
simultaneously [74,102,118,141,193]

Multi-task FC layers Train jointly to predict severity level and
discrete probability distribution [97]

Multi-output support least-squares vector
regression machines (m-SVR) [304]

Map multivariate inputs to a multivariate
output space to predict several tasks [207]

2-layer MLP with shared and task-specific
dense layers with dynamic weight tuning

technique

Train to perform individual predictions for
positive and control groups [180]

Bi-LSTM-based DNNs to provide auxiliary
outputs into DNN for main output

Auxiliary outputs correspond to additional
predictions to incorporate additional

information
[176]

DNN (FC layers with Softmax activation) for
auxiliary and main outputs

Train DNNs individually on different feature
combinations as individual tasks to obtain

auxiliary losses for joint optimization
function of main output

[145]

Multi-task neural network with shared
LSTM layer and two task-specific LSTM

layers

Train to predict male and female samples
individually [70]

Others

Semi-supervised learning-ladder network
classifier [305] of stacked noisy encoder and

denoising autoencoder [306]

Reconstruct input using outputs of noisy
encoder in the current layer and decoder

from the previous layer, combine with MLP
(inspired by [449])

[196]

DMF [450], RESCAL [451], DEDICOM [452],
HERec [453]

Perform recommender system [307]
approach on features modeled using HIN [173]

Graphlets [454], colored graphlets [455],
DeepWalk [456], Metapath2vec++ [457]

Perform node classification on features
modeled using HIN [173]

Combination of DBSCAN and K-Means Density-based clustering [78]

Clustering-based-KNN Deduce predicted class through voting of
K-nearest data [140,163,166,178,212,223]

Linear superimpose of modality-specific
features

Learn fitting parameters (between 0 and 1)
that adjust the proportions of

modality-specific features in the
final outcome

[83]

Two-staged prediction with outlier detection

Baseline ML model (LR, SVM, KNN, DT,
GBDT, AdaBoost, RF, Gaussian naive Bayes,
LDA, QDA, DNN, CNN) performs day-level

predictions, t-test detects outliers in first
stage outputs

[163]
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Table A9. Cont.

Category Machine Learning Models Application Method Studies

Others

Label association mechanism Apply to one-hot vectors of predictions from
modality-specific DNNs [189]

Isolation Forest (ISOFOR) [458], Local Outlier
Factor (LOF) [459], Connectivity-Based Outlier

Factor (COF) [460]
Unsupervised anomaly detection [166]

Similarity and threshold relative to the model of
normality (MoN) (from the average of deep

representations of training instances in
respective target groups)

Deduce predicted class based on higher
similarity with corresponding MoN [85]

Federated learning based on DNN Train global model on all data and fine-tune the
last layer locally [168]
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Predict Individuals’ Mental Health. ACM Trans. Knowl. Discov. Data 2021, 15, 1–26. [CrossRef]

174. Grimm, B.; Talbot, B.; Larsen, L. PHQ-V/GAD-V: Assessments to Identify Signals of Depression and Anxiety from Patient Video
Responses. Appl. Sci. 2022, 12, 9150. [CrossRef]

175. Currey, D.; Torous, J. Digital phenotyping correlations in larger mental health samples: Analysis and replication. BJPsych Open
2022, 8, e106. [CrossRef]

176. Wang, W.; Nepal, S.; Huckins, J.F.; Hernandez, L.; Vojdanovski, V.; Mack, D.; Plomp, J.; Pillai, A.; Obuchi, M.; daSilva, A.; et al.
First-Gen Lens: Assessing Mental Health of First-Generation Students across Their First Year at College Using Mobile Sensing.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–32. [CrossRef]

177. Thakur, S.S.; Roy, R.B. Predicting mental health using smart-phone usage and sensor data. J. Ambient. Intell. Humaniz. Comput.
2021, 12, 9145–9161. [CrossRef]

178. Choi, J.; Lee, S.; Kim, S.; Kim, D.; Kim, H. Depressed Mood Prediction of Elderly People with a Wearable Band. Sensors 2022, 22,
4174. [CrossRef]

179. Dai, R.; Kannampallil, T.; Kim, S.; Thornton, V.; Bierut, L.; Lu, C. Detecting Mental Disorders with Wearables: A Large Cohort
Study. In Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation (IoTDI ’23), San
Antonio, TX, USA, 9–12 May 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 39–51. [CrossRef]

180. Dai, R.; Kannampallil, T.; Zhang, J.; Lv, N.; Ma, J.; Lu, C. Multi-Task Learning for Randomized Controlled Trials: A Case Study on
Predicting Depression with Wearable Data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–23. [CrossRef]

181. Horwitz, A.; Czyz, E.; Al-Dajani, N.; Dempsey, W.; Zhao, Z.; Nahum-Shani, I.; Sen, S. Utilizing daily mood diaries and wearable
sensor data to predict depression and suicidal ideation among medical interns. J. Affect. Disord. 2022, 313, 1–7. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.pmcj.2022.101621
http://dx.doi.org/10.1109/SEGAH54908.2022.9978600
http://dx.doi.org/10.3390/healthcare10071189
http://dx.doi.org/10.3389/fdgth.2022.964582
http://www.ncbi.nlm.nih.gov/pubmed/36465087
http://dx.doi.org/10.2196/45991
http://www.ncbi.nlm.nih.gov/pubmed/37223978
http://dx.doi.org/10.3390/technologies10060123
http://dx.doi.org/10.2196/35807
http://dx.doi.org/10.1109/ICOSC.2019.8665535
http://dx.doi.org/10.1093/sleep/zsac067
http://dx.doi.org/10.3991/ijim.v17i01.35131
http://dx.doi.org/10.3390/s20051396
http://www.ncbi.nlm.nih.gov/pubmed/32143358
http://dx.doi.org/10.1109/BSN56160.2022.9928499
http://dx.doi.org/10.1109/TNSRE.2023.3260301
http://www.ncbi.nlm.nih.gov/pubmed/37030733
http://dx.doi.org/10.1145/3527170
http://dx.doi.org/10.1145/3429446
http://dx.doi.org/10.3390/app12189150
http://dx.doi.org/10.1192/bjo.2022.507
http://dx.doi.org/10.1145/3543194
http://dx.doi.org/10.1007/s12652-020-02616-5
http://dx.doi.org/10.3390/s22114174
http://dx.doi.org/10.1145/3576842.3582389
http://dx.doi.org/10.1145/3534591
http://dx.doi.org/10.1016/j.jad.2022.06.064
http://www.ncbi.nlm.nih.gov/pubmed/35764227


Sensors 2024, 24, 348 54 of 65

182. Horwitz, A.G.; Kentopp, S.D.; Cleary, J.; Ross, K.; Wu, Z.; Sen, S.; Czyz, E.K. Using machine learning with intensive longitudinal
data to predict depression and suicidal ideation among medical interns over time. Psychol. Med. 2022, 53, 5778–5785. [CrossRef]

183. Shah, A.P.; Vaibhav, V.; Sharma, V.; Al Ismail, M.; Girard, J.; Morency, L.P. Multimodal Behavioral Markers Exploring Suicidal
Intent in Social Media Videos. In Proceedings of the 2019 International Conference on Multimodal Interaction (ICMI ’19), Suzhou,
China, 14–18 October 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 409–413. [CrossRef]

184. Belouali, A.; Gupta, S.; Sourirajan, V.; Yu, J.; Allen, N.; Alaoui, A.; Dutton, M.A.; Reinhard, M.J. Acoustic and language analysis of
speech for suicidal ideation among US veterans. BioData Min. 2021, 14, 11. [CrossRef] [PubMed]

