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Abstract: To solve the problem of cumulative errors when robots build maps in complex orchard
environments due to their large scene size, similar features, and unstable motion, this study pro-
poses a loopback registration algorithm based on the fusion of Faster Generalized Iterative Closest
Point (Faster_GICP) and Normal Distributions Transform (NDT). First, the algorithm creates a
K-Dimensional tree (KD-Tree) structure to eliminate the dynamic obstacle point clouds. Then, the
method uses a two-step point filter to reduce the number of feature points of the current frame used
for matching and the number of data used for optimization. It also calculates the matching degree of
normal distribution probability by meshing the point cloud, and optimizes the precision registration
using the Hessian matrix method. In the complex orchard environment with multiple loopback
events, the root mean square error and standard deviation of the trajectory of the LeGO-LOAM-FN
algorithm are 0.45 m and 0.26 m which are 67% and 73% higher than those of the loopback registration
algorithm in the Lightweight and Ground-Optimized LiDAR Odometry and Mapping on Variable
Terrain (LeGO-LOAM), respectively. The study proves that this method effectively reduces the
influence of the cumulative error, and provides technical support for intelligent operation in the
orchard environment.

Keywords: LiDAR; mobile robot; loopback detection; point cloud alignment; SLAM; orchard environment

1. Introduction

With the rapid development of science and technology, humanity has unprecedentedly
enjoyed the convenience and comfort brought by intelligent technologies, which have
greatly changed the ways of production and life, improving the quality of life. Among
these, robots, with their high degree of intelligence and strong adaptability, have made
significant contributions to social development, finding applications in fields such as
industry, agriculture, the military, and healthcare. Robots are a product of multidisciplinary
integration, capable of semi-autonomous or fully autonomous operations. Autonomous
mobile robots possess multiple functions including environmental perception, dynamic
decision making, path planning, and autonomous navigation, allowing them to execute
specific tasks in unknown environments [1]. The application of mobile robots in precision
agriculture is increasingly widespread, with significant growth in the use of orchard
robots. The tasks of orchard robots mainly include acquiring orchard environmental
information, pruning and bagging, targeted spraying, thinning flowers and fruits, and
fruit harvesting. These tasks demand high precision in mapping and localization during
robot movement, requiring accurate perception of the environment for precise positioning.
This is achieved through various sensors mounted on the robot to gather information
about its pose and surroundings, constructing an environmental map while moving, and
continuously correcting its position. However, agricultural scenes represent a typical
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unstructured environment, characterized by few distinctive features, uneven terrain, and
dynamic objects, presenting new challenges in map construction in such scenarios [2].

Simultaneous localization and mapping (SLAM) is a method for orchard robots to lo-
calize themselves and build maps of complex environments [3,4]. In outdoor environments,
the global navigation satellite system (GNSS) can provide real-time absolute positioning
information [5]. However, in orchard scenes with dense canopies, the signal is weak and
easily lost, resulting in unreliable positioning. The performance of the Kalman filter is
reduced, and the application of the smooth change structure filtering algorithm is limited,
which makes the information abnormal. To address the issue of decreased accuracy in
conventional Kalman filtering (KF) due to system modeling and noise uncertainty, the
Habibi team proposed a model-based robust filtering algorithm Smooth Variable Struc-
ture Filter (SVSF). This algorithm employs a discontinuous gain in a variable structure
form, ensuring state estimation converges within the true value range. It offers improved
robustness against bounded model and noise uncertainties [6]. According to the sensor
type [7], SLAM can be classified into visual SLAM [8,9] and laser SLAM [10,11]. Visual
SLAM uses visual sensors to obtain environmental information, with the advantages of low
cost and simple structure. However, visual SLAM commonly suffers from the heavy com-
putational sensitivity of long-term light changes and has difficulty tracking visual features
stably [12–14]. Therefore, it is not suitable for environments with obvious light changes
such as orchards. On the contrary, laser SLAM technology, characterized by its maturity
and robustness, exhibits great resilience to variations in lighting and signal obstruction. Its
capabilities are further enhanced by LiDAR, which boasts strong anti-interference features,
high resolution, and rapid response times. These attributes make it exceptionally suitable
for application in complex orchard environments [15–17].

