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Abstract: Thermal feedback plays an important role in tactile perception, greatly influencing fields
such as autonomous robot systems and virtual reality. The further development of intelligent systems
demands enhanced thermosensation, such as the measurement of thermal properties of objects to
aid in more accurate system perception. However, this continues to present certain challenges in
contact-based scenarios. For this reason, this study innovates by using the concept of semi-infinite
equivalence to design a thermosensation system. A discrete transient heat transfer model was
established. Subsequently, a data-driven method was introduced, integrating the developed model
with a back propagation (BP) neural network containing dual hidden layers, to facilitate accurate
calculation for contact materials. The network was trained using the thermophysical data of 67 types
of materials generated by the heat transfer model. An experimental setup, employing flexible thin-
film devices, was constructed to measure three solid materials under various heating conditions.
Results indicated that measurement errors stayed within 10% for thermal conductivity and 20% for
thermal diffusion. This approach not only enables quick, quantitative calculation and identification
of contact materials but also simplifies the measurement process by eliminating the need for initial
temperature adjustments, and minimizing errors due to model complexity.

Keywords: data-driven algorithm; heat transfer modeling; quantitative thermosensation

1. Introduction

High-precision tactile sensing is key for robotic systems to perform complex operations.
Tactile signals comprise various signals, including force perception [1], sliding detection [2],
thermosensation [3,4], comfort evaluation [5], and humidity detection [6]. Among these,
thermal feedback is a crucial component and plays a significant role in autonomous control
systems [7], virtual reality [8], and other fields [9].

Thermal conductivity and diffusivity coefficients are key parameters in thermal sensa-
tion. Various methods for measuring the thermal properties of solid and thin film materials
have been developed and widely applied [10]. For solid materials, common techniques
include the absolute method [11], comparative method [12], and parallel heat conduc-
tion method [13]. These steady-state methods accurately calculate thermal properties
by precisely measuring the heat flux applied to the sample and the corresponding tem-
perature difference. Compared to steady-state methods, transient methods can obtain
thermal properties more quickly, typically relying on real-time temperature data and heat
transfer models, such as the hot-wire method [14], laser flash method [15], and transient
plane source method [16]. These methods offer high precision and stability but are often
limited by the measurement mode, and have specific requirements for instruments and
samples, rendering them unsuitable for real-time contact measurement applications in
robotic systems.

In robotics and control systems, thermosensation increasingly focuses on miniaturiza-
tion and flexibility. Traditional MEMS temperature sensors are known for precise design
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and packaging, effective in accurate temperature sensing; for example, the integrated
temperature and pressure silicon chips for invasive endoscopic surgeries [17], the Schottky
diode chip for temperature compensation [18], and thermistor chips in cyber-physical
systems [19]. However, these silicon-based chips are typically unsuitable for irregular
or dynamic surfaces and lack the conformability necessary for in-situ, human-like tactile
sensing. Conversely, flexible devices can be attached to surfaces for in-situ thermosen-
sation and researchers have extensively explored this area. For example, Zhao et al. [20]
developed an intelligent finger integrated with a thermal sensor capable of measuring the
thermal conductivity of objects upon contact, accurately distinguishing materials within
0.3 s. Li et al. [21] introduced a tactile sensor with a multi-layer structure; combined with
machine learning algorithms, a robotic hand with ten sensors achieved a 94% recognition
rate in waste sorting tasks. Yang et al. [22] proposed multi-layer tactile sensors integrated
on a soft robotic hand, utilizing artificial neural networks to accurately identify 13 different
materials under high contact pressures of 1.3–1.9 kPa. Lee et al. [23] developed an intelligent
thermo-calorimeter (TCM) as a thermal sensing unit, successfully distinguishing various
materials, especially metals, with high precision. Wu et al. [24] established a theoretical
model based on the heat absorption process, allowing each material to be identified by a
unique characteristic value.