185. Mishra, R.; Prakhar Sinha, P.; Sawhney, R.; Mahata, D.; Mathur, P.; Ratn Shah, R. SNAP-BATNET: Cascading Author Profiling
and Social Network Graphs for Suicide Ideation Detection on Social Media. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Student Research Workshop, Dublin, Ireland,
22–27 May 2019; Association for Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 147–156. [CrossRef]

186. Ramírez-Cifuentes, D.; Freire, A.; Baeza-Yates, R.; Puntí, J.; Medina-Bravo, P.; Velazquez, D.A.; Gonfaus, J.M.; Gonzàlez, J.
Detection of suicidal ideation on social media: Multimodal, relational, and behavioral analysis. J. Med. Internet Res. 2020,
22, e17758. [CrossRef]

187. Cao, L.; Zhang, H.; Feng, L. Building and Using Personal Knowledge Graph to Improve Suicidal Ideation Detection on Social
Media. IEEE Trans. Multimed. 2022, 24, 87–102. [CrossRef]

188. Chatterjee, M.; Kumar, P.; Samanta, P.; Sarkar, D. Suicide ideation detection from online social media: A multi-modal feature
based technique. Int. J. Inf. Manag. Data Insights 2022, 2, 100103. [CrossRef]

189. Li, Z.; Cheng, W.; Zhou, J.; An, Z.; Hu, B. Deep learning model with multi-feature fusion and label association for suicide
detection. Multimed. Syst. 2023, 29, 2193–2203. [CrossRef]

190. Heckler, W.F.; Feijó, L.P.; de Carvalho, J.V.; Barbosa, J.L.V. Thoth: An intelligent model for assisting individuals with suicidal
ideation. Expert Syst. Appl. 2023, 233, 120918. [CrossRef]

191. Czyz, E.K.; King, C.A.; Al-Dajani, N.; Zimmermann, L.; Hong, V.; Nahum-Shani, I. Ecological Momentary Assessments and
Passive Sensing in the Prediction of Short-Term Suicidal Ideation in Young Adults. JAMA Netw. Open 2023, 6, e2328005. [CrossRef]

192. Syed, Z.S.; Sidorov, K.; Marshall, D. Automated Screening for Bipolar Disorder from Audio/Visual Modalities. In Proceedings
of the 2018 on Audio/Visual Emotion Challenge and Workshop, Seoul, Republic of Korea, 22 October 2022; Association for
Computing Machinery: New York, NY, USA, 2018; pp. 39–45. [CrossRef]

193. Yang, L.; Li, Y.; Chen, H.; Jiang, D.; Oveneke, M.C.; Sahli, H. Bipolar Disorder Recognition with Histogram Features of Arousal
and Body Gestures. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop (AVEC’18), Seoul, Republic
of Korea, 22 October 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 15–21. [CrossRef]

194. Xing, X.; Cai, B.; Zhao, Y.; Li, S.; He, Z.; Fan, W. Multi-Modality Hierarchical Recall Based on GBDTs for Bipolar Disorder
Classification. In Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop (AVEC’18), Seoul, Republic of
Korea, 22 October 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 31–37. [CrossRef]

195. Cao, S.; Yan, H.; Rao, P.; Zhao, K.; Yu, X.; He, J.; Yu, L.; Xiao, Y. Bipolar Disorder Classification Based on Multimodal Recordings.
In Proceedings of the 2021 10th International Conference on Computing and Pattern Recognition (ICCPR 2021), Shanghai, China,
15–17 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 188–194. [CrossRef]

196. AbaeiKoupaei, N.; Osman, H.A. Multimodal Semi-supervised Bipolar Disorder Classification. In Proceedings of the Intelligent
Data Engineering and Automated Learning—IDEAL 2021, Manchester, UK, 25 November 2021; Yin, H., Camacho, D., Tino, P.,
Allmendinger, R., Tallón-Ballesteros, A.J., Tang, K., Cho, S.B., Novais, P., Nascimento, S., Eds.; Springer: Cham, Switzerland, 2021;
pp. 575–586.

197. AbaeiKoupaei, N.; Al Osman, H. A Multi-Modal Stacked Ensemble Model for Bipolar Disorder Classification. IEEE Trans. Affect.
Comput. 2023, 14, 236–244. [CrossRef]

198. Baki, P.; Kaya, H.; Çiftçi, E.; Güleç, H.; Salah, A.A. A Multimodal Approach for Mania Level Prediction in Bipolar Disorder.
IEEE Trans. Affect. Comput. 2022, 13, 2119–2131. [CrossRef]

199. Sivagnanam, L.; Visalakshi, N.K. Multimodal Machine Learning Framework to Detect the Bipolar Disorder. In Advances in Parallel
Computing Algorithms, Tools and Paradigms; IOS Press: Amsterdam, The Netherlands, 2022. [CrossRef]

200. Su, H.Y.; Wu, C.H.; Liou, C.R.; Lin, E.C.L.; See Chen, P. Assessment of Bipolar Disorder Using Heterogeneous Data of Smartphone-
Based Digital Phenotyping. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 4260–4264. [CrossRef]

201. Duwairi, R.; Halloush, Z. A Multi-View Learning Approach for Detecting Personality Disorders Among Arab Social Media Users.
ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2023, 22, 1–19. [CrossRef]

202. Bennett, C.C.; Ross, M.K.; Baek, E.; Kim, D.; Leow, A.D. Predicting clinically relevant changes in bipolar disorder outside the
clinic walls based on pervasive technology interactions via smartphone typing dynamics. Pervasive Mob. Comput. 2022, 83, 101598.
[CrossRef]

203. Richter, V.; Neumann, M.; Kothare, H.; Roesler, O.; Liscombe, J.; Suendermann-Oeft, D.; Prokop, S.; Khan, A.; Yavorsky, C.;
Lindenmayer, J.P.; et al. Towards Multimodal Dialog-Based Speech & Facial Biomarkers of Schizophrenia. In Proceedings of the
Companion Publication of the 2022 International Conference on Multimodal Interaction (ICMI ’22 Companion), Montreal, QC,
Canada, 18–22 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 171–176. [CrossRef]

http://dx.doi.org/10.1017/S0033291722003014
http://dx.doi.org/10.1145/3340555.3353718
http://dx.doi.org/10.1186/s13040-021-00245-y
http://www.ncbi.nlm.nih.gov/pubmed/33531048
http://dx.doi.org/10.18653/v1/N19-3019
http://dx.doi.org/10.2196/17758
http://dx.doi.org/10.1109/TMM.2020.3046867
http://dx.doi.org/10.1016/j.jjimei.2022.100103
http://dx.doi.org/10.1007/s00530-023-01090-1
http://dx.doi.org/10.1016/j.eswa.2023.120918
http://dx.doi.org/10.1001/jamanetworkopen.2023.28005
http://dx.doi.org/10.1145/3266302.3266315
http://dx.doi.org/10.1145/3266302.3266308
http://dx.doi.org/10.1145/3266302.3266311
http://dx.doi.org/10.1145/3497623.3497653
http://dx.doi.org/10.1109/TAFFC.2020.3047582
http://dx.doi.org/10.1109/TAFFC.2022.3193054
http://dx.doi.org/10.3233/apc220019
http://dx.doi.org/10.1109/ICASSP39728.2021.9415008
http://dx.doi.org/10.1145/3572906
http://dx.doi.org/10.1016/j.pmcj.2022.101598
http://dx.doi.org/10.1145/3536220.3558075


Sensors 2024, 24, 348 55 of 65

204. Birnbaum, M.L.; Norel, R.; Van Meter, A.; Ali, A.F.; Arenare, E.; Eyigoz, E.; Agurto, C.; Germano, N.; Kane, J.M.; Cecchi, G.A.
Identifying signals associated with psychiatric illness utilizing language and images posted to Facebook. npj Schizophr. 2020,
6, 38. [CrossRef]

205. Wang, R.; Aung, M.S.H.; Abdullah, S.; Brian, R.; Campbell, A.T.; Choudhury, T.; Hauser, M.; Kane, J.; Merrill, M.; Scherer, E.A.; et al.
CrossCheck: Toward Passive Sensing and Detection of Mental Health Changes in People with Schizophrenia. In Proceedings of
the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’16), Heidelberg, Germany,
12–16 September 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 886–897. [CrossRef]

206. Wang, R.; Wang, W.; Aung, M.S.H.; Ben-Zeev, D.; Brian, R.; Campbell, A.T.; Choudhury, T.; Hauser, M.; Kane, J.; Scherer, E.A.;
et al. Predicting Symptom Trajectories of Schizophrenia Using Mobile Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 2017, 1, 1–24. [CrossRef]

207. Tseng, V.W.S.; Sano, A.; Ben-Zeev, D.; Brian, R.; Campbell, A.T.; Hauser, M.; Kane, J.M.; Scherer, E.A.; Wang, R.; Wang, W.; et al.
Using behavioral rhythms and multi-task learning to predict fine-grained symptoms of schizophrenia. Sci. Rep. 2020, 10, 15100.
[CrossRef]

208. Lamichhane, B.; Zhou, J.; Sano, A. Psychotic Relapse Prediction in Schizophrenia Patients Using A Personalized Mobile
Sensing-Based Supervised Deep Learning Model. IEEE J. Biomed. Health Inform. 2023, 27, 3246–3257. [CrossRef]

209. Zhou, J.; Lamichhane, B.; Ben-Zeev, D.; Campbell, A.; Sano, A. Predicting Psychotic Relapse in Schizophrenia With Mobile Sensor
Data: Routine Cluster Analysis. JMIR mHealth uHealth 2022, 10, e31006. [CrossRef]

210. Osipov, M.; Behzadi, Y.; Kane, J.M.; Petrides, G.; Clifford, G.D. Objective identification and analysis of physiological and
behavioral signs of schizophrenia. J. Ment. Health 2015, 24, 276–282. [CrossRef]

211. Teferra, B.G.; Borwein, S.; DeSouza, D.D.; Rose, J. Screening for Generalized Anxiety Disorder From Acoustic and Linguistic
Features of Impromptu Speech: Prediction Model Evaluation Study. JMIR Form. Res. 2022, 6, e39998. [CrossRef]

212. Choudhary, S.; Thomas, N.; Alshamrani, S.; Srinivasan, G.; Ellenberger, J.; Nawaz, U.; Cohen, R. A Machine Learning Approach
for Continuous Mining of Nonidentifiable Smartphone Data to Create a Novel Digital Biomarker Detecting Generalized Anxiety
Disorder: Prospective Cohort Study. JMIR Med. Inform. 2022, 10, e38943. [CrossRef] [PubMed]

213. Ding, Y.; Liu, J.; Zhang, X.; Yang, Z. Dynamic Tracking of State Anxiety via Multi-Modal Data and Machine Learning. Front. Psy-
chiatry 2022, 13, 757961. [CrossRef] [PubMed]

214. Chen, C.P.; Gau, S.S.F.; Lee, C.C. Learning Converse-Level Multimodal Embedding to Assess Social Deficit Severity for Autism
Spectrum Disorder. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK,
6–10 July 2020; pp. 1–6. [CrossRef]

215. Khullar, V.; Singh, H.P.; Bala, M. Meltdown/Tantrum Detection System for Individuals with Autism Spectrum Disorder. Appl.
Artif. Intell. 2021, 35, 1708–1732. [CrossRef]

216. Mallol-Ragolta, A.; Dhamija, S.; Boult, T.E. A Multimodal Approach for Predicting Changes in PTSD Symptom Severity.
In Proceedings of the 20th ACM International Conference on Multimodal Interaction (ICMI ’18), Boulder, CA, USA, 16–18 October
2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 324–333. [CrossRef]

217. Tébar, B.; Gopalan, A. Early Detection of Eating Disorders using Social Media. In Proceedings of the 2021 IEEE/ACM Conference
on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Orlando, FL, USA, 16–17 December 2021;
pp. 193–198. [CrossRef]

218. Abuhassan, M.; Anwar, T.; Liu, C.; Jarman, H.K.; Fuller-Tyszkiewicz, M. EDNet: Attention-Based Multimodal Representation
for Classification of Twitter Users Related to Eating Disorders. In Proceedings of the ACM Web Conference 2023 (WWW ’23),
Houston, TX, USA, 3–6 September 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 4065–4074.
[CrossRef]

219. Noguero, D.S.; Ramírez-Cifuentes, D.; Ríssola, E.A.; Freire, A. Gender Bias When Using Artificial Intelligence to Assess Anorexia
Nervosa on Social Media: Data-Driven Study. J. Med. Internet Res. 2023, 25, e45184. [CrossRef] [PubMed]

220. Xu, Z.; Pérez-Rosas, V.; Mihalcea, R. Inferring Social Media Users’ Mental Health Status from Multimodal Information.
In Proceedings of the Twelfth Language Resources and Evaluation Conference, Marseille, France, 11–16 May 2020; European
Language Resources Association: Marseille, France, 2020; pp. 6292–6299.

221. Meng, X.; Zhang, J.; Ren, G. The evaluation model of college students’ mental health in the environment of independent
entrepreneurship using neural network technology. J. Healthc. Eng. 2021, 2021, 4379623. [CrossRef] [PubMed]

222. Singh, V.K.; Long, T. Automatic assessment of mental health using phone metadata. Proc. Assoc. Inf. Sci. Technol. 2018, 55, 450–459.
[CrossRef]

223. Park, J.; Arunachalam, R.; Silenzio, V.; Singh, V.K. Fairness in Mobile Phone–Based Mental Health Assessment Algorithms:
Exploratory Study. JMIR Form. Res. 2022, 6, e34366. [CrossRef]

224. Liu, S. 3D Illustration of Cartoon Characters Talking And Discussing. Communication and Talking Concept. 3D Rendering on
White Background. 2022. Available online: https://www.istockphoto.com/photo/3d-illustration-of-cartoon-characters-talking-
and-discussing-communication-and-gm1428415103-471910717 (accessed on 22 November 2023).

225. Arefin, S. Social Media. 2014. Available online: https://www.flickr.com/photos/54888897@N05/5102912860/ (accessed on
10 December 2023).

http://dx.doi.org/10.1038/s41537-020-00125-0
http://dx.doi.org/10.1145/2971648.2971740
http://dx.doi.org/10.1145/3130976
http://dx.doi.org/10.1038/s41598-020-71689-1
http://dx.doi.org/10.1109/JBHI.2023.3265684
http://dx.doi.org/10.2196/31006
http://dx.doi.org/10.3109/09638237.2015.1019048
http://dx.doi.org/10.2196/39998
http://dx.doi.org/10.2196/38943
http://www.ncbi.nlm.nih.gov/pubmed/36040777
http://dx.doi.org/10.3389/fpsyt.2022.757961
http://www.ncbi.nlm.nih.gov/pubmed/35308879
http://dx.doi.org/10.1109/ICME46284.2020.9102869
http://dx.doi.org/10.1080/08839514.2021.1991115
http://dx.doi.org/10.1145/3242969.3242981
http://dx.doi.org/10.1109/CHASE52844.2021.00042
http://dx.doi.org/10.1145/3543507.3583863
http://dx.doi.org/10.2196/45184
http://www.ncbi.nlm.nih.gov/pubmed/37289496
http://dx.doi.org/10.1155/2021/4379623
http://www.ncbi.nlm.nih.gov/pubmed/34608410
http://dx.doi.org/10.1002/pra2.2018.14505501049
http://dx.doi.org/10.2196/34366
https://www.istockphoto.com/photo/3d-illustration-of-cartoon-characters-talking-and-discussing-communication-and-gm1428415103-471910717
https://www.istockphoto.com/photo/3d-illustration-of-cartoon-characters-talking-and-discussing-communication-and-gm1428415103-471910717
https://www.flickr.com/photos/54888897@N05/5102912860/


Sensors 2024, 24, 348 56 of 65

226. Secret, A. Hand Holding Phone with Social Media Icon Stock Photo. 2021. Available online: https://www.istockphoto.
com/photo/hand-holding-phone-with-social-media-icon-gm1351107098-426983736?phrase=smartphone+cartoon (accessed on
10 December 2023).

227. Adventtr. Health Monitoring Information on Generic Smartwatch Screen Stock Photo. 2021. Available online:
https://www.istockphoto.com/photo/health-monitoring-information-on-generic-smartwatch-screen-gm1307154121-3975
13158?utm_source=flickr&utm_medium=affiliate&utm_campaign=srp_photos_top&utm_term=smartphone+and+wearable+
cartoon&utm_content=https%3A%2F%2Fwww.flickr.com%2Fsearch%2F&ref=sponsored (accessed on 10 December 2023).

228. Gratch, J.; Artstein, R.; Lucas, G.; Stratou, G.; Scherer, S.; Nazarian, A.; Wood, R.; Boberg, J.; DeVault, D.; Marsella, S.; et al.
Th Distress Analysis Interview Corpus of human and computer interviews. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland, 26–31 May 2014; European Language
Resources Association (ELRA): Reykjavik, Iceland, 2014; pp. 3123–3128.

229. Suendermann-Oeft, D.; Robinson, A.; Cornish, A.; Habberstad, D.; Pautler, D.; Schnelle-Walka, D.; Haller, F.; Liscombe, J.;
Neumann, M.; Merrill, M.; et al. NEMSI: A Multimodal Dialog System for Screening of Neurological or Mental Conditions.
In Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents (IVA ’19), Paris, France, 2–5 July 2019;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 245–247. [CrossRef]

230. Çiftçi, E.; Kaya, H.; Güleç, H.; Salah, A.A. The Turkish Audio-Visual Bipolar Disorder Corpus. In Proceedings of the 2018
First Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia), Beijing, China, 20–22 May 2018; pp. 1–6.
[CrossRef]

231. Yates, A.; Cohan, A.; Goharian, N. Depression and Self-Harm Risk Assessment in Online Forums. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing (EMNLP), Copenhagen, Denmark, 7—11 September 2017;
Association for Computational Linguistics: Copenhagen, Denmark, 2017; pp. 2958–2968.

232. Schueller, S.M.; Begale, M.; Penedo, F.J.; Mohr, D.C. Purple: A Modular System for Developing and Deploying Behavioral
Intervention Technologies. J. Med. Internet Res. 2014, 16, e181. [CrossRef]

233. Farhan, A.A.; Yue, C.; Morillo, R.; Ware, S.; Lu, J.; Bi, J.; Kamath, J.; Russell, A.; Bamis, A.; Wang, B. Behavior vs. introspection:
Refining prediction of clinical depression via smartphone sensing data. In Proceedings of the 2016 IEEE Wireless Health (WH),
Bethesda, MD, USA, 25–27 October 2016; pp. 1–8. [CrossRef]

234. Montag, C.; Baumeister, H.; Kannen, C.; Sariyska, R.; Meßner, E.M.; Brand, M. Concept, Possibilities and Pilot-Testing of a New
Smartphone Application for the Social and Life Sciences to Study Human Behavior Including Validation Data from Personality
Psychology. J 2019, 2, 102–115. [CrossRef]

235. Bai, R.; Xiao, L.; Guo, Y.; Zhu, X.; Li, N.; Wang, Y.; Chen, Q.; Feng, L.; Wang, Y.; Yu, X.; et al. Tracking and Monitoring Mood
Stability of Patients With Major Depressive Disorder by Machine Learning Models Using Passive Digital Data: Prospective
Naturalistic Multicenter Study. JMIR Mhealth Uhealth 2021, 9, e24365. [CrossRef]

236. Ferreira, D.; Kostakos, V.; Dey, A.K. AWARE: Mobile Context Instrumentation Framework. Front. ICT 2015, 2, 6. [CrossRef]
237. Wang, R.; Chen, F.; Chen, Z.; Li, T.; Harari, G.; Tignor, S.; Zhou, X.; Ben-Zeev, D.; Campbell, A.T. StudentLife: Assessing Mental

Health, Academic Performance and Behavioral Trends of College Students Using Smartphones. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’14), Seattle, WA, USA, 13–17 September 2014;
Association for Computing Machinery: New York, NY, USA, 2014; pp. 3–14. [CrossRef]

238. Ringeval, F.; Schuller, B.; Valstar, M.; Gratch, J.; Cowie, R.; Scherer, S.; Mozgai, S.; Cummins, N.; Schmitt, M.; Pantic, M. AVEC
2017: Real-Life Depression, and Affect Recognition Workshop and Challenge. In Proceedings of the 7th Annual Workshop
on Audio/Visual Emotion Challenge (AVEC ’17), Mountain View, CA, USA, 23–27 October 2017; Association for Computing
Machinery: New York, NY, USA, 2017; pp. 3–9. [CrossRef]

239. Ringeval, F.; Schuller, B.; Valstar, M.; Cummins, N.; Cowie, R.; Tavabi, L.; Schmitt, M.; Alisamir, S.; Amiriparian, S.; Messner,
E.M.; et al. AVEC 2019 Workshop and Challenge: State-of-Mind, Detecting Depression with AI, and Cross-Cultural Affect
Recognition. In Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop (AVEC ’19), Nice,
France, 21–25 October 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 3–12. [CrossRef]

240. Dhamija, S.; Boult, T.E. Exploring Contextual Engagement for Trauma Recovery. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 2267–2277. [CrossRef]

241. Orton, I. Vision based body gesture meta features for Affective Computing. arXiv 2020, arXiv:2003.00809.
242. Cohan, A.; Desmet, B.; Yates, A.; Soldaini, L.; MacAvaney, S.; Goharian, N. SMHD: A Large-Scale Resource for Exploring Online

Language Usage for Multiple Mental Health Conditions. In Proceedings of the 27th International Conference on Computational
Linguistics (COLING), Santa Fe, NM, USA, 20–26 August 2018; Association for Computational Linguistics: Dublin, Ireland, 2018;
pp. 1485–1497.

243. Cao, L.; Zhang, H.; Feng, L.; Wei, Z.; Wang, X.; Li, N.; He, X. Latent Suicide Risk Detection on Microblog via Suicide-Oriented
Word Embeddings and Layered Attention. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Bali, Indonesia,
8–12 December 2019; Association for Computational Linguistics: Dublin, Ireland, 2019; pp. 1718–1728. [CrossRef]

244. Wang, X.; Chen, S.; Li, T.; Li, W.; Zhou, Y.; Zheng, J.; Zhang, Y.; Tang, B. Assessing depression risk in Chinese microblogs:
A corpus and machine learning methods. In Proceedings of the 2019 IEEE International Conference on Healthcare Informatics
(ICHI), Xi’an, China, 10–13 June 2019; pp. 1–5. [CrossRef]

https://www.istockphoto.com/photo/hand-holding-phone-with-social-media-icon-gm1351107098-426983736?phrase=smartphone+cartoon
https://www.istockphoto.com/photo/hand-holding-phone-with-social-media-icon-gm1351107098-426983736?phrase=smartphone+cartoon
https://www.istockphoto.com/photo/health-monitoring-information-on-generic-smartwatch-screen-gm1307154121-397513158?utm_source=flickr&utm_medium=affiliate&utm_campaign=srp_photos_top&utm_term=smartphone+and+wearable+cartoon&utm_content=https%3A%2F%2Fwww.flickr.com%2Fsearch%2F&ref=sponsored
https://www.istockphoto.com/photo/health-monitoring-information-on-generic-smartwatch-screen-gm1307154121-397513158?utm_source=flickr&utm_medium=affiliate&utm_campaign=srp_photos_top&utm_term=smartphone+and+wearable+cartoon&utm_content=https%3A%2F%2Fwww.flickr.com%2Fsearch%2F&ref=sponsored
https://www.istockphoto.com/photo/health-monitoring-information-on-generic-smartwatch-screen-gm1307154121-397513158?utm_source=flickr&utm_medium=affiliate&utm_campaign=srp_photos_top&utm_term=smartphone+and+wearable+cartoon&utm_content=https%3A%2F%2Fwww.flickr.com%2Fsearch%2F&ref=sponsored
http://dx.doi.org/10.1145/3308532.3329415
http://dx.doi.org/10.1109/ACIIAsia.2018.8470362
http://dx.doi.org/10.2196/jmir.3376
http://dx.doi.org/10.1109/WH.2016.7764553
http://dx.doi.org/10.3390/j2020008
http://dx.doi.org/10.2196/24365
http://dx.doi.org/10.3389/fict.2015.00006
http://dx.doi.org/10.1145/2632048.2632054
http://dx.doi.org/10.1145/3133944.3133953
http://dx.doi.org/10.1145/3347320.3357688
http://dx.doi.org/10.1109/CVPRW.2017.281
http://dx.doi.org/10.18653/v1/D19-1181
http://dx.doi.org/10.1109/ICHI.2019.8904506


Sensors 2024, 24, 348 57 of 65

245. Losada, D.E.; Crestani, F. A Test Collection for Research on Depression and Language Use. In Proceedings of the 7th International
Conference of the Cross-Language Evaluation Forum for European Languages, Evora, Portugal, 5–8 September 2016; Experimental
IR Meets Multilinguality, Multimodality, and Interaction; Springer: Cham, Switzerland, 2016; pp. 28–39.

246. Losada, D.E.; Crestani, F.; Parapar, J. Overview of eRisk: Early Risk Prediction on the Internet. In Proceedings of the Experimental
IR Meets Multilinguality, Multimodality, and Interaction, Avignon, France, 10–14 September 2018; Bellot, P., Trabelsi, C., Mothe, J.,
Murtagh, F., Nie, J.Y., Soulier, L., SanJuan, E., Cappellato, L., Ferro, N., Eds.; Springer: Cham, Switzerland, 2018; pp. 343–361.

247. Vesel, C.; Rashidisabet, H.; Zulueta, J.; Stange, J.P.; Duffecy, J.; Hussain, F.; Piscitello, A.; Bark, J.; Langenecker, S.A.; Young, S.; et al.
Effects of mood and aging on keystroke dynamics metadata and their diurnal patterns in a large open-science sample: A BiAffect
iOS study. J. Am. Med. Inform. Assoc. 2020, 27, 1007–1018. [CrossRef] [PubMed]

248. Mattingly, S.M.; Gregg, J.M.; Audia, P.; Bayraktaroglu, A.E.; Campbell, A.T.; Chawla, N.V.; Das Swain, V.; De Choudhury, M.;
D’Mello, S.K.; Dey, A.K.; et al. The Tesserae Project: Large-Scale, Longitudinal, In Situ, Multimodal Sensing of Information
Workers. In Proceedings of the Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (CHI
EA ’19), Glasgow, UK, 4–9 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–8. [CrossRef]

249. Coppersmith, G.; Dredze, M.; Harman, C.; Hollingshead, K.; Mitchell, M. CLPsych 2015 Shared Task: Depression and PTSD on
Twitter. In Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to
Clinical Reality, Denver CO, USA, 31 July 2015; Association for Computational Linguistics: Denver, CO, USA, 2015; pp. 31–39.
[CrossRef]

250. Denny, J.C.; Rutter, J.L.; Goldstein, D.B.; Philippakis, A.; Smoller, J.W.; Jenkins, G.; Dishman, E. The “All of Us” Research Program.
New Engl. J. Med. 2019, 381, 668–676. [CrossRef] [PubMed]

251. Ramírez-Cifuentes, D.; Freire, A.; Baeza-Yates, R.; Lamora, N.S.; Álvarez, A.; González-Rodríguez, A.; Rochel, M.L.; Vives,
R.L.; Velazquez, D.A.; Gonfaus, J.M.; et al. Characterization of Anorexia Nervosa on Social Media: Textual, Visual, Relational,
Behavioral, and Demographical Analysis. J. Med. Internet Res. 2021, 23, e25925. [CrossRef] [PubMed]

252. Teferra, B.G.; Borwein, S.; DeSouza, D.D.; Simpson, W.; Rheault, L.; Rose, J. Acoustic and Linguistic Features of Impromptu
Speech and Their Association With Anxiety: Validation Study. JMIR Ment. Health 2022, 9, e36828. [CrossRef]

253. Palan, S.; Schitter, C. Prolific.ac—A subject pool for online experiments. J. Behav. Exp. Financ. 2018, 17, 22–27. [CrossRef]
254. Hamilton, M. A Rating Scale for Depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [CrossRef]
255. Kroenke, K.; Spitzer, R.L. The PHQ-9: A New Depression Diagnostic and Severity Measure. Psychiatr. Ann. 2002, 32, 509–515.

[CrossRef]
256. Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An Inventory for Measuring Depression. Arch. Gen. Psychiatry 1961,

4, 561–571. [CrossRef]
257. Radloff, L.S. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977,

1, 385–401. [CrossRef]
258. Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001,

16, 606–613. [CrossRef] [PubMed]
259. Aytar, Y.; Vondrick, C.; Torralba, A. SoundNet: Learning Sound Representations from Unlabeled Video. In Proceedings of

the 30th International Conference on Neural Information Processing Systems (NIPS’16), Barcelona, Spain, 5–10 December 2016;
Curran Associates Inc.: Red Hook, NY, USA, 2016; pp. 892–900.

260. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
261. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 2nd

International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014; pp. 892–900.
262. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the

2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]
263. Ekman, P. Basic Emotions. In Handbook of Cognition and Emotion; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1999; Chapter 3;

pp. 45–60. [CrossRef]
264. Plutchik, R. Chapter 1—A General Psychoevolutionary Theory of Emotion. In Theories of Emotion; Plutchik, R., Kellerman, H.,

Eds.; Academic Press: Cambridge, MA, USA,1980; pp. 3–33. [CrossRef]
265. Perronnin, F.; Sánchez, J.; Mensink, T. Improving the Fisher Kernel for Large-Scale Image Classification. In Proceedings of the

Computer Vision (ECCV 2010), Heraklion, Greece, 5–11 September 2010; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 143–156.

266. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; Association for
Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 4171–4186. [CrossRef]

267. Eyben, F.; Wöllmer, M.; Schuller, B. Opensmile: The Munich Versatile and Fast Open-Source Audio Feature Extractor. In Pro-
ceedings of the 18th ACM International Conference on Multimedia (MM ’10), Firenze, Italy, 25–29 October 2010; Association for
Computing Machinery: New York, NY, USA, 2010; pp. 1459–1462. [CrossRef]

268. Crocco, M.; Cristani, M.; Trucco, A.; Murino, V. Audio Surveillance: A Systematic Review. ACM Comput. Surv. 2016, 48, 1–46.
[CrossRef]

http://dx.doi.org/10.1093/jamia/ocaa057
http://www.ncbi.nlm.nih.gov/pubmed/32467973
http://dx.doi.org/10.1145/3290607.3299041
http://dx.doi.org/10.3115/v1/W15-1204
http://dx.doi.org/10.1056/NEJMsr1809937
http://www.ncbi.nlm.nih.gov/pubmed/31412182
http://dx.doi.org/10.2196/25925
http://www.ncbi.nlm.nih.gov/pubmed/34283033
http://dx.doi.org/10.2196/36828
http://dx.doi.org/10.1016/j.jbef.2017.12.004
http://dx.doi.org/10.1136/jnnp.23.1.56
http://dx.doi.org/10.3928/0048-5713-20020901-06
http://dx.doi.org/10.1001/archpsyc.1961.01710120031004
http://dx.doi.org/10.1177/014662167700100306
http://dx.doi.org/10.1046/j.1525-1497.2001.016009606.x
http://www.ncbi.nlm.nih.gov/pubmed/11556941
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1002/0470013494.ch3
http://dx.doi.org/10.1016/B978-0-12-558701-3.50007-7
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1145/1873951.1874246
http://dx.doi.org/10.1145/2871183


Sensors 2024, 24, 348 58 of 65

269. Baltrusaitis, T.; Zadeh, A.; Lim, Y.C.; Morency, L.P. OpenFace 2.0: Facial Behavior Analysis Toolkit. In Proceedings of the 2018 13th
IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018. [CrossRef]

270. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 25, 120–123.
271. Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [CrossRef]
272. Ekman, P.; Friesen, W.V. Facial Action Coding System; Consulting Psychologists Press: Washington, DC, USA, 1978. [CrossRef]
273. Prince, E.B.; Martin, K.B.; Messinger, D.S. Facial Action Coding System. In The SAGE Encyclopedia of Communication Research

Methods; SAGE Publications, Inc.: London, UK, 2017. [CrossRef]
274. Zhi, R.; Liu, M.; Zhang, D. A comprehensive survey on automatic facial action unit analysis. Vis. Comput. 2020, 36, 1067–1093.

[CrossRef]
275. Lin, C.; Mottaghi, S.; Shams, L. The effects of color and saturation on the enjoyment of real-life images. Psychon. Bull. Rev. 2023,

30, 1–12. [CrossRef]
276. Valdez, P.; Mehrabian, A. Effects of color on emotions. J. Exp. Psychol. Gen. 1994, 123, 394–409. [CrossRef]
277. Hashemipour, S.; Ali, M. Amazon Web Services (AWS)—An Overview of the On-Demand Cloud Computing Platform. In Pro-

ceedings of the Emerging Technologies in Computing, Virtual, 27–29 August 2020; Miraz, M.H., Excell, P.S., Ware, A., Soomro, S.,
Ali, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 40–47.

278. Pennebaker Conglomerates, Inc. Linguistic Inquiry and Word Count: LIWC-22. 2022. Available online: https://www.liwc.app
(accessed on 10 December 2023).

279. NLP Tools for the Social Sciences. Suite of Automatic Linguistic Analysis Tools (SALAT). 2023. Available online: https://www.
linguisticanalysistools.org/ (accessed on 10 December 2023).

280. Bird, S.; Loper, E. NLTK: The Natural Language Toolkit. In Proceedings of the ACL Interactive Poster and Demonstration
Sessions, Stroudsburg, PA, USA, 21–26 July 2004; Association for Computational Linguistics: Barcelona, Spain, 2004; pp. 214–217.

281. Manning, C.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S.; McClosky, D. The Stanford CoreNLP Natural Language Processing
Toolkit. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
Baltimore, MD, USA, 22–27 June 2014; Association for Computational Linguistics: Baltimore, MD, USA, 2014; pp. 55–60.
[CrossRef]

282. Crossley, S.A.; Kyle, K.; McNamara, D.S. Sentiment Analysis and Social Cognition Engine (SEANCE): An automatic tool for
sentiment, social cognition, and social-order analysis. Behav. Res. Methods 2017, 49, 803–821. [CrossRef]

283. Bradley, M.M.; Lang, P.J. Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings; Technical Report C-1;
The Center for Research in Psychophysiology: University of Florida, Gainesville, FL, USA, 1999.

284. Le, Q.; Mikolov, T. Distributed Representations of Sentences and Documents. In Proceedings of the 31st International
Conference on International Conference on Machine Learning (ICML’14), Stockholm, Sweden, 10–15 July 2014; Volume 32,
pp. II–1188–II–1196.

285. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q.V. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC,
Canada, 8–14 December 2019; Curran Associates Inc.: Red Hook, NY, USA, 2019.

286. Hakulinen, C.; Elovainio, M.; Pulkki-Råback, L.; Virtanen, M.; Kivimäki, M.; Jokela, M. Personality and depressive symptoms:
Individual participant meta-analysis of 10 cohort studies. Depress. Anxiety 2015, 32, 461–470. [CrossRef]

287. Greenspon, T.S. Is there an Antidote to Perfectionism? Psychol. Sch. 2014, 51, 986–998. [CrossRef]
288. Clark-Carter, D. z Scores. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014.

[CrossRef]
289. Mahesh, B. Machine Learning Algorithms—A Review. Int. J. Sci. Res. 2020, 9, 381–386.
290. Wang, S.C. Artificial Neural Network. In Interdisciplinary Computing in Java Programming; Springer: Boston, MA, USA, 2003;

pp. 81–100. [CrossRef]
291. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in

convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]
292. Sagi, O.; Rokach, L. Ensemble learning: A survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
293. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]
294. Graves, A. Supervised Sequence Labelling With Recurrent Neural Networks. In Studies in Computational Intelligence; Springer:

Berlin/Heidelberg, Germany, 2012; Volume 385. [CrossRef]
295. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need.

In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA,
3–8 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010.

296. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

297. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa,
Ethiopia, 26–30 April 2020.

298. Kim, T.; Vossen, P. EmoBERTa: Speaker-Aware Emotion Recognition in Conversation with RoBERTa. arXiv 2021, arXiv:2108.12009.

http://dx.doi.org/10.1109/fg.2018.00019
http://dx.doi.org/10.48550/ARXIV.1611.08050
http://dx.doi.org/10.1037/t27734-000
http://dx.doi.org/10.4135/9781483381411
http://dx.doi.org/10.1007/s00371-019-01707-5
http://dx.doi.org/10.3758/s13423-023-02357-4
http://dx.doi.org/10.1037/0096-3445.123.4.394
https://www.liwc.app
https://www.linguisticanalysistools.org/
https://www.linguisticanalysistools.org/
http://dx.doi.org/10.3115/v1/P14-5010
http://dx.doi.org/10.3758/s13428-016-0743-z
http://dx.doi.org/10.1002/da.22376
http://dx.doi.org/10.1002/pits.21797
http://dx.doi.org/10.1002/9781118445112.stat06236
http://dx.doi.org/10.1007/978-1-4615-0377-4_5
http://dx.doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/10.1002/widm.1249
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://dx.doi.org/10.1007/978-3-642-24797-2


Sensors 2024, 24, 348 59 of 65

299. Rasheed, K.; Qayyum, A.; Ghaly, M.; Al-Fuqaha, A.; Razi, A.; Qadir, J. Explainable, trustworthy, and ethical machine learning for
healthcare: A survey. Comput. Biol. Med. 2022, 149, 106043. [CrossRef]

300. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
301. Freund, Y.; Schapire, R.E. A desicion-theoretic generalization of on-line learning and an application to boosting. In Proceedings of

the Computational Learning Theory, Barcelona, Spain, 13–15 March 1995; Vitányi, P., Ed.; Springer: Berlin/Heidelberg, Germany,
1995; pp. 23–37.

302. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
303. Lui, M. Feature Stacking for Sentence Classification in Evidence-Based Medicine. In Proceedings of the Australasian Language

Technology Association Workshop 2012, Dunedin, New Zealand, 4–6 December 2012; pp. 134–138.
304. Xu, S.; An, X.; Qiao, X.; Zhu, L.; Li, L. Multi-output least-squares support vector regression machines. Pattern Recognit. Lett. 2013,

34, 1078–1084. [CrossRef]
305. Rasmus, A.; Berglund, M.; Honkala, M.; Valpola, H.; Raiko, T. Semi-supervised Learning with Ladder Networks. In Proceedings

of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Cortes, C., Lawrence,
N., Lee, D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28.

306. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked Denoising Autoencoders: Learning Useful Representations
in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.

307. Ricci, F.; Rokach, L.; Shapira, B. Introduction to Recommender Systems Handbook. In Recommender Systems Handbook; Springer:
Boston, MA, USA, 2011; pp. 1–35. [CrossRef]

308. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

309. Tang, J.; Wang, K. Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding. In Proceed-
ings of the Eleventh ACM International Conference on Web Search and Data Mining (WSDM ’18), Los Angeles, CA, USA,
15–29 September 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 565–573. [CrossRef]

310. Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan, A. A Survey on Bias and Fairness in Machine Learning.
ACM Comput. Surv. 2021, 54, 1–35. [CrossRef]

311. Amiri, Z.; Heidari, A.; Darbandi, M.; Yazdani, Y.; Jafari Navimipour, N.; Esmaeilpour, M.; Sheykhi, F.; Unal, M. The Personal
Health Applications of Machine Learning Techniques in the Internet of Behaviors. Sustainability 2023, 15, 2406. [CrossRef]

312. Adler, D.A.; Wang, F.; Mohr, D.C.; Choudhury, T. Machine learning for passive mental health symptom prediction: Generalization
across different longitudinal mobile sensing studies. PLoS ONE 2022, 17, e0266516. [CrossRef]

313. Morgan, C.; Tonkin, E.L.; Craddock, I.; Whone, A.L. Acceptability of an In-home Multimodal Sensor Platform for Parkinson
Disease: Nonrandomized Qualitative Study. JMIR Hum. Factors 2022, 9, e36370. [CrossRef]

314. McCarney, R.; Warner, J.; Iliffe, S.; van Haselen, R.; Griffin, M.; Fisher, P. The Hawthorne Effect: A randomised, controlled trial.
BMC Med. Res. Methodol. 2007, 7, 30. [CrossRef]

315. American Psychiatric Publishing. Diagnostic and Statistical Manual of Mental Disorders: DSM-5™, 5th ed.; American Psychiatric
Publishing: Washington, DC, USA, 2013.

316. Hussain, M.; Al-Haiqi, A.; Zaidan, A.; Zaidan, B.; Kiah, M.; Anuar, N.B.; Abdulnabi, M. The landscape of research on smartphone
medical apps: Coherent taxonomy, motivations, open challenges and recommendations. Comput. Methods Programs Biomed. 2015,
122, 393–408. [CrossRef]

317. Tsai, J.; Kelley, P.; Cranor, L.; Sadeh, N. Location-Sharing Technologies: Privacy Risks and Controls. Innov. Law Policy eJournal
2009, 6, 119.

318. Taylor, J.; Pagliari, C. Mining social media data: How are research sponsors and researchers addressing the ethical challenges?
Res. Ethics 2018, 14, 1–39. [CrossRef]

319. Mavrogiorgou, A.; Kleftakis, S.; Mavrogiorgos, K.; Zafeiropoulos, N.; Menychtas, A.; Kiourtis, A.; Maglogiannis, I.; Kyriazis, D.
beHEALTHIER: A Microservices Platform for Analyzing and Exploiting Healthcare Data. In Proceedings of the 2021 IEEE 34th
International Symposium on Computer-Based Medical Systems (CBMS), Aveiro, Portugal, 7–9 June 2021; pp. 283–288. [CrossRef]

320. Georgogiannis, A.; Digalakis, V. Speech Emotion Recognition using non-linear Teager energy based features in noisy environments.
In Proceedings of the 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania,
27–31 August 2012; pp. 2045–2049.

321. Degottex, G.; Kane, J.; Drugman, T.; Raitio, T.; Scherer, S. COVAREP—A collaborative voice analysis repository for speech
technologies. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Florence, Italy, 4–9 May 2014; pp. 960–964.

322. Mathieu, B.; Essid, S.; Fillon, T.; Prado, J.; Richard, G. YAAFE, an Easy to Use and Efficient Audio Feature Extraction Soft-
ware. In Proceedings of the 11th International Society for Music Information Retrieval Conference, Utrecht, The Netherlands,
9–13 August 2010; pp. 441–446. Available online: http://ismir2010.ismir.net/proceedings/ismir2010-75.pdf (accessed on
10 December 2023).

323. Jadoul, Y.; Thompson, B.; de Boer, B. Introducing Parselmouth: A Python interface to Praat. J. Phon. 2018, 71, 1–15. [CrossRef]
324. Giannakopoulos, T. pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis. PLoS ONE 2015, 10, e0144610.

[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.compbiomed.2022.106043
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/j.patrec.2013.01.015
http://dx.doi.org/10.1007/978-0-387-85820-3_1
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1145/3159652.3159656
http://dx.doi.org/10.1145/3457607
http://dx.doi.org/10.3390/su151612406
http://dx.doi.org/10.1371/journal.pone.0266516
http://dx.doi.org/10.2196/36370
http://dx.doi.org/10.1186/1471-2288-7-30
http://dx.doi.org/10.1016/j.cmpb.2015.08.015
http://dx.doi.org/10.1177/1747016117738559
http://dx.doi.org/10.1109/CBMS52027.2021.00078
http://ismir2010.ismir.net/proceedings/ismir2010-75.pdf
http://dx.doi.org/10.1016/j.wocn.2018.07.001
http://dx.doi.org/10.1371/journal.pone.0144610
http://www.ncbi.nlm.nih.gov/pubmed/26656189


Sensors 2024, 24, 348 60 of 65

325. Orozco-Arroyave, J.R.; Vásquez-Correa, J.C.; Vargas-Bonilla, J.F.; Arora, R.; Dehak, N.; Nidadavolu, P.; Christensen, H.; Rudzicz,
F.; Yancheva, M.; Chinaei, H.; et al. NeuroSpeech: An open-source software for Parkinson’s speech analysis. Digit. Signal Process.
2018, 77, 207–221. [CrossRef]

326. MYOLUTION Lab My-Voice-Analysis. 2018. Available online: https://github.com/Shahabks/my-voice-analysis (accessed on
10 December 2023).

327. Lenain, R.; Weston, J.; Shivkumar, A.; Fristed, E. Surfboard: Audio Feature Extraction for Modern Machine Learning. In
Proceedings of the 21th Annual Conference of the International Speech Communication Association (INTERSPEECH 2020),
Shanghai, China, 25–29 October 2020; pp. 2917–2921. [CrossRef]

328. McFee, B.; Raffel, C.; Liang, D.; Ellis, D.P.W.; McVicar, M.; Battenberg, E.; Nieto, O. librosa: Audio and Music Signal Analysis in
Python. In Proceedings of the 14th Python in Science Conference, Austin, TX, USA, 6–12 July 2015; pp. 18–24. [CrossRef]

329. Schuller, B.; Steidl, S.; Batliner, A.; Burkhardt, F.; Devillers, L.; Müller, C.; Narayanan, S. The INTERSPEECH 2010 paralinguistic
challenge. In Proceedings of the 11th Annual Conference of the International Speech Communication Association (INTERSPEECH
2010), Makuhari, Japan, 26–30 September 2010; pp. 2794–2797. [CrossRef]

330. Schuller, B.; Steidl, S.; Batliner, A.; Vinciarelli, A.; Scherer, K.; Ringeval, F.; Chetouani, M.; Weninger, F.; Eyben, F.; Marchi,
E.; et al. The INTERSPEECH 2013 computational paralinguistics challenge: Social signals, conflict, emotion, autism. In Proceed-
ings of the Annual Conference of the International Speech Communication Association (INTERSPEECH 2013), Lyon, France,
25–29 August 2013; pp. 148–152. [CrossRef]

331. Eyben, F.; Scherer, K.R.; Schuller, B.W.; Sundberg, J.; André, E.; Busso, C.; Devillers, L.Y.; Epps, J.; Laukka, P.; Narayanan, S.S.; et al.
The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing. IEEE Trans. Affect.
Comput. 2016, 7, 190–202. [CrossRef]

332. Hannun, A.; Case, C.; Casper, J.; Catanzaro, B.; Diamos, G.; Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.; Coates, A.; et al.
Deep Speech: Scaling up end-to-end speech recognition. arXiv 2014, arXiv:1412.5567. [CrossRef]

333. Hershey, S.; Chaudhuri, S.; Ellis, D.P.W.; Gemmeke, J.F.; Jansen, A.; Moore, R.C.; Plakal, M.; Platt, D.; Saurous, R.A.; Seybold,
B.; et al. CNN architectures for large-scale audio classification. In Proceedings of the 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–19 March 2017; pp. 131–135. [CrossRef]

334. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

335. Ravanelli, M.; Bengio, Y. Interpretable Convolutional Filters with SincNet. arXiv 2018, arXiv:1811.09725.
336. Baevski, A.; Zhou, Y.; Mohamed, A.; Auli, M. wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations.

In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6–12 December 2020; Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 12449–12460.

337. Lin, Z.; Feng, M.; dos Santos, C.N.; Yu, M.; Xiang, B.; Zhou, B.; Bengio, Y. A Structured Self-Attentive Sentence Embedding.
In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

338. Hsu, W.N.; Bolte, B.; Tsai, Y.H.H.; Lakhotia, K.; Salakhutdinov, R.; Mohamed, A. HuBERT: Self-Supervised Speech Representation
Learning by Masked Prediction of Hidden Units. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2021, 29, 3451–3460. [CrossRef]

339. Huang, Z.; Zhang, J.; Ma, L.; Mao, F. GTCN: Dynamic Network Embedding Based on Graph Temporal Convolution Neural
Network. In Proceedings of the Intelligent Computing Theories and Application, Bari, Italy, 2–5 October 2020; Huang, D.S., Jo,
K.H., Eds.; Springer: Cham, Switzerland, 2020; pp. 583–593.

340. Schmitt, M.; Schuller, B. openXBOW—Introducing the Passau Open-Source Crossmodal Bag-of-Words Toolkit. J. Mach. Learn.
Res. 2017, 18, 1–5.

341. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv 2014, arXiv:1412.3555. [CrossRef]

342. Viola, P.; Jones, M. Robust Real-Time Object Detection. Int. J. Comput. Vis. IJCV 2001, 57, 5385–5395.
343. Tzimiropoulos, G.; Pantic, M. Gauss-Newton Deformable Part Models for Face Alignment In-the-Wild. In Proceedings of the 2014

IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1851–1858. [CrossRef]
344. Jeni, L.A.; Cohn, J.F.; Kanade, T. Dense 3D face alignment from 2D videos in real-time. In Proceedings of the 2015 11th IEEE

International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia, 4–8 May 2015;
Volume 1.

345. Zhou, E.; Fan, H.; Cao, Z.; Jiang, Y.; Yin, Q. Extensive Facial Landmark Localization with Coarse-to-Fine Convolutional
Network Cascade. In Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops, Sydney, Australia,
2–8 December 2013; pp. 386–391. [CrossRef]

346. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI’17), San Francisco, CA, USA,
4–9 February 2017; AAAI Press: Washington, DC, USA, 2017; pp. 4278–4284.

347. King, D.E. Dlib-ml: A Machine Learning Toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758.
348. Tzimiropoulos, G.; Alabort-i Medina, J.; Zafeiriou, S.; Pantic, M. Generic Active Appearance Models Revisited. In Proceedings of

the Computer Vision (ACCV 2012), Daejeon, Republic of Korea, 5–9 November 2012; Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 650–663.

http://dx.doi.org/10.1016/j.dsp.2017.07.004
https://github.com/Shahabks/my-voice-analysis
http://dx.doi.org/10.21437/Interspeech.2020-2879
http://dx.doi.org/10.25080/Majora-7b98e3ed-003
http://dx.doi.org/10.21437/Interspeech.2010-739.
http://dx.doi.org/10.21437/Interspeech.2013-56
http://dx.doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.48550/ARXIV.1412.5567
http://dx.doi.org/10.1109/ICASSP.2017.7952132
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.48550/ARXIV.1412.3555
http://dx.doi.org/10.1109/CVPR.2014.239
http://dx.doi.org/10.1109/ICCVW.2013.58


Sensors 2024, 24, 348 61 of 65

349. Zhou, B.; Lapedriza, A.; Khosla, A.; Oliva, A.; Torralba, A. Places: A 10 Million Image Database for Scene Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2018, 40, 1452–1464. [CrossRef] [PubMed]

350. Onal Ertugrul, I.; Jeni, L.A.; Ding, W.; Cohn, J.F. AFAR: A Deep Learning Based Tool for Automated Facial Affect Recognition.
In Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France,
14–18 May 2019.

351. Meng, H.; Pears, N.; Bailey, C. A Human Action Recognition System for Embedded Computer Vision Application. In Proceedings
of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–6.
[CrossRef]

352. Face++ AI Open Platform. Face++. 2012. Available online: https://www.faceplusplus.com/ (accessed on 20 September 2023).
353. Littlewort, G.; Whitehill, J.; Wu, T.; Fasel, I.; Frank, M.; Movellan, J.; Bartlett, M. The computer expression recognition toolbox

(CERT). In Proceedings of the 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), Santa Barbara,
CA, USA, 21–25 March 2011; pp. 298–305. [CrossRef]

354. Meng, H.; Huang, D.; Wang, H.; Yang, H.; AI-Shuraifi, M.; Wang, Y. Depression Recognition Based on Dynamic Facial and
Vocal Expression Features Using Partial Least Square Regression. In Proceedings of the 3rd ACM International Workshop on
Audio/Visual Emotion Challenge (AVEC ’13), Barcelona, Spain, 21 October 2013; Association for Computing Machinery: New
York, NY, USA, 2013; pp. 21–30. [CrossRef]
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454. Milenković, T.; Przulj, N. Uncovering biological network function via graphlet degree signatures. Cancer Inform. 2008, 6, 257–273.
[CrossRef]
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