Among them, loopback detection is the key of laser SLAM [18]. It can determine
whether the orchard robot passes through the same location by calculating the point cloud
similarity between frames. As the scale of the operating scene increases, the content of the
historical frame database increases dramatically, and loopback detection will bring a large
computational overhead [19]. Especially in complex orchard environments, the lack of
loopback detection may lead to the accumulation of LiDAR SLAM position errors over time,
which affects the accuracy and effectiveness of SLAM back-end mapping. Wang et al. [20]
proposed a global descriptor LiDAR-Iris for LiDAR point clouds, which generates a binary
LiDAR-Iris feature map for each point cloud for fast and accurate loopback detection [21].
However, this method takes a long time to search for loopbacks and fails to differentiate
between details in orchard environments with multiple similar features, leading to loopback
failure. He et al. [22] proposed a global descriptor of multi-viewpoint projection (M2DP) to
describe the point clouds and use it for loopback detection, projecting the 3D point cloud to
multiple 2D planes and generating density features for the points in each plane [23]. Then,
the left and right singular vectors of these features are used as descriptors. This algorithm
outperforms the existing global 3D descriptors in both accuracy and efficiency. However,
it takes extra computational overhead to calculate a frame of the point cloud descriptor
and cannot be applied to the SLAM framework. Chen et al. [24] proposed a convolutional-
neural-network-based (CNN-based) method, OverlapNet, for LiDAR loopback detection. It
identifies whether a loopback is detected and the change of yaw angle between two frames
of data obtained by LiDAR [25]. However, the training process requires a large scale of input
data, including depth images, grayscale images, normal maps and semantically segmented
images. This extensive data preprocessing step is both cumbersome and impractical for
deployment. Moreover, the deep-learning-based image retrieval method employed is a
global approach that requires a lot of disparity data for pre-training. Therefore, this method
is not suitable for orchard environments where conditions are often highly similar.

LiDAR Odometry and Mapping in Real-time (LOAM) is the most representative
real-time 3D laser SLAM algorithm based on feature matching [26,27]. It has a small
amount of computation and motion compensation, but there is no loopback detection
and back-end graph optimization, and in complex orchard environments, the position
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error will accumulate over time, leading to low positioning accuracy or even positioning
failure. To solve this problem, Shan et al. [28] added a loopback detection module to
find the loopback point by combining the Iterative Closest Point (ICP) and Euclidean
distance. It introduced lightweight and ground-optimized processing in feature extraction,
along with a lightweight, ground-optimized LiDAR odometry and real-time mapping
solution. This is exemplified by the Lightweight and Ground-Optimized LiDAR Odometry
and Mapping on Variable Terrain (LeGO-LOAM) method, which attains comparable or
better accuracy while minimizing computational resource usage. However, its loopback
detection algorithm, which relies on ICP matching, faces challenges in terms of time-
intensive matching processes and limited real-time performance capabilities. In complex
orchard environments, there is a large cumulative error in the initial value of the loop
frame obtained by recursion, and the initial value will still fall into the local optimum,
making the process hardly converge to the correct result [29,30]. We propose to integrate the
Faster_GICP and NDT algorithms on the basis of the LeGO-LOAM algorithm for loopback
alignment, aiming to reduce the number of features used for matching and the number
of correlations used for optimization for subsequent matching, thereby improving the
accuracy and efficiency. We use a chassis to build a software and hardware system, and the
performance of the algorithms is verified by field-building experiments under the robot
operating system (ROS).

2. Algorithm Principle and Improvement
2.1. LeGO-LOAM Algorithm

LeGO-LOAM is a lightweight real-time positioning and mapping algorithm based
on 3D LiDAR, which mainly consists of five parts: point cloud segmentation, feature
extraction, LiDAR odometry, LiDAR mapping, and pose integration. It takes 3D LiDAR
point clouds as the inputs and outputs 6DoF position estimation [31]. As shown in Figure 1,
firstly, the collected orchard environment point cloud is clustered and segmented, and the
ground point cloud is separated. At the same time, a small number of point cloud clusters
are filtered out. The two-step Levenberg-Marquardt (L-M) optimization method is used
to solve the transformation of six degrees of freedom between consecutive frames. The
first step uses the ground point cloud to estimate the plane transformation parameters,
while the second step matches the edge points and surface points in the segmented point
cloud to obtain the pose transformation matrix, further process, and register. Finally, it
performs loopback detection to correct the motion estimation drift, and outputs the final
pose estimation.

Figure 1. LeGO-LOAM algorithm flow.



Sensors 2024, 24, 551 4 of 13

2.2. Loopback Detection Algorithm

In the SLAM approach, the orchard robot position estimation is a recursive process.
This means that the current frame position is calculated from the pose of the previous
frame. The essence of loopback detection is to find the similarity alignment between
two frames of the point cloud [32] in the motion process of the orchard robot, finding
where the current point cloud frame xj(j = 1, 2, . . . , N − C) is similar to the historical
frame xi(i = 1, 2, . . . , N) in real time during the movement of the orchard robot, and
construct the position constraints between the loopback pairs, as shown in Figure 2a.
To ensure the reliability of loopback detection, the historical frame of the query needs
to maintain a certain distance from the current frame C. Over time, the positional error
will accumulate and lead to trajectory drift [33], as shown in Figure 2b. The loopback
detection is very effective in detecting the trajectory drift and can significantly reduce the
cumulative errors of map building and localization, making the orchard robot perform
obstacle avoidance navigation and other tasks more accurately and quickly. Therefore,
it is essential to perform loopback detection for trajectory optimization on large-scale
SLAM tasks in orchard environments [34]. The following is an example of how to perform
loopback detection for trajectory optimization.

(a) (b)

Figure 2. Schematic diagram of loopback detection: (a) loopback detection success; and (b) loopback
detection failure.

2.3. Improved Algorithm Principle

The flow of the proposed method in this study is shown in Figure 3. The front-end
odometer maintains a sub-map. Before feature extraction, the point cloud uses KD-Tree to
check dynamic objects and remove them. Then, loopback detection is performed, and a two-
step point filter is implemented using the accept–reject sampling mechanism according to
the covariance matrix SVD results [35]. Only the points with high planarity are retained to
reduce the distribution approximation error. Then, a further iterative filtering is performed
according to the matching error of the LiDAR points in the attitude estimation optimization
to remove the point cloud that contributes less to the positional optimization and to improve
the alignment efficiency. In order to further reduce the deviation, the NDT alignment is
performed on this basis to improve the accuracy of the alignment [36,37], the target point
cloud is voxelized, followed by normal distribution fitting based on the points in each voxel
grid. The original point cloud is transformed and projected into the grid to calculate the
probability density of the point cloud. Subsequently, the Hessian matrix method is used
to find the minimum value of the point cloud probability distribution function, and then
the optimal transformation matrix is obtained. Finally, it judges whether the termination
conditions are satisfied to complete the fine registration of the point cloud.
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Figure 3. LeGO-LOAM-FN improved process.

The LeGO-LOAM-FN algorithm flow is as follows:

(1) The system reads the point cloud data collected by LiDAR, and the points are projected
as a depth image. Then, it estimates the ground plane of the depth map, extract the
ground points, and the ground points are marked as base points. Each remaining
point cloud Kt is divided into different clusters by the point cloud segmentation
module and marked as segmentation points. Point cloud clusters with a number
of point clouds less than 30 were filtered out and different labels were assigned to
retained point cloud clusters.

(2) Since dynamic objects are easy to be regarded as feature points, in order to reduce
errors, the front-end odometer maintains a sub-map and uses K-Dimensional tree (KD-
Tree) to establish a spatial index structure, create two vectors to store the information
of the searched proximity points (one to store the index of the point, and one to store
the square of the distance of the point), and set the radius search threshold to find the
dynamic points to be culled out by the change between two frames.

(3) A two-step point filter based on acceptance–rejection sampling is used to exclude
points that rarely benefit LiDAR range performance. Specifically, the LiDAR point
cloud is first filtered, retaining only points with high planarity. The process is
as follows:

(a) First, calculate the covariance matrix C for each point and perform the singular
value decomposition (SVD):

Ct
i =

[
â, b̂, ĉ

]
×

 λ0 0 0
0 λ1 0
0 0 λ2

×
[

â, b̂, ĉ
]T

, (1)

where i is the orchard point cloud serial number: i = 1, 2, . . . , n. Use the trans-
formation matrix T in the homogeneous coordinate system to describe the “dis-
placements” and “rotations”, and use non-linear optimization (Gauss–Newton
method) to find the optimal matching T. The eigenvalues are λ0, λ1, λ2 obtained
and sorted in descending order, and â, b̂, ĉ are the corresponding eigenvector.

(b) In the first step of filtering, first accept projection sampling of the orchard point
cloud. Specifically, the maximum and minimum eigenvalues of λ0 and λ2

are normalized to obtain the “roughness” λ2 = λ2
λ0

: the smaller the value, the
better the planarity, the smaller the roughness, and the smaller the probability
of being rejected; on the contrary, the larger the value of λ2, the larger the
roughness and the larger the probability of being rejected. Each point is modeled
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probabilistically whether it is rejected or not. Suppose that the roughness obeys
the Gaussian distribution (target distribution):

f (P) =
1√
2πσ

exp

(
−
(
λ2 − 0

)2

2σ2

)
, (2)

where σ is a hyperparameter that needs to be preset. Then define a proposed
distribution, where the orchard LiDAR points are directly defined as a uni-
form distribution:

g(P) =
1
N

, (3)

where N′ is the number of orchard feature points. In addition, it is also necessary
to define a constant c = N′

√
2πσ

such that the highest point of c ∗ g(P) ≥ f (P)
and thus f (P) coincides with c ∗ g(P), and other values are strictly less than
c ∗ g(P). If the ith orchard feature point Pt

i is regarded as a sample, then the

corresponding f
(

Pt
i
)

and c ∗ g
(

Pt
i
)

can be calculated, and 0 <
f (Pt

i )
c∗g(Pt

i )
≤ 1

can be obtained according to the above inequality, which can be regarded as
a probability value f

(
Pt

i
)
. The larger the value, the closer the sampling is to

the target distribution, and it is considered that the ith feature point has the

probability of
f (Pt

i )
c∗g(Pt

i )
obeying the distribution f (P). Therefore, sampling on

the uniform distribution of
[
0, 1
]

obtains a probability value µ which can be
considered as a probability value if

µ ≤
f
(

Pt
i
)

c ∗ g
(

Pt
i
) . (4)

The ith feature point is considered to obey the distribution f (P), which is
retained. Otherwise, it will not participate in the following optimization.

(c) Then, optimize the pose estimation, with further iterative filtering based on the
contribution of the LiDAR points to the optimized objective function, where
the matching error of the point defines its contribution. The key step in the
optimization process is to construct iterative updating equations and calculate
an association error for each data association result, which is defined as

di = dT
i

(
Ct−1

i + TCt
i TT

)−1
di, (5)

similar to expression (2) defining the target Gaussian distribution f
(
dt

i
)
, and

the proposed uniform distribution g
(
dt

i
)

and the constant Cd, and sampling
on the uniform distribution at

[
0, 1
]

obtains µd. The difference is that when

µd ≤ f (dt
i)

cd∗g(dt
i)

, the correlation results are rejected because correlation results with

small residuals contribute less to the pose optimization and they need to be
eliminated. The sampling process reduces the number of points involved in the
transform optimization process.

(4) NDT registration is performed to improve accuracy so that the result after fine align-
ment can meet the preset constraints. The process is as follows.
The filtered orchard 3D point cloud dataset is divided into a number of fixed-size 3D
cubes. Each cube contains at least five point clouds, and the mean q and covariance
matrix C are derived within each cube, respectively:

q =
1
n

n

∑
i=1

xi, (6)
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C =
1

n − 1

n

∑
i=1

(xi − q)(xi − q)T , (7)

where n is the number of point clouds in the orchard cube; i is the point cloud
number i = 1, 2, . . . , n; xi is the point cloud in the matching orchard point cloud cube.
The discrete point cloud is represented as a segmented continuously differentiable
representation in the form of probability density, and then the probability density
(PDF) of each point location in the orchard cube is represented by the NDT algorithm:

p(x) =
1
m

exp
[
− (x − q)TC−1(x − q)

2

]
, (8)

where m is a constant. Create the probability value NDT of the first frame laser radar
scanning point falling into the box, and then use the odometer to initialize. The
samples of the second frame are mapped to the first scanning coordinate system
according to these coordinate transformation parameters, the probability density of
each point is summed and the mathematical expression of the evaluation coordinate
transformation parameters is

s(p) =
n

∑
i=1

p[T(p, xi)] = ∑
i

exp
[
− (xi − q)TC−1(xi − q)

2

]
, (9)

The Hessian matrix method is used to optimize s(p) and then remapped to the loop-
back detection frame coordinate system until the convergence condition is satisfied.
In finding the optimal solution for s(p), it can be solved by minimizing s(p) and
the problem of solving the optimal transformation of the matrix is viewed as the
s(p) minimization process. Jump to expression (9) to continue the loopback until the
convergence condition is satisfied and the optimal solution is obtained.

(5) The transform integration module combines the results from the LiDAR odometry
module and the LiDAR mapping module, and outputs the final position estimation.

3. Complex Orchard Environment Test
3.1. Test Equipment

The experimental platform for map construction is an orchard robot shown in Figure 4a,
and the hardware system mainly consists of 3D LiDAR (RS-LiDAR-16), and Jetson AGX
Xavier equipped with Ubuntu18.04 operating system. RS-LiDAR-16 is a 16-line digital
LiDAR redlaunched by RoboSense in Shenzhen, China. Jetson AGX Xavier is made by
NVIDIA in Santa Clara, California, USA. And LiDAR is mounted directly above the mobile
chassis, with a horizontal field-of-view (FOV) angle of 360°, a rotational speed of 10–20 Hz,
a vertical field of view of ±15°, a vertical angular resolution of 2°, a horizontal angular
resolution of 0.1°, an outgoing point count of up to 300,000 points/s, a maximum range of
150 m, and a ranging accuracy of ±2 cm. A body coordinate system V is defined to satisfy
the right-hand rule. The 3D LiDAR center is taken as the coordinate origin O, the x-axis
points to the front of the robot, the y-axis is parallel to the wheel axis of the robot and
points to the left, and the z-axis points vertically to the upper part of the robot. The orchard
point cloud data are recorded, and then the two algorithms are integrated into the robot
operating system to evaluate the performance of the two algorithms, LeGO-LOAM and
FN-LeGO-LOAM, in different scenarios in terms of the position estimation error.
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(a) (b)

Figure 4. Field orchard environmental experiment: (a) orchard robots; and (b) orchard environment.
1 3D LiDAR; 2 display; 3 GNSS receiver; and 4 industrial controller.

3.2. Test Environment

The data used for the experiments in this paper are the KITTI dataset in autonomous
driving [38] and data collected through the field. As shown in Figure 4b, taking the peach
orchard of Shanxi Agricultural University as the test site, the environment was scanned,
and the orchard robot was manually remote-controlled to travel through the orchard at
a speed of 0.5–1 m/s, and the 3D LiDAR recorded the point cloud data at a frequency of
10 Hz. The KITTI dataset has become a benchmark dataset to verify the performance of
vision and laser SLAM algorithms outdoors.

The test dataset adopts the sequence of urban road 00, with a scale of 4541-bit poses;
Scene 1, with a scale of 1870-bit poses; Scene 2, with a scale of 4604 robots poses, where the
terrain in the scene is flat, and the orchard robot moves smoothly without a large amount
of jitter; and Scene 3 with a scale of 2334 robot poses, and the experiment simulates the
frequent steering and jittering of the orchard robot in the actual picking task.

4. Results and Analysis
4.1. Test Results

In the experiment of Scene 3, the point cloud map of the actual environment generated
by the robot based on the LeGO-LOAM algorithm is shown in Figure 5a, and the dynamic
objects form the double image in the point cloud map. The point cloud map of the actual
orchard environment generated by the robot based on the LeGO-LOAM-FN algorithm
of this paper is shown in Figure 5b where the dynamic point cloud is eliminated in real
time (framed in red), and the processed point cloud is used for map building to reduce the
influence of the dynamic objects in the orchard on the map building and to improve the
matching accuracy.

(a) (b)

Figure 5. Dynamic object removal: (a) LeGO-LOAM algorithm; and (b) LeGO-LOAM-FN algorithm.
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In the loopback detection experiment of Scene 2, the point cloud map of the real
environment generated by the robot based on the LeGO-LOAM algorithm is shown in
Figure 6a. The loopback identification fails when the orchard robot returns to the starting
point, the end point of the radar odometer does not form a closed loopback with the starting
point, and the cumulative error of the position estimation leads to the drift of the robot’s
trajectory. The point cloud map of the actual orchard environment generated based on the
LeGO-LOAM-FN algorithm in this paper is shown in Figure 6b. The robot recognizes the
scene it has reached before and successfully performs the positional loopback correction to
make the trajectory closed loopback (framed in red).

(a) (b)

Figure 6. Loopback detection test: (a) LeGO-LOAM algorithm; and (b) LeGO-LOAM-FN algorithm.

4.2. Test Analysis

In order to evaluate the effectiveness of the proposed LeGO-LOAM-FN mapping
method in a field orchard, GNSS continuous acquisition of latitude and longitude informa-
tion is used as the standard trajectory information to compare with the algorithm output
trajectory. In order to visually quantify the algorithm performance, this paper evaluates the
two laser SLAM systems in terms of absolute trajectory error (ATE) between the algorithm
trajectory and the true value trajectory [39], and takes root mean square error (RMSE) and
standard deviation (STD) as the evaluation indices of the algorithms, which are used to
measure the deviation of the observed value from the true value, and the smaller value
indicates that the map trajectory is closer to the GNSS track.

The RMSE can characterize the building trajectory accuracy with the mathematical
expression

RMSE =

√
∑d

a=1
(
Xa − X′)2

d
, (10)

where X′ is the real value of the position of the orchard robot; Xa is the measured value;
d is the number of positions of the orchard robot; a is the position serial number; and
a = 1, 2, . . . , d.

The STD reflects the degree of dispersion of the build trajectory error, and the mathe-
matical expression is

STD =

√
∑d

a=1
(
Xa − X

)2

d − 1
, (11)

where X̄ is the mean value.
The motion trajectory of the orchard test was estimated by four algorithms: A-LOAM,

LIO-SAM, LeGO-LOAM, and LeGO-LOAM-FN. As shown in Figure 7, the algorithm had
the best effect and was basically consistent with the true trajectory (ground truth).



Sensors 2024, 24, 551 10 of 13

(a) (b) (c) (d)

Figure 7. Trial traces versus real-value traces: (a) KITTI 00; (b) Scene 1; (c) Scene 2; and (d) Scene 3.

Table 1 shows the estimated path length; time consumption; the CPU occupancy rate;
RMSE; and STD of A-LOAM, LIO-SAM, LeGO-LOAM, and LeGO-LOAM-FN, reflecting
the real-time robustness and stability of the algorithm.

Table 1. Test error comparison between different algorithms.

Scene Algorithm Path Length (m) Time
Consumption (s)

The CPU
Occupancy Rate

(%)
RMSE (m) STD (m)

Kitti00 (4541)

A-LOAM 3737.584 558.365 69 7.81 4.13
LIO-SAM 3728.573 563.882 63 3.61 1.91

LeGO-LOAM 3731.198 570.167 65 5.04 2.04
LeGO-LOAM-FN 3727.482 541.702 61 2.36 0.88

#1 (1870)

A-LOAM 161.227 195.835 59 0.87 0.54
LIO-SAM 157.836 196.433 56 0.19 0.10

LeGO-LOAM 158.209 201.961 557 0.21 0.11
LeGO-LOAM-FN 155.437 192.382 53 0.16 0.08

#2 (4604)

A-LOAM 440.294 488.274 65 1.62 1.05
LIO-SAM 449.869 497.239 63 0.45 0.34

LeGO-LOAM 445.286 489.977 61 0.39 0.23
LeGO-LOAM-FN 437.761 469.536 56 0.25 0.14

#3 (2334)

A-LOAM 231.802 341.463 67 2.01 1.47
LIO-SAM 223.293 343.803 63 1.47 1.21

LeGO-LOAM 226.875 339.368 62 1.36 0.98
LeGO-LOAM-FN 217.663 321.779 59 0.45 0.26

The test found that the map built by LeGO-LOAM-FN algorithm was clearer, the loop
effect was better, the estimated trajectory generated was smoother, the overall positioning
was more accurate, and the trajectory length was closer to the real trajectory length. Com-
pared with LeGO-LOAM algorithm, the CPU occupancy was reduced by 4% on average,
and had better real-time performance, and reduced the time consumption by about 5%. In
KITTI 00, the root mean square error and standard deviation of the positioning trajectory
of the LeGO-LOAM-FN algorithm are 2.36 m and 0.88 m, respectively, which are reduced
by 53% and 57%. In Scene 1, the root mean square error and standard deviation of the
proposed algorithm are 0.16 m and 0.08 m, respectively, which are reduced by 24% and 27%
compared with the LeGO-LOAM algorithm. In Scene 2, the root mean square error and
standard deviation of the LeGO-LOAM-FN algorithm in this paper are 0.25 m and 0.14 m,
respectively, which is reduced by 36% and 39% compared with the LeGO-LOAM algorithm
trajectory. In Scene 3, the LeGO-LOAM-FN algorithm uses an improved loopback detection
algorithm, which is more accurate and efficient compared with the baseline LeGO-LOAM
algorithm. The optimization of robot position estimation is obvious. The root mean square
error and standard deviation of the position estimation trajectory of the LeGO-LOAM-FN
algorithm are 0.45 m and 0.26 m, respectively, which are reduced by 67% and 73%.
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In the small-scale scene with a single loopback (Scene 1), the cumulative error of
the robot position estimation is small and the optimization space is limited. However, in
complex large-scale, multi-loopback scenes (KITTI00, Scene 2, Scene 3), multiple successful
loopback registrations by the LeGO-LOAM-FN algorithm also ensure the robot positioning
accuracy. In the large-scale agricultural scene, the cumulative error of multiple successful
loopback detections and corrections of the orchard robot is significantly reduced, which
improves the efficiency of the algorithm. In other words, the algorithm is not limited
by the scale of the scene, and the experimental results demonstrate the feasibility of the
LeGO-LOAM-FN algorithm for loopback registration in the farmland scene.

5. Conclusions

The present study addresses the intricate challenges encountered in simultaneous
localization and mapping (SLAM) within the context of complex orchard environments.
Specifically, the research focuses on issues arising from long loopback scenes, which often
lead to failures in loopback closure. To address these challenges, this study proposes a
novel mapping approach based on the LeGO-LOAM-FN algorithm. The effectiveness of the
proposed method is rigorously assessed through experiments conducted on both the KITTI
dataset and in diverse complex orchard settings. Employing a KD-Tree representation,
the algorithm meticulously constructs maps based on odometry, systematically removes
dynamic objects, and strategically divides the loop closure detection process for large-
scale scenes into two discerning steps. In the initial step, Faster_GICP is employed to
selectively eliminate point clouds exhibiting weak planarity and contributing minimally
to pose optimization. Subsequently, a refined loopback closure alignment is achieved
through the application of small-grid NDT, thereby enhancing the precision of registration.
The experimental results affirm the algorithm’s distinct advantages in navigating uneven,
large-scale agricultural terrains. The proposed approach effectively mitigates cumulative
pose estimation errors, ensuring a harmonious alignment between robot motion trajectories
and ground-truth trajectories. Notably, the proposed method consistently outperforms its
counterparts in multi-loop scenes, with the root mean square error and standard deviation
reduced to 0.45 m and 0.26 m, respectively. This represents a substantial enhancement of
67% and 73% over the baseline LeGO-LOAM algorithm, thereby satisfying the rigorous
requirements for point cloud mapping in complex orchard environments.
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Abbreviations
Acronym Full Name
LeGO-LOAM-FN An Improved Simultaneous Localization and Mapping Method Fusing

LeGO-LOAM, Faster_GICP, and NDT in Complex Orchard Environments
Faster_GICP Faster Generalized Iterative Closest Point
NDT Normal Distributions Transform
KD-Tree K-Dimensional Tree
LeGO-LOAM Lightweight and Ground-Optimized LiDAR Odometry and Mapping on

Variable Terrain
SLAM Simultaneous Localization and Mapping
KF Kalman Filter
SVSF Kalman Smooth Variable Structure Filter
GNSS Global Navigation Satellite System
LOAM LiDAR Odometry and Mapping in Real Time
ICP Iterative Closest Point
ROS Robot Operating System
L-M Levenberg-Marquardt
A-LOAM Advanced LiDAR Odometry And Mapping
LIO-SAM Tightly Coupled LiDAR Inertial Odometry via Smoothing and Mapping
ATE Absolute Trajectory Error
RMSE Root Mean Square Error
STD Standard Deviation

References
1. Yao, C.; Shi, W.; Liu, C.; Chen, H.; Chen, Q. Overview of mobile robot navigation technology. Sci. Sin. Inf. 2023, 53, 2303–2324.

[CrossRef]
2. Wang, H.; Chen, L.; Chaoui, H.; Wang, Y. Introduction to the special section on emerging technologies in navigation, control

and sensing for agricultural robots: Computational intelligence and artificial intelligence solutions. Comput. Electr. Eng. 2023,
112, 109007. [CrossRef]

3. Ji, Y.; Li, H.; Zhang, M.; Wang, Q.; Wang, K. Navigation System for Inspection Robot Based on LiDAR. Trans. Chin. Soc. Agric.
Mach. 2018, 49, 14–21.

4. Huang, L. Review on LiDAR-based SLAM Techniques. In Proceedings of the 2021 International Conference on Signal Processing
and Machine Learning (CONF-SPML), Stanford, CA, USA, 14 November 2021; pp. 163–168.

5. Cao, S.; Lu, X.; Shen, S. GVINS: Tightly Coupled GNSS–Visual–Inertial Fusion for Smooth and Consistent State Estimation. IEEE
Trans. Robot. Publ. IEEE Robot. Autom. Soc. 2022, 38, 2004–2021. [CrossRef]

6. Demim, F.; Nemra, A.; Louadj, K. Robust SVSF-SLAM for Unmanned Vehicle in Unknown Environment. IFAC-PapersOnLine
2016, 49, 386–394. [CrossRef]

7. Li, D.; Bao, J. Research progress on key technologies of underwater operation robot for aquaculture. Trans. Chin. Soc. Agric. Eng.
2018, 34, 1–9.

8. Engel, J.; Koltun, V.; Cremers, D. Direct Sparse Odometry. arXiv 2016, arXiv:1607.02565.
9. Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2017,

34, 1–17. [CrossRef]
10. Melo-Pinto, P. Real-Time 3D Object Detection and SLAM Fusion in a Low-Cost LiDAR Test Vehicle Setup. Sensors 2021, 21, 8381.
11. Zheng, L.; Fu, Z. BALM: Bundle Adjustment for Lidar Mapping. In Proceedings of the International Conference on Robotics and

Automation, Xian, China, 30 May–5 June 2021; Volume 6, pp. 3184–3191.
12. Chen, S.; Guo, Y.; Gao, T.; Gong, Q.; Zhang, J. RGB-D Visual SLAM Algorithm for Mobile Robots. Trans. Chin. Soc. Agric. Mach.

2018, 49, 38–45.
13. Zhang, T.; Zhang, H.; Li, Y.; Nakamura, Y.; Zhang, L. FlowFusion: Dynamic Dense RGB-D SLAM Based on Optical Flow. In Pro-

ceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020.
14. Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual,

Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. Publ. IEEE Robot. Autom. Soc. 2021, 37, 1874–1890. [CrossRef]
15. Xue, G.H.; Li, R.X.; Zhang, Z.H.; Liu, R. Research status and development trend of SLAM algorithm based on 3D lidar. Inf.

Control 2023, 52, 19.
16. Shi, Y.; Wang, H.; Yang, T.; Liu, L.; Cui, Y. Integrated Navigation by a Greenhouse Robot Based on an Odometer/Lidar. Instrum.

Mes. Metrol. 2020, 19, 91–101. [CrossRef]
17. Hu, D.D.; Yu, P.R.; Yue, F.F. Multi-sensor mapping method for indoor degraded environment. Appl. Res. Comput. 2021,

38, 1800–1808.

http://doi.org/10.1360/SSI-2022-0420
http://dx.doi.org/10.1016/j.compeleceng.2023.109007
http://dx.doi.org/10.1109/TRO.2021.3133730
http://dx.doi.org/10.1016/j.ifacol.2016.10.585
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1109/TRO.2021.3075644
http://dx.doi.org/10.18280/i2m.190203


Sensors 2024, 24, 551 13 of 13

18. Tong, GF.; Zhange, J.W.; Liu, M.T.; Yue, X.Y. SLAM algorithm based on efficient loop detection and relocalization. Control Decis.
2020, 35, 587–592.

19. Kang, J.M.; Zhao, X.M.; Xu, Z.G. Loop closure detection of unmanned vehicle trajectory based on geometric relationship between
features. China J. Highw. Transp. 2017, 30, 121–128+135.

20. Wang, Y.; Sun, Z.; Xu, C.Z.; Sarma, S.E.; Yang, J.; Kong, H. LiDAR Iris for Loop-Closure Detection. In Proceedings of the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020;
pp. 5769–5775.

21. Zhong, S.; Qi, Y.; Chen, Z.; Wu, J.; Chen, H.; Liu, M. DCL-SLAM: A Distributed Collaborative LiDAR SLAM Framework for a
Robotic Swarm. IEEE Sens. J. 2023. [CrossRef]

22. He, L.; Wang, X.; Zhang, H. M2DP: A novel 3D point cloud descriptor and its application in loop closure detection. In Proceedings
of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016;
pp. 231–237.

23. Qiang, L.; Liu, J. IM2DP: An intensity-based approach to loop closure detection and optimization for LiDAR mapping. In
Proceedings of the Conference on Computer Graphics, Artificial Intelligence, and Data Processing, Washington, DC, USA,
7–14 February 2023.

24. Chen, X.; Läbe, T.; Milioto, A.; Röhling, T.; Vysotska, O.; Haag, A.; Behley, J.; Stachniss, C. OverlapNet: Loop Closing for
LiDAR-based SLAM. In Proceedings of the Robotics: Science and Systems XVI. Robotics: Science and Systems Foundation,
Virtually, 12–16 July 2020.

25. Chen, X.; Lbe, T.; Milioto, A.; Rhling, T.; Behley, J.; Stachniss, C. OverlapNet: A siamese network for computing LiDAR scan
similarity with applications to loop closing and localization. Auton. Robots 2022, 46, 61–81. [CrossRef]

26. Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the Robotics: Science and Systems
Conference, Berkeley, CA, USA, 12–16 July 2014.

27. Zhang, J.; Singh, S. Low-Drift and Real-Time Lidar Odometry and Mapping. Auton. Robots 2017, 41, 401–416. [CrossRef]
28. Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 4758–4765.

29. Rusinkiewicz, S. A Symmetric Objective Function for ICP. ACM Trans. Graph. 2019, 38, 85. [CrossRef]
30. Bin, W.; Zhang, Z.; He, X. Resilient LiDAR SLAM Algorithm Based on Normal Distributions Transform and Line-Plane ICP; Geomatics

and Information Science of Wuhan University: Wuhan, China, 2023.
31. Wang, Z.; Liu, G. Improved LeGO-LOAM Method Based on Outlier Points Elimination. Measurement 2023, 31, 14. [CrossRef]
32. Yu, Y.W.; Wang, k.; Du, L.Q.; Qu, B. The matching point pairs of the point cloud model. Opt. Precis. Eng. 2023, 31, 14. [CrossRef]
33. Man, Z.; Yuhan, J.; Shichao, L.; Ruyue, C.; Hongzhen, X.; Zhenqian, Z. Research progress of agricultural machinery navigation

technology. Trans. Chin. Soc. Agric. Mach. 2020, 51, 18.
34. Geng, L.J.; Gu, J.; Bie, X.T.; Ran, W.X.; Lan, Y.B. Research on orchard SLAM method based on Scan Context and NDT-ICP fusion.

J. Chin. Agric. Mech. 2022, 43, 44–50.
35. Wang, J.; Xu, M.; Foroughi, F.; Dai, D.; Chen, Z. FasterGICP: Acceptance-Rejection Sampling Based 3D Lidar Odometry. IEEE

Robot. Autom. Lett. 2022, 7, 255–262. [CrossRef]
36. Das, A.; Waslander, S.L. Scan registration with multi-scale k-means normal distributions transform. In Proceedings of the

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012;
pp. 2705–2710.

37. Einhorn, E.; Gross, H.M. Generic NDT mapping in dynamic environments and its application for lifelong SLAM. Robot. Auton.
Syst. 2015, 69, 28–39. [CrossRef]

38. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

39. Xu, X.; Zhang, L.; Yang, J.; Cao, C.; Wang, W.; Ran, Y.; Tan, Z.; Luo, M. A Review of Multi-Sensor Fusion SLAM Systems Based on
3D LIDAR. Remote Sens. 2022, 14, 2835. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JSEN.2023.3345541
http://dx.doi.org/10.1007/s10514-021-09999-0
http://dx.doi.org/10.1007/s10514-016-9548-2
http://dx.doi.org/10.1145/3306346.3323037
http://dx.doi.org/10.1016/j.measurement.2023.112767
http://dx.doi.org/10.37188/OPE.20233104.0503
http://dx.doi.org/10.1109/LRA.2021.3124072
http://dx.doi.org/10.1016/j.robot.2014.08.008
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.3390/rs14122835

	Introduction
	Algorithm Principle and Improvement
	LeGO-LOAM Algorithm
	Loopback Detection Algorithm
	Improved Algorithm Principle

	Complex Orchard Environment Test
	Test Equipment
	Test Environment

	Results and Analysis
	Test Results
	Test Analysis

	Conclusions
	References