The above methods achieve recognition through the extraction of temperature charac-
teristics. Another approach involves using heat transfer models, and intelligent algorithms
to directly calculate thermal properties. For example, Zhang et al. [25] employed an artifi-
cial neural network (ANN) to establish a correlation between thermal conductivity and its
influencing factors, which is used to calculate the thermal conductivity of unsaturated soil.
Fidan et al. [26] utilized neural networks with different neurons and activation functions to
establish the relationship between the mechanical properties of concrete and its thermal
properties. A coefficient of determination of 0.983 of thermal conductivity was achieved.
Pan et al. [27] designed a thermosensation sensor and developed a heat transfer model for
a robotic finger. Operating at room temperature (20 ◦C~32 ◦C), the system used an 8 mA
current to generate Joule heat, accurately calculating the material’s thermal properties with
a relative error within 10%. However, the heat transfer model is quite complex, and there is
currently limited research on its quantitative thermosensation.

In this work, a novel contact-based thermosensation measurement method using
different flexible thin-film thermal devices was designed to measure material’s heat flux
and temperature. A data-driven algorithm, incorporating a discrete transient heat transfer
model and a BP neural network, is proposed for processing measured signals and cal-
culating thermal properties. The method’s accuracy and efficiency were experimentally
validated, and it showed potential in material quantitative thermosensation and intelligent
robot haptics.

2. Contact-Based Thermosensation Design
2.1. Design of the Measurement System Structure

Figure 1 presents a schematic diagram of the measurement system, which consisted of
the test object, a sensing layer, a heating layer, and a substrate. The heater was designed to
generate heat through Joule heating from an electrical current. A heat flux sensor, located
in the center of the sensing layer and closely attached to the material’s surface, measured
the heat flow across the material’s boundary. The sensor’s area was significantly smaller
than the heating zone, and based on the semi-infinite assumption, it was considered that
the heat would be transferred perpendicular to the object’s surface within a short time of
the heater being activated. Temperature sensors were placed near the heat flux sensor to
directly measure the surface temperature of the object.

The temperature of the tested material was influenced by both internal and external
factors. Internal factors included the material’s thermal properties, while external factors
mainly involved heat exchange between the system and the material. Consequently,
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modeling the sensing system was essential to establish how the temperature changes in
different materials related to the heating power and the boundary heat flux.
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2.2. Discrete Transient Heat Transfer Model

The heat flux signal, influenced by the heat source, cannot be expressed by a function,
because the function fitting approach presents two significant challenges: first, the heat
flux exhibits significant nonlinearity due to external excitation control, posing challenges to
function fitting. Second, minor inaccuracies in the flux tend to accumulate progressively,
resulting in cumulative errors over time.

Therefore, this study utilized a discrete approach to model heat transfer, aiming to
minimize errors. The system was established to treat the object as semi-infinite, focusing on
heat transfer perpendicular to the object’s surface and the transient process. Consequently,
the model incorporated a non-stationary term and discretized both time and space simulta-
neously. In addition, this study explored the relationship between temperature, heat flux,
source power, and thermal properties, simplifying the substrate to insulation boundary.
For the heating layer’s upper boundary discretization unit, the discretization equation was
as follows: [

−kh
T(i)

1 − T(i)
2

∆x

]
· ∆τ + qv ·

∆x
2

· ∆τ = ρhch
∆x
2

·
[
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1 − T(i)

1

]
(1)

where Ti
n denotes the temperature of the n-th discrete unit at time I; ∆x denotes the length

of the discrete unit; ∆τ denotes the discrete time interval; kh is the thermal conductivity of
the heater; qv is the power density of the heating unit; and ρh and ch are the density and
heat capacity of the heater, respectively.

The initial state of the system was steady state with temperature T0, denoted as follows:

T(1)
n = T0 n = 1, 2, · · · , N. (2)

Here, N denotes the total number of discrete units. Similarly, the sensing layer’s
discrete control equation was formulated as follows:

ks
T(i)

n+1 − T(i)
n

∆x
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T(i)
n−1 − T(i)

n

∆x = csρs∆x · T(i+1)
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n
∆τ n = 2, 3, . . . , N1 (3)

where ks, ρs and cs represent the thermal conductivity, density, and heat capacity of the
sensing layer, respectively. N1 indicates the number of discrete units at the boundary
beneath the sensing layer. For the boundary unit between the measured material and the
sensing layer, the discrete equation was formulated as follows:[

ks
T(i)
(n−1)−T(i)

(n)
∆x/2 + ko

T(i)
(n+1)−T(i)

(n)
∆x/2

]
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[
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(4)
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where ko, ρo and co represent the thermal conductivity, density, and heat capacity of the
measured material. Subsequently, in accordance with the principle of energy conservation,
the internal unit equation for the measured object was expressed as follows:

ko
T(i)

n+1−T(i)
n

∆x + ko
T(i)

n−1−T(i)
n

∆x = coρo∆x · T(i+1)
n −T(i)

n
∆τ

n = N1 + 2, N1 + 3, . . . , N − 1
(5)

Arranging the above equations resulted in a series of explicit iterative equations for
the system:
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(6)

where αs and αo denote the thermal diffusion of the sensing layer and the tested material,
respectively. The equation system was presented in an explicit differential format, allowing
the computation of the temperature at each node for the moment directly subsequent
from the initial temperature, thus eliminating the need for solving coupled equations.
Programming the model in MATLAB facilitated the calculation of physical quantities.

2.3. Finite Element Simulation

COMSOL 6.0 was employed for a comparative analysis to validate the model. Given
the structural features of the sensing system, rotationally symmetric modeling was adopted.
A model representing one-sixth of the structure is depicted in Figure 2.
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The simulation’s settings aligned with those in the MATLAB program. These included
the geometric dimensions, with the radius of the heating layer, sensing layer, and the object
set at 40 mm. The heat flux sensing area’s radius was 5 mm, the heater layer’s thickness
was 20 µm, the sensing layer’s thickness was 0.4 mm, and the test material’s thickness was
40 mm. Additionally, the system’s initial temperature was set at 25 ◦C, and the heating
power density of the heater was set at 7.70 × 107 W·m−3. Furthermore, the mesh was
partitioned into highly refined triangular elements.

The thermal properties, as outlined in Table 1, were applied, setting the discrete unit
spacing to 40 µm. Over a 2 s (experimentally chosen) duration, the solid’s heat transfer was
calculated. Temperature and heat flux data from the sensing layer’s center, where it contacts
the object, were used for comparison. Figure 2 displays the temperature distribution at
time = 1.95 s, using “material III”. Figure 3 presents the results. The results indicated that
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the error between the model’s numerical calculations and the simulation is within 0.05 ◦C
for temperature and within 30 W/m2 for heat flux, affirming the model’s effectiveness.

Table 1. Setting of thermophysical parameters in modeling and simulation.

Object Thermal Conductivity/W·m−1·k−1 Density/kg/m3 Thermal Capacity
/J/kg/K

Heating layer and
sensing layer 0.214 1951.6 1064.6

Material I 0.1 500.2 2400
Material II 1.5 2659.6 800
Material III 12 7860 477.1
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3. Data-Driven Algorithm
3.1. BP Neural Network

In machine learning, back propagation neural networks (BP NN) excel at learning
and simulating relationships from the simple to the highly complex, rendering them ideal
for various complex modeling and prediction tasks [28]. BP neural networks are not only
fault-tolerant but also easier to implement compared to other machine learning methods,
leading to their widespread application [29].

Serving as the core learning mechanism in multilayer feed-forward neural networks,
the BP algorithm focuses on optimizing network weights via supervised learning. Es-
sentially, the BP neural network is a multilayer nonlinear mapping structure, comprising
neurons with varied connectivity weights. These neurons transform input data using
activation functions, as depicted in Figure 4.
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The error E, between the neural network’s actual output yi, and the expected output Y,
was expressed as follows:
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E =
1
2∑i(yi − Yi)

2 (7)

Error propagated backward through the network, employing the gradient descent
method to minimize the loss function and optimize network weights [30]. The fundamental
weight update formula was:

wn
ij = ∆wij + wij (8)

Here, wij and wij
n represents the neuron’s current and updated weights, respectively,

while ∆wij denotes the change value, with its updated formula being as follows:

∆wij = −η · ∂E
∂wij

(9)

Here, η represents the learning rate, which determines the rate of weight adjustment.
The essence of the BP algorithm is its utilization of the chain rule and gradient descent
strategy to incrementally adjust the network, thereby aligning the network’s output more
closely with actual observations. This iterative process continues until the output error be-
comes sufficiently small. Meanwhile, the loss function serves as a crucial tool for assessing
the learning effect, quantifying the deviation between predicted and actual values, and
acting as a key reference in the optimization process.

3.2. Data Set and NN Training

To accurately calculate thermal conductivities during testing, a mapping relationship
between the material’s thermal conductivity, temperature, and heat flux was first estab-
lished using a BP neural network. Using the proposed theoretical heat transfer model,
the system’s heating power density (qv) was inputted to calculate the material’s boundary
temperature (Tf) and heat flux (qf) over a given time period, expressed as follows:

(Tf , q f ) = fh(ko, αo, t, qv) (10)

where t represents time, ko and αo are the thermal conductivity and thermal diffusivity of the
tested material, and fh denotes the theoretical heat transfer model. In this study, 67 different
types of metals and non-metals were selected [22,31,32], with thermal conductivity ranging
from 0.06 to 405.5 W·m−1·K−1, covering the parameter range of common materials, as
shown in Figure 5. The thermal properties of these 67 standard materials were inputted
into the theoretical model program fh for calculation. The study focused on transient heat
transfer over a period of 1.95 s, with a set power density range of 4.0 × 107 W·m−3 to
1.4 × 108 W·m−3, resulting in 1407 sets of time series data.
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To enhance the training efficiency of the BP neural network, feature selection and data
preprocessing were conducted on the training dataset. The specific steps were as follows:

1. Feature extraction. To fully describe the characteristics of heat flux and temperature
signals, the linear fitting slope of the heat flux relative to its initial value and the
linear fitting slope of the temperature series were calculated, denoted as u1 and u2,
respectively. The average heat flux and average temperature were calculated as u3
and u4. The final time’s excess temperature; the midpoint’s excess temperature; the
temperature difference between the midpoint and final time; and the difference in
heat flux are also calculated, respectively noted as u5, u6, u7, and u8.

2. Normalization. The dataset covered materials ranging from low to high thermal conduc-
tivity, with corresponding heat flux and temperature data showing significant variations.
Therefore, the data features were first natural log-transformed, then normalized and
denoted as X = norm(ln(u)), resulting in X = [x1, x2, x3, x4, x5, x6, x7, x8].

3. Principal component analysis (PCA). PCA is a data analysis technique that can retain
as much of the original features as possible while reducing data dimensions [33,34].
By processing data with PCA dimensionality reduction, the principal components
obtained were denoted as p1 to p8. The contribution rates of p1 and p2 exceeded 95%,
indicating that p1 and p2 can explain over 95% of the variance in the original data,
thus effectively representing the original feature. The relationship between p1, p2, and
the original features is as follows:

p1 = −0.1961x1 + 0.4242x2 − 0.1974x3 + 0.4242x4 + 0.4244x5
+0.4240x6 + 0.4247x7 − 0.1499x8

p2 = 0.5393x1 + 0.1403x2 + 0.5384x3 + 0.1408x4 + 0.1395x5
+0.1417x6 + 0.1378x7 + 0.5669x8

(11)

4. With p1 and p2 as inputs and the thermal conductivity ko as output, a double hidden
layer nonlinear mapping network was trained using a BP neural network. In this
network, the number of neurons in the input layer was 2, the first hidden layer
contained 100 neurons, the second hidden layer contained 20 neurons, and the output
layer contained one neuron. The tansig function was used as the activation function
for the hidden layers.

3.3. BP NN with Heat Transfer Model

Based on the measured heat flux, temperature, and trained BP NN, the thermal
conductivity of materials could be predicted. Furthermore, the calculation of thermal
diffusivity could be studied. Taking the material under test as the subject of analysis, with
heat flux as the input, and discretizing the object into N elements, the theoretical heat
transfer model could be transformed into:

T(i+1)
1 = 2∆ταo

ko∆x ·
[

ko
∆x

(
T(i)

2 − T(i)
1

)
+ q f

]
+ T(i)

1

T(i)
N = T0

T(i+1)
n = αo∆τ

∆x2

[
T(i)

n+1 + T(i)
n−1

]
+

(
1 − 2 αo∆τ

∆x2

)
T(i)

n n = 2, . . ., N − 1

(12)

Therefore, when the heat flux on the surface of the test object was used as input, the
model could calculate the transient temperature on the material’s surface. This can be
succinctly expressed as follows:

Tf = fq(ko, αo, q f ) (13)

where fq represents the transformed heat transfer model with heat flux as input, qf denotes
the heat flux, and Tf is the surface temperature of the object. Here, qf and Tf are measured by
sensors, ko is predicted by the BP NN model, and the function contains only one unknown
variable. Thus, by scanning αo within a certain range, calculating the temperature and
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solving for the error with the actual measured temperature, the αo corresponding to the
minimum error is searched as the result for the thermal diffusivity.

In summary, the proposed data-driven method for measuring thermal properties is
illustrated in Figure 6. The algorithm combined forward calculation based on the heat
transfer model to build a database, a BP neural network, and a transformed inversion
solution for thermal diffusivity. By using the measured temperature and heat flux signals,
it achieved quantitative thermosensation for different objects.
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4. Experiment
4.1. Samples of Tested Materials

To validate the effectiveness of the proposed measurement method, three types of
materials with smooth surfaces were chosen as experimental samples, as illustrated in
Figure 7. These samples include tempered glass, polymethyl methacrylate (PMMA), and
aluminum alloy, each measuring 80 mm × 80 mm × 20 mm. These materials, characterized
by varying levels of thermal conductivity, are all homogeneous. Furthermore, it was
necessary to accurately obtain the thermal properties of the sample materials as reference.
To ensure accuracy, high-precision measuring instruments were used to test the samples,
obtaining their density, specific heat capacity, and thermal diffusivity.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 15 
 

 

4. Experiment 
4.1. Samples of Tested Materials 

To validate the effectiveness of the proposed measurement method, three types of 
materials with smooth surfaces were chosen as experimental samples, as illustrated in 
Figure 7. These samples include tempered glass, polymethyl methacrylate (PMMA), and 
aluminum alloy, each measuring 80 mm × 80 mm × 20 mm. These materials, characterized 
by varying levels of thermal conductivity, are all homogeneous. Furthermore, it was nec-
essary to accurately obtain the thermal properties of the sample materials as reference. To 
ensure accuracy, high-precision measuring instruments were used to test the samples, ob-
taining their density, specific heat capacity, and thermal diffusivity. 

 
Figure 7. (a) Experimental samples and (b) instruments used for reference values measurement. 

The specific experiments were as follows: (a) three types of solid samples were pre-
pared, each cut to dimensions required by the analytical instruments. (b) The thermal dif-
fusivities were quantified using the NETZSCH LFA447 Nanoflash analyzer. (c) The spe-
cific heat capacities were ascertained utilizing the Mettler-Toledo DSC3 differential scan-
ning calorimeter. (d) The densities of the samples were determined through the displace-
ment method, employing a precision balance. Finally, the results were recorded as shown  
in Table 2. 

Table 2. Reference Measurements of Samples’ Thermal Properties. 

Materials Thermal Diffusivity 
/mm2∙s−1 

Standard 
Deviation 

Heat Capacity 
/J∙g−1∙K−1 

Standard 
Deviation 

Density 
/kg∙m−3 

Standard 
Deviation 

Tempered Glass 0.552 0.00350 0.809 0.0012 2458.4 5.798 
PMMA 0.110 8.17 × 10−4 1.429 0.0029 1178.35 1.344 

Aluminum Alloy 51.9 0.22 0.873 6.03 × 10−4 2651.5 17.82 

4.2. Experimental Measurement System 
Based on the measurement method, a thermal sensation system was constructed, as 

shown in Figure 8. This system was utilized to verify the contracted based algorithm. The 
system could be specifically divided into three layers: the first layer consisted of a flexible 
heat flux sensor, temperature sensor, and flexible Polyimide (PI) film. The heat flux sensor 
used was the FHF05 series produced by Hukseflux company (Delft, Netherlands). The 
sensor was encapsulated in PI and outputted a voltage proportional to the heat flux. It 
was positioned between the test object and the serpentine heater, with a thickness of 0.4 
mm and an area of 10 mm × 10 mm. Its sensitivity was 0.56 × 10−6 V/(W∙m−2), and had a 
measurement range of (−10~10) × 103 W∙m−2. 

Figure 7. (a) Experimental samples and (b) instruments used for reference values measurement.



Sensors 2024, 24, 369 9 of 14

The specific experiments were as follows: (a) three types of solid samples were pre-
pared, each cut to dimensions required by the analytical instruments. (b) The thermal
diffusivities were quantified using the NETZSCH LFA447 Nanoflash analyzer. (c) The
specific heat capacities were ascertained utilizing the Mettler-Toledo DSC3 differential
scanning calorimeter. (d) The densities of the samples were determined through the dis-
placement method, employing a precision balance. Finally, the results were recorded as
shown in Table 2.

Table 2. Reference Measurements of Samples’ Thermal Properties.

Materials Thermal Diffusivity
/mm2·s−1

Standard
Deviation

Heat Capacity
/J·g−1·K−1

Standard
Deviation

Density
/kg·m−3

Standard
Deviation

Tempered Glass 0.552 0.00350 0.809 0.0012 2458.4 5.798
PMMA 0.110 8.17 × 10−4 1.429 0.0029 1178.35 1.344

Aluminum Alloy 51.9 0.22 0.873 6.03 × 10−4 2651.5 17.82

4.2. Experimental Measurement System

Based on the measurement method, a thermal sensation system was constructed, as
shown in Figure 8. This system was utilized to verify the contracted based algorithm. The
system could be specifically divided into three layers: the first layer consisted of a flexible
heat flux sensor, temperature sensor, and flexible Polyimide (PI) film. The heat flux sensor
used was the FHF05 series produced by Hukseflux company (Delft, Netherlands). The
sensor was encapsulated in PI and outputted a voltage proportional to the heat flux. It was
positioned between the test object and the serpentine heater, with a thickness of 0.4 mm
and an area of 10 mm × 10 mm. Its sensitivity was 0.56 × 10−6 V/(W·m−2), and had a
measurement range of (−10~10) × 103 W·m−2.
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Figure 8. Experimental measurement system.

The PI film served as a thermal resistance structure with the aim of aligning the
thermal resistance perpendicular to the object’s surface. This alignment ensured that the
temperature sensor’s heat transfer in the perpendicular direction shared identical thermal
characteristics with the measurement area of the heat flux sensor. To attain this effect, a PI
film matching the heat flux sensor in material and thickness, was chosen. The temperature
sensor selected was a K-type fine-wire thermocouple (aidiwen, Yancheng, China). The
probe part of the sensor had a thickness of 20 µm and was installed beneath the PI film. To
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fill the minute air gaps at the contact interface and between devices, thermally conductive
grease (Arctic Silver 5) was used.

The system’s second layer, a serpentine heater, was positioned directly above the first
layer. Comprising a serpentine metal electrode and a PI package, the heater generated
Joule heat over a 55 mm × 60 mm area, with adjustable heating power achieved by varying
the supply voltage.

Positioned above the heater, the third layer, or substrate layer, was made of 30 mm
thick polyurethane (PU). During measurements, the heater supplied thermal energy, which
was conducted to the object. Simultaneously, this thermal energy was transferred to the
surrounding air. To minimize noise and disturbance, the substrate was made of a material
with low thermal conductivity.

During the heating process, the heat flux sensor measured the heat flux signal across
the boundary, while the thermocouple gauged boundary temperature in real-time, with
both producing voltage output signals. A high-precision Keithley DAQ6510 digital mul-
timeter was employed for voltage acquisition, configured with a 7700 series 20-channel
plug-in switching module. This module, featuring built-in cold-end compensation circuitry,
connected to K-type thermocouples and automatically converted the output to temperature
readings. A Keithley 2280S-60 precision DC source supplied the input voltage to the heater.
In addition, the sampling interval of measuring instruments differed from the algorithm’s
time step, thus requiring adjustment through cubic spline interpolation.

5. Results and Discussion

Measurements were conducted using the developed thermal sensing system, yielding
experimental data on temperature and heat flux, which was then processed using the
proposed data-driven algorithm. To validate the effectiveness of the algorithm, the sys-
tem’s power supply voltage was varied to adjust the heating power, resulting in different
measured physical signals, which were subsequently analyzed.

Initially, the experiments focused on tempered glass, employing 12 V, 15 V, and 18 V
heating voltages. The transient temperature and heat flux during heating were recorded,
labeled as experimental data sets I, II, and III (refer to Figure 9).
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Figure 9. Experimental measurements on tempered glass (a) heat flux signal and (b) excess temperature.

Based on the experimental data of tempered glass, the algorithm was employed for
signal processing, setting the αo scan range from 1 × 10−7 to 1 × 10−6 m2·s−1 with a
step size of 0.1 × 10−7 m2·s−1. The algorithm’s calculated optimal curves and thermal
properties are shown in Figure 10. The reference values were: ko = 1.097 W·m−1·K−1 and
αo = 5.52 × 10−7 m2·s−1 as shown in Table 2, with the calculated results having a relative
error of less than 10%.
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Figure 10. Experimental data and algorithmic calculation curve for tempered glass.

For PMMA, system voltages of 8 V, 15 V, and 20 V were used. The transient temperature
and real-time heat flux during heating were recorded as experimental data sets I, II, and
III, as depicted in Figure 11. Utilizing the experimental data, the algorithm processed
the data with an αo scanning range of 1 × 10−8 to 5 × 10−7 m2·s−1, and a step size of
0.05 × 10−7 m2·s−1. The calculations yielded thermal conductivity and diffusivity, with
algorithm-fitting curves presented in Figure 12. These values correspond to PMMA’s
reference thermophysical properties: ko = 0.185 W·m−1·K−1 and αo = 1.10 × 10−7 m2·s−1.
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Figure 13 presents the surface heat flux and temperature measurements for the Al alloy,
with supply voltages set at 15 V, 20 V, and 25 V, respectively. These results are respectively
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denoted as experimental data sets I, II, and III. The algorithmic computations and correspond-
ing fitting curves are depicted in Figure 14, where the αo scanning range was set between
1 × 10−5 and 1 × 10−4 m2·s−1, with a step increment of 0.1 × 10−5 m2·s−1. Reference values
for the Al alloy are as follows: ko = 120.4 W·m−1·K−1 and αo = 5.2 × 10−5 m2·s−1.
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Figure 14. Experimental data and algorithmic calculation curve for Al alloy.

Through experimentation, the method accurately calculates material thermal conduc-
tivity (ko) and diffusion coefficient (αo) across various materials, typically with less than 15%
error under different heat power conditions. The algorithm simplifies the process by mea-
suring only the surface excess temperature, eliminating the need for absolute temperature
measurement and temperature compensation. This approach innovates in contact-based
quantitative thermosensation.

6. Conclusions

This article introduces a contact-based thermosensation measurement method, fo-
cusing on the system design and signal processing algorithm. The system comprises a
flexible heat flux sensor, a thermocouple, and a heater, facilitating the measurement of heat
flux and real-time temperature at the material interface. A discrete transient heat transfer
model was developed to establish the relationship between the heating power, heat flux,
and temperature across various materials. The model was further analyzed and validated
through finite element simulation. Building on this, a data-driven algorithm based on the
heat transfer model and BP neural network was proposed. This algorithm calculates the
thermal conductivity and thermal diffusivity of contacted materials through temperature
and heat flux signals. In experiment, three different materials—PMMA, tempered glass,
and aluminum alloy were measured under varying heating powers, yielding relative er-
rors within 10% and 20% for thermal conductivity and thermal diffusivity, respectively.



Sensors 2024, 24, 369 13 of 14

This method achieves enhanced thermosensation and holds potential for applications in
intelligent robotic tactile sensing and automated control systems.
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