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Abstract: With the rapid development of unmanned aerial vehicle technology and its increasing
application across various fields, current airspace resources are insufficient for unmanned aerial
vehicles’ needs. This paper, taking Zigong General Aviation Airport in Sichuan as a case study,
explores the lateral safety spacing in a mixed operation mode of unmanned aerial vehicles and
manned aircraft. Currently, there are no standardized regulations for the safe spacing of the fusion
operation of unmanned and manned aircraft. Theoretical research is essential to provide a reference
for actual operations. It introduces the UM-Event (unmanned and manned aircraft-event) collision
risk model, an adaptation of the Event collision risk model, considering factors like communication,
navigation, surveillance performance, human factors, collision avoidance equipment performance,
and meteorology. Safety spacing was determined via simulation experiments and actual data analysis,
adhering to the target safety level (TSL). Findings indicate that surveillance performance has a minor
impact on safety spacing, while communication and navigation significantly influence it. The
safety spacing, influenced solely by CNS (communication performance, navigation performance,
surveillance performance) and combined factors, increased from 4.42 to 4.47 nautical miles. These
results offer theoretical guidance for unmanned aerial vehicle safety in non-segregated airspace.

Keywords: manned and unmanned aircraft; collision risk; safety space

1. Introduction

Recently, low-altitude airspace has experienced rapid development, with drones
flourishing and artificial intelligence significantly advancing the drone market [1,2]. Con-
currently, advancements in UAV communication [3], line-of-sight and over-the-horizon
navigation [4], surveillance [5], mission payloads, and cruise inspection technologies are
notable [6]. In this context, the demand for UAVs for airspace resources is increasing, and
there is an urgent need to make full use of existing airspace resources in order to improve
the efficiency of airspace utilization and maximize the value of airspace resources. There-
fore, making full use of airspace resources and realizing the fusion operation of manned
aircraft and UAVs [7] have become the future development direction, and solving the risk
of collision between UAVs and manned aircraft [8] and the safety spacing problem is also
becoming increasingly important. Given these advancements, the demand for airspace
resources by UAVs is escalating, necessitating the efficient utilization and maximization of
existing airspace resources [9]. Consequently, fully leveraging these resources to integrate
manned and unmanned aircraft operations is emerging as a key future trend. Addressing
the collision risks and safety intervals between unmanned and manned aircraft is becoming
increasingly crucial [10].

Reich et al. introduced the Reich model for parallel flight paths, focusing on aircraft
position, velocity, and random deviation [11]. Subsequently, Prof. Brooker from the UK

Sensors 2024, 24, 553. https://doi.org/10.3390/s24020553 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020553
https://doi.org/10.3390/s24020553
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0004-4168-7782
https://doi.org/10.3390/s24020553
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020553?type=check_update&version=1


Sensors 2024, 24, 553 2 of 20

developed the EVENT collision risk model, advancing the Reich model to assess minimum
safe aircraft spacing. This model offers innovative insights and theoretical support for
aircraft flight safety analysis [12,13]. Lili Wang and colleagues designed a collision risk
assessment model for small UAVs in low-altitude airspace, accounting for different flight
maneuvers and the random speed distribution of these UAVs, to understand the correlation
between collision risk and UAV density [14]. In the context of mixed operations of UAVs
and manned aircraft, Qing Yuan Yu and team categorized UAVs by risk altitude layers,
calculating the collision control intervals between UAVs and manned aircraft, considering
command delays [15]. Tamer Savas and associates proposed a new UAV path model for
integrating UAVs into non-segregated airspace, validated using real-time simulation [16].
In 2022, Noh S and John Shortle introduced the Dynamic Event Tree (DET) framework for
assessing collision risks and safety spacing in various aircraft, applying it to simulated
collision scenarios [17]. By 2023, Figuet B had developed a novel, data-driven method using
Monte Carlo simulation and extreme value theory to estimate in-air collision probabilities,
offering significant improvements over traditional approaches for assessing aircraft collision
risk and safety spacing [18].

With the current deepening of the research, domestic and international research on
the collision risk factors between aircraft focuses on communication, navigation, and
surveillance performance (CNS performance) [19]. To study the effect of CNS performance
on aircraft positioning error, we establish a multi-aircraft collision risk model, analyze the
collision risk under different spacing by arithmetic examples, and determine the minimum
safe spacing, which is practical and scalable for the development of UAV traffic management
and network design lateral isolation standards [20]. This paper is currently selected to
systematically analyze them from the perspective of communication, navigation, and
surveillance performance [21]. At the same time, there are some researchers who joined
this with the study of human factors. Kelly D [22] introduced the analysis of human factors
into 50 controlled flights concerning ground aviation accidents from 2007 to 2017, which
comprised different perspectives, qualitative dimensions of the human factor, quantitative
elaboration, and human causes that contribute to the risk of collision between the aircraft
due to equipment factors. The causes of human-caused collision risk include navigational
errors due to equipment factors that cause the aircraft to deviate from the designated flight
path and flight deviations due to subjective human errors that cause the aircraft to fly on a
non-designated flight path. However, fusion operation implies the safe fusion operation
of unmanned and manned aircraft, and factors affecting safety must be considered in
various aspects, and it has also been shown that onboard collision avoidance equipment
(TCAS) and meteorological conditions have a greater impact on fusion operation. The
study by Zhaoning Zhang [23] shows that onboard collision avoidance equipment, as a
vital safety measure for the fusion operation of unmanned and manned aircraft, plays
a key role in ensuring the safety and synergy of aviation activities. Schäfer M [24] and
Xiaohan Liao et al. [25] described that the onboard equipment of an aircraft draws on a
variety of advanced technologies, such as radar, cameras, and infrared sensors, in order to
monitor the environment around the aircraft in real time, to warn in advance, and to avoid
potential collision risks [26], not to mention the meteorological conditions, whose wind
speed, temperature, and barometric pressure all have a greater impact on the aircraft. Qi
Li [27] and others described how aircraft flights are usually affected by high-altitude winds,
and that different wind directions lead to different trajectories, and added meteorological
factors to the modeling calculations [28]. Different meteorological conditions can lead to
changes in the refractive index of the atmosphere, which affects the speed and direction of
signal transmission, and thus the positioning accuracy. In a positioning system, the speed
and direction of signal transmission are very important. When the signal passes through
atmospheric layers of different densities, refraction occurs, leading to changes in the speed
and direction of signal transmission. This change causes the signal to arrive at the receiver
at a different time and in a different direction than expected, resulting in aircraft positioning
errors [29].
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Therefore, in-depth studies on collision risk and safe spacing of UAVs in converged
airspace are needed in order to predict the conflict threat to manned aircraft in a timely
manner [30]. The above studies demonstrated the research progress for aircraft collision
risk and safe spacing, involving the application of different models and methods, as well
as the analysis of collision risk between UAVs and manned aircraft, which are important
to ensure the safety of aircraft in flight [31]. However, the above studies are not compre-
hensive enough to consider the safety factors affecting the fusion operation of manned
and unmanned aircraft, and in this paper, we will comprehensively consider the influence
of multiple factors on the lateral safety spacing of fusion operation [32]. Firstly, we will
introduce the domestic and international research on the collision risk of fusion opera-
tion; analyze the influence of CNS performance, human factors, TCAS equipment, and
meteorological conditions on the positioning error of the manned and unmanned aircraft
in fusion operation; establish the collision risk model of fusion operation according to
the influencing factors, mainly the study of the lateral safety spacing of fusion operation
between the unmanned aircraft and the manned aircraft; and use the algorithm to calculate
the lateral safety spacing of fusion operation. Finally, it is brought into the actual operation
scene for simulation verification to analyze the relationship between collision risk and
safety spacing.

2. Positioning Error Analysis
2.1. Errors in CNS Performance

This study’s UAV and manned aircraft flight activities are conducted under
performance-based navigation. The positional accuracy error primarily hinges on the CNS
performance parameters, encompassing three components: RNP (Required Navigation Per-
formance), RCP (Required Communication Performance), and RSP (Required Surveillance
Performance).

The specific values for these parameters are available in Document 9613 [33], issued
by the International Civil Aviation Organization (ICAO).

Let us denote “a” as the parameter value for RNP. σa represents positioning errors due
to navigation performance.

Based on the definition of RNP “a” in Table 1, RNP signifies that there is a 95%
probability that an aircraft’s navigation accuracy will be within “a” nautical mile of its
designated flight path [34]. From this, we can derive the following definition:

∫ a

−a

1√
2πσa

e
− x2

2σ2
a dx ≥ 0.95 (1)

Table 1. RNP performance parameters.

Data Accuracy (Nautical Miles)

RNP0.3 ±0.3
RNP1 ±1
RNP4 ±4

RNP12.6 ±12.6
RNP20 ±20

Let “b” represent the parameter value for RCP; “σb” stands for positioning error due to
communication performance; and “v” is the component of the cruising speed of the aircraft
on the line connecting the two aircraft.
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According to Table 2, this parameter reflects the maximum processing time, completed
in 95% of instances, and is recognized as the operationally acceptable performance, as
evidenced by controllers and pilots [35]. Consequently, we deduce the following:

∫ bv

−bv

1√
2πσb

e
− x2

2σ2
b dx ≥ 0.95 (2)

Table 2. RCP performance parameters.

Data Processing Time Contiguity Available Completeness

RCP10 10 s 0.999 0.99998 10−5

RCP60 60 s 0.999 0.9999 10−5

RCP120 120 s 0.999 0.9999 10−5

RCP240 240 s 0.999 0.999 10−5

RCP400 400 s 0.999 0.999 10−5

Let “c” be the parameter value for RSP. σc represents the localization error due to the
surveillance performance, and “v” is the component of the cruise speed of the aircraft on
the line connecting the two aircraft.

As outlined in Table 3, the accuracy of RSP is determined by the radius of the circle
around the target location, indicating a 95% probability that the actual target location falls
within this circle. From this, we derive the following conclusion:

∫ cv

−cv

1√
2πσc

e
− x2

2σ2
c dx ≥ 0.95 (3)

Table 3. RSP performance parameters.

Data Specified Airspace Refresh Rate Reaction Time

RSP1 route ≤1 s 2 s
RSP2 terminal area ≤2 s 2 s
RSP3 run the scene ≤3 s 2 s
RSP4 parallel entry ≤4 s 2 s

The following can be found by using the above Equations (1)–(3):

σa = σn = a/1.96 = 0.5102a
σb = σc = bv/1.96 = 0.5102bv
σc = σs = cv/1.96 = 0.5102bv

(4)

Therefore, by Equation (4), it follows that

σ =
√

σ2
n + σ2

c + σ2
s =

√
0.2603(a2 + b2v2 + c2v2) (5)

where “v” is the component of the cruising speed of the aircraft on the line connecting the
two aircraft; and σn, σc, and σs denote the localization errors due to navigation, communi-
cation, and surveillance performance, respectively. “a”, “b”, and “c” are the values of the
RNP, RCP, and RSP parameters, respectively.

CNS was employed to assess the localization errors induced by both UAVs and
manned aircraft. Considering the specific conditions of communication, navigation, and
surveillance equipment at Zigong Airport, we opted for RNP1, RCP10, and RSP1 to
visualize and analyze the errors; the results are shown in Figures 1–3:
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In Figures 1–3, the horizontal coordinates represent the time required in minutes, and
the vertical coordinates represent the position error in nautical miles.

The Required Navigation Performance (RNP) is set at a value of 1. Figure 1 illustrates
the simulated effect of localization errors, which, over time, show significant instability
and randomness without accumulating. This is attributed to RNP’s utilization of advanced
navigation equipment and techniques, enabling real-time position monitoring and error
correction, thus preventing error accumulation. RNP employs GPS, inertial navigation, and
ground radar for multiple position corrections to ensure route accuracy.

The Required Communication Performance (RCP), with a value of 10, is depicted
in Figure 2. RCP-related localization errors tend to be unstable and random, lacking
cumulative effect and are influenced by factors like communication disruptions, course
deviations, speed changes, timing, and program errors.

The Required Surveillance Performance (RSP), valued at 1, is shown in Figure 3.
Similarly, RSP-induced positioning errors display instability and randomness over time
without accumulating. These errors may arise from monitoring signals, course deviations,
speed changes, timing errors, and program glitches.

The simulation results indicate that CNS performance significantly impacts aircraft
positioning errors, crucially affecting the minimum safe spacing in UAV-manned aircraft
fusion operations.

2.2. Errors in Other Factors

The horizontal positioning error between aircraft during TCAS conflict resolution can
be calculated using the following equation:

εTH = εθ · d (6)

where εTH denotes the horizontal positioning error; d is the horizontal distance between two
aircraft; and εθ indicates the trajectory angle error, which refers to the deviation between
the aircraft’s actual trajectory and the theoretical trajectory, and can be calculated using
the following formula: trajectory angle error is equal to the difference between the actual
trajectory angle and the theoretical trajectory angle.

The actual trajectory angle is the angle between the actual direction of flight of the
aircraft and due north, and can be expressed in mathematical notation as θa; the theoretical
track angle is the angle between the direction in which the aircraft should be flying and
due north, and can be expressed in mathematical notation as θt.

Therefore, the trajectory angle error can be expressed by the following equation:

εθ = θa − θt (7)

The horizontal positioning error can be expressed by the following equation:

εTH = (θa − θt) · d (8)

Aircraft positioning errors caused by the influence of human factors (including land
and air call delays and human cognitive reliability) can be expressed by the following
mathematical formula:

εp = εc + εh + εt (9)

where εp, εc, εh, and εt denote the errors due to aircraft localization errors, errors due
to land–air call delays, errors due to human cognitive reliability, and errors due to other
factors, respectively.

Specifically, the error due to land and air call delays can be calculated using the
following formula:

εc = vt (10)
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where v and t denote the speed of aircraft operation and the time of land–air call delay,
respectively.

The error due to human cognitive reliability can be calculated using the following equation:

εh = kh · (1 − ph) (11)

where kh denotes a constant to regulate the effect of human cognitive reliability on the error,
and ph denotes human cognitive reliability and takes values ranging from 0 to 1.

The error due to other factors can be calculated using the following formula:

εt = kt · (d + v + a) (12)

where kt, d, v, and a denote constants used to regulate the effect of other factors on the
error, distance error, velocity error, and indicated acceleration error, respectively.

In summary, the horizontal positioning error of an aircraft caused by human factors
can be expressed as

εp = vt + kh · (1 − ph) + kt · (d + v + a) (13)

The impact of meteorological conditions on positioning errors is multifaceted, involv-
ing various factors. Predominantly, changes in the atmospheric refractive index significantly
affect positioning accuracy by altering the speed and direction of signal transmission. These
changes are influenced by atmospheric conditions like temperature, humidity, and pressure.
The corresponding atmospheric refraction error can be quantified using a specific formula,
which takes into account these meteorological parameters:

εAri =
∫

n − 1ds (14)

where εAri denotes the atmospheric refractive index error, n is the atmospheric refractive
index, and s is the distance on the flight path of the aircraft. Since the atmospheric refractive
index is related to temperature, humidity, and other factors, it is necessary to consider the
influence of these factors on the atmospheric refractive index.

The atmospheric refractive index can be calculated using the following formula:

n = 1 + 77.6 × 10−6P − 5.6 × 10−7T + (3.73 × 10−6P − 0.042T − 0.0029H)
×10−6(λ2 + 0.011λ + 0.0003)

(15)

where P is the atmospheric pressure, T is the temperature, H is the relative humidity, and
λ is the wavelength of light.

Meteorological conditions can impact the distance and strength of signal transmission,
consequently affecting positioning accuracy. These variations can be measured by factors
like atmospheric transparency and water vapor content. The signal transmission error,
which reflects the impact of these variations on an aircraft’s positioning error, can be
calculated using a specific formula that considers these meteorological influences:

εST = 10 log
Pt

Pr
+ 20 log d + K (16)

where εST denotes the signal transmission error, Pt is the transmit power, Pr is the receive
power, d is the signal transmission distance, and K is a constant.

The transmit power and receive power can be calculated using the following equations:

Pt = GtP (17)

Pr = GrPt(
λ

4πd
)

2
(18)
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where Gt is the transmit antenna gain, P is the transmitter output power, Gr is the receive
antenna gain, and λ is the signal wavelength. Variations in signal transmission distance
and strength may be affected by a variety of factors, such as weather, terrain, obstacles, etc.
Therefore, K is a constant to account for the effect of these factors on signal transmission.

The thickness and density of the atmosphere influence the signal’s transmission path
and speed, subsequently affecting positioning accuracy. These atmospheric properties
are determined by factors like temperature and pressure. The atmospheric error, which
accounts for the impact of atmospheric thickness and density on aircraft positioning errors,
can be calculated using the following formula:

εATM = 0.5CdρV2S (19)

where εATM denotes the atmospheric error, Cd is the drag coefficient of the aircraft, ρ is the
atmospheric density, V is the speed of the aircraft, and S is the reference area of the aircraft.

Atmospheric density can be calculated using the following formula:

ρ = ρ0e−
h
H (20)

where ρ0 is the atmospheric density at sea level, h is the altitude of the aircraft, and H is the
thickness of the atmosphere.

Effect of wind: Wind in the air can cause an aircraft to deviate from its intended
trajectory, resulting in a positioning error. Wind error is the effect of wind on the positioning
error of an aircraft and can be calculated using the following formula:

εW = VW sin α (21)

where VW is the wind speed, and α is the angle between the wind direction and the heading.
The aforementioned factors influencing positioning accuracy can be analyzed and

quantified using meteorological observation data and measurements from positioning
systems. Understanding the extent of meteorological conditions’ impact on positioning
errors allows for the development of targeted measures to enhance positioning accuracy.

Positioning errors caused by meteorological conditions can be synthesized as follows:

εWC = εAri + εST + εATM + εw (22)

The error ε caused by the above factors all satisfy the normal distribution law and have
randomness; therefore, it is the positioning error caused by UAVs and manned aircraft. We
carried out the visual analysis of the error, and the results are shown below.

Data from Figures 4–6 indicate that the positioning error attributable to collision avoid-
ance equipment gradually increases over time. This trend highlights the varying impact
of equipment quality on aircraft, underscoring the need for systematic analysis in future
research. Positioning errors due to human factors exhibit significant randomness, reflecting
the inherent uncertainties in human cognitive reliability and their influence on aircraft
positioning. This randomness mirrors real-world scenarios. Conversely, positioning errors
caused by meteorological conditions display a stable pattern consistent with empirical
observations. Given the substantial impact of meteorological conditions on aircraft in flight,
they warrant focused attention in subsequent research.
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3. Modeling Crash Risk Calculations
3.1. Introduction to the Traditional Event Model

In the Event collision risk model, a rectangular body, labeled as “A”, represents the
geometric model of the UAV. This model defines the UAV’s dimensions, where the length,
width, and height of the rectangle correspond to the UAV’s length, wingspan, and fuselage
height, respectively. Centered around the geometric center of the manned aircraft, a spatial
orthogonal coordinate system is established. This system’s x, y, and z axes represent the
longitudinal, lateral, and vertical distances, respectively, in the relative motion between the
aircraft [36]. A detailed schematic is depicted in Figure 7.
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occur between the manned aircraft (A) and the UAV (B) if the manned aircraft is precisely
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In the diagram, “A” represents a manned aircraft, and “B” is an unmanned aircraft. The
likelihood of a lateral collision between these two aircraft is determined by multiplying two
probabilities: the chance that the manned aircraft “A” is positioned within the extended
collision box and the likelihood that the unmanned aircraft “B” is crossing the spacer
layer laterally.

Ny = GyE(0)Pz(0)
λx

Sx
(1 +

2vxλy

2vyλx
)(1 +

2vzλy

2vyλz
) (23)

Py(Sy) = 2Gy
λy

vy
(24)

where

Ny is the side impact risk;
E(0) is the longitudinal proximity rate;
Gy is the lateral interval loss rate;
Pz(0) is the vertical collision probability;
Py(Sy) is the lateral overlap probability of the two aircraft when the lateral minimum safe
spacing is S;
λx, λy, and λz are the length, wingspan, and height of UAV A, respectively;
vx,vy, and vz are the relative speeds of the two machines in the longitudinal, lateral, and
vertical directions, respectively.

3.2. UM-Event Model

Under the influence of CNS localization error, the actual distance between the two
aircraft is as follows:

D1 = d1 − X1 + X2 (25)

Additional factors like onboard collision avoidance equipment, human elements, and
meteorological conditions significantly influence the aircraft positioning errors, thereby
affecting the actual distance between aircraft. When calculating this distance, it is crucial
to incorporate the impact of these variables into the computational model. By utilizing
suitable models and algorithms, we can determine how each positioning error and the
initial aircraft distance influence the actual distance between aircraft. This approach aims
to minimize the safe distance during fusion operation, enhancing flight safety. Figure 9
depicts the relationship between the actual aircraft distance, each localization error, and the
initial aircraft distance.
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In Figure 9, we assume that in the absence of external factors such as human errors,
onboard collision avoidance systems, and meteorological conditions, the initial positions of
the two aircraft are at points A and B, with a lateral distance denoted as d0. When these
factors are considered, localization errors alter the lateral distance between the aircraft,
expressed as d1. The calculation process adjusts the aircraft’s initial position to account for
the increased impact of positioning errors from various factors. DT in the figure represents
the actual distance between the aircraft, factoring in these positioning errors. It is important
to note that the figure illustrates an extreme scenario where all positioning errors contribute
to a decreased distance between the aircraft, thereby heightening the risk of collision.

At this point, the true distance between the two aircraft can be calculated using
Equation (4). (The rightward positioning error of the aircraft is taken as “+”, and the
leftward positioning error is taken as “−”):

DT = d1 − εCNS1 + εCNS2 (26)

d1 = d0 − εother1 + εother2 (27)

εother =
√

ε2
TH + ε2

P + ε2
WC (28)

εCNS, εTH , εP, and εWC are the CNS performance error, collision avoidance equip-
ment error, human factor error, and meteorological condition error of the UAV-manned
aircraft, respectively.

Assuming that d0 is the initial distance between the two aircraft then at this point, DT
satisfies a normal distribution in both directions A and B.

DT ∼ d0 + N(0, σ2
1 + σ2

2 ) (29)

DT ∼ N(d0, σ2
1 + σ2

2 ) (30)

At this point, the probability density distribution function of the actual distance DT of
the aircraft can be expressed as

f (D T) =
1√

2π(σ2
1 + σ2

2 )
e
[− (DT−d0)

2

2(σ2
1+σ2

2 )
]

(31)

Then, the lateral overlap probability P of the two aircraft can be expressed as L1 and
L2, denoting the maximum wingspan of the two aircraft:

PDT =
∫ L1

L2

f (DT)dDT (32)

Based on the above analysis, the lateral collision risk model of two aircraft, after
considering multiple influencing factors, can be derived as follows:

Ny = 2PDT · E(0) · Pz(0) · PUM−Event (33)

where Ny is the sideways collision risk probability, and 2 represents two aircraft, manned
and unmanned; E(0) Pz(0) is the longitudinal proximity rate, and the vertical collision
probability, which is not calculated here to take 0 for the time being. PUM−Event denotes the
probability of a collision box crossing the spacer layer laterally in the EVENT model. It is
directly related to the flight speed of the aircraft and the size of the aircraft.

4. Example Calculations
4.1. Calculation of Safety Spacing

The collision risk model developed is a nonlinear function, and the Adam iterative
algorithm is applied to determine the aircraft’s minimum safe spacing. This algorithm
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operates by estimating the gradient’s first-order and second-order moments using an
exponentially weighted moving average, followed by parameter updates based on these
estimates [32]. The detailed procedure is outlined below:

f (D) = Ny (34)

It is translated into an equivalent iterative format:

Dn+1 = Dn − α · mn√
vn+1 + ε

(35)

where α is the learning rate; mn and vn are the exponentially weighted moving average of
the gradient and gradient squared for the nth iteration, respectively; and ε is a very small
constant used to avoid the case where the divisor is zero.

An initial value of D0 is chosen as the starting point of the iteration. It is also necessary
to choose an appropriate learning rate α and two exponentially weighted moving average
coefficients β1 and β2.

Starting from the initial value D0, the next approximate solution D1 is obtained via
continuous iterative computation, and then D1 is used as a new starting point to continue
iterative computation to obtain the next approximate solution D2, and so on, until the
condition of stopping iteration is satisfied.

Specifically, the iterative calculation is given by the following:

mn+1 = β1 · mn + (1 − β1) · f (Dn) (36)

vn+1 = β2 · vn + (1 − β2) · f 2(Dn) (37)

Dn+1 = Dn − α · mn√
vn+1 + ε

(38)

where f (Dn) is the derivative of the function f (D) at Dn.
Determine whether the absolute or relative error of the iteration sequence is less

than the preset accuracy. If the iteration converges, stop the iteration and output the final
approximate solution D; otherwise, continue the iterative computation.

The approximate solution D is the minimum safe spacing.

4.2. Simulation Calculation and Analysis

Conditional assumptions:

(1) It is assumed that only the horizontal safety spacing between aircraft A and aircraft B
in programmed independent routes is studied;

(2) The position errors affecting the two aircraft are independent and joint;
(3) The flight paths of the two aircraft are straight lines.

This study uses the operational scenario at Zigong Airport in Sichuan Province to
exemplify the lateral spacing during the fusion operation of unmanned and manned aircraft
along their flight paths. To incorporate the impacts of collision avoidance equipment error,
human factor error, meteorological condition error, and other factors, we conducted a
thorough review of the relevant literature and considered the specific context of Zigong
Airport. The factor values for the fusion operation of manned and unmanned aircraft
are determined accordingly. Detailed data values and experimental results are presented
in Table 4.

Given the fusion operation of unmanned aircraft and manned aircraft, the target safety
level of lateral collision risk according to ICAO is taken as TLS = 1.0 × 10−7. We selected
the Table 4 Zigong Airport fusion operation aircraft data as well as the environmental data
to conduct the collision risk simulation experiment.
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Table 4. Other factors affecting the positioning error of the aircraft take values.

Influencing Factor Twin-Tailed Scorpion Drone Cessna 172

Actual heading angle θa 45◦ 225◦

Theoretical heading angle θt 47◦ 226◦

Human cognitive reliability pn 80% 90%
Pressure P 700 hPa 700 hPa

Temp T 10 ◦C 10 ◦C
Relative humidity H 50% 50%
Wavelength of light λ 550 nm 600 nm

Transmitter Antenna Gain Gt 10 dBi 15 dBi
Transmitter output power PW 20 dBm 30 dBm
Receiving Antenna Gain Gr 12 dBi 13 dBi

Signal Transmission Distance ds 5 km 7 km
Aircraft drag coefficient Cd 0.04 0.03

Atmospheric density ρ 0.85 kg/m3 0.85 kg/m3

Speed of aircraft V 200 km/h 180 km/h
Reference area of aircraft S 20 m2 18 m2

Air velocity VW 15 m/s 10 m/s
Angle between wind and heading α 30◦ 30◦

In Simulation Scheme 1, we altered only the RNP (Required Navigation Performance)
and selected five different RNP levels for comparative analysis. To enhance clarity in the
experimental results, this scheme excludes considerations of RCP (Required Communica-
tion Performance) and RSP (Required Surveillance Performance). Figure 10 illustrates the
relationship between the collision risk and the minimum lateral safety distance between
the two aircraft, with the determined safety distances detailed in Table 5.
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RNP Performance Minimum Lateral Safety Distance (n Mile)

RNP0.3 2.146
RNP1 3.193
RNP4 4.299

RNP12.6 5.385
RNP20 6.442
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The results of Experiment 1 show that the risk of collision between aircraft gradually
decreases as the UAV spacing increases, which is consistent with the actual situation. The
results in Figure 8 show that when fusion operations use different navigation performance
(RNP), the effect on lateral safety spacing is significant, so special attention needs to be
paid to the consideration of RNP performance. In addition, variations in RNP performance
may also lead to an increase in collision risk at the same aircraft spacing. The calculated
minimum safe spacing of aircraft for some RNP performances is listed in Table 5, and the
difference between the five performances from RNP0.3 to RNP20 is more than 1 nautical
mile, which also indicates that the size of the RNP performance has a large effect on the min-
imum safe spacing of aircraft. At the same time, other factors, such as weather conditions
and communication equipment performance, need to be considered in the formulation of
the minimum safe distance for aircraft. Therefore, in practical application, it is necessary
to comprehensively consider a variety of factors in order to develop more scientific and
reasonable aircraft spacing requirements to ensure the safe operation of aircraft.

In Simulation Scheme 2, we focus solely on altering the RCP (Required Communication
Performance). We have chosen five different RCP levels for a comparative study. To ensure
clarity in the experimental outcomes, this scheme excludes RNP (Required Navigation
Performance) and RSP (Required Surveillance Performance) considerations. Figure 11
depicts the relationship between collision risk and the minimum lateral safety distance
between the two aircraft, with the calculated safe distances detailed in Table 6.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 11. Variation in collision risk with lateral spacing between two airplanes for different RCP 
performances. 

Table 6. Lateral safety spacing for different RCP performances. 

RCP Performance Minimum Lateral Safety Distance (n Mile) 
RCP10 9.776 
RCP60 9.829 
RCP120 9.990 
RCP240 10.594 
RCP400 11.839 

The results of Experiment 2 show that the inter-aircraft collision risk shows a gradual 
decrease as the spacing between UAVs and manned aircraft increases. In addition, an in-
crease in the RCP parameter also leads to an increase in collision risk at the same aircraft 
spacing. The communication performance (RCP) parameters listed in Figure 9 differ from 
each other in order to see the specific gap, which shows that the communication perfor-
mance has less influence on the collision risk of aircraft, which is consistent with the actual 
situation. The calculated minimum safe spacing between manned and unmanned aircraft 
under some of the RCP performance is listed in Table 6. From Table 6, it can be seen that 
the impact of RCP10 to RCP400 on the lateral minimum safe spacing is around 0.1 nautical 
miles, and these data are not negligible, which can provide a reference for the safe opera-
tion of the aircraft. 

In Simulation Scheme 3, we exclusively focus on varying the RSP (Required Surveil-
lance Performance), selecting 10 different RSP levels for comparative analysis. To enhance 
clarity in the results, this scheme omits considerations of RNP (Required Navigation Per-
formance) and RCP. Figure 12 illustrates the correlation between collision risk and the 
minimum lateral safety distance between aircraft, with the determined safe distances pre-
sented in Table 7. 

Figure 11. Variation in collision risk with lateral spacing between two airplanes for different RCP
performances.

Table 6. Lateral safety spacing for different RCP performances.

RCP Performance Minimum Lateral Safety Distance (n Mile)

RCP10 9.776
RCP60 9.829

RCP120 9.990
RCP240 10.594
RCP400 11.839

The results of Experiment 2 show that the inter-aircraft collision risk shows a gradual
decrease as the spacing between UAVs and manned aircraft increases. In addition, an
increase in the RCP parameter also leads to an increase in collision risk at the same aircraft
spacing. The communication performance (RCP) parameters listed in Figure 9 differ
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from each other in order to see the specific gap, which shows that the communication
performance has less influence on the collision risk of aircraft, which is consistent with the
actual situation. The calculated minimum safe spacing between manned and unmanned
aircraft under some of the RCP performance is listed in Table 6. From Table 6, it can be
seen that the impact of RCP10 to RCP400 on the lateral minimum safe spacing is around
0.1 nautical miles, and these data are not negligible, which can provide a reference for the
safe operation of the aircraft.

In Simulation Scheme 3, we exclusively focus on varying the RSP (Required Surveil-
lance Performance), selecting 10 different RSP levels for comparative analysis. To enhance
clarity in the results, this scheme omits considerations of RNP (Required Navigation Per-
formance) and RCP. Figure 12 illustrates the correlation between collision risk and the
minimum lateral safety distance between aircraft, with the determined safe distances
presented in Table 7.
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Table 7. Lateral safety spacing for different RSP performances.

RSP Performance Minimum Lateral Safety Distance (n Mile)

RSP1 9.776883
RSP2 9.776930
RSP3 9.777007
RSP4 9.777113
RSP5 9.777251
RSP6 9.777419
RSP7 9.777614
RSP8 9.777842
RSP9 9.778101
RSP10 9.778390

The results of Experiment 3 show that the risk of inter-aircraft collision gradually
decreases as the UAV manned aircraft spacing increases. The calculated minimum safe
spacing between manned and unmanned aircraft for some of the RSP performances is
listed in Table 7. Analyzing the calculation results, the surveillance performance has a small
impact on the collision risk of the aircraft, which is less than 0.002 nautical miles from RSP1
to RSP10. And the increase in the RSP parameter also increases the increase in collision risk
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under the same aircraft spacing, but the change is very small, and the pattern is consistent
with the actual situation.

In Simulation Scheme 4, the first scenario solely examines the impact of CNS (com-
munication, navigation, and surveillance) performance. The second scenario expands the
focus to include CNS performance, human factors, onboard collision avoidance systems,
and meteorological conditions. This comparative approach uses performance parameters
set as RNP1, RCP10, and RSP1. Figure 13 depicts the relationship between collision risk
and the minimum lateral safety spacing between aircraft, with the calculated safe distances
detailed in Table 8.
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Table 8. Minimum lateral safety spacing corresponding to the combined factors.

Influencing Factors Minimum Lateral Safety Distance Dmin

Consider only CNS performance 4.42 n mile
Consideration of Synthesis Factors in

UM-Event Modeling 4.47 n mile

The results of Experiment 4 show that there is a relationship between the distance
between the two aircraft and the risk of collision when manned and unmanned aircraft are
fused in operation. As the distance between them increases, the probability of collision
gradually decreases. It is worth noting that from Figure 11, we also observe that the inter-
section of the collision risk curve with TLS (target safety level) is delayed, and the minimum
safe spacing Dmin of the aircraft increases after considering other influencing factors. The
calculated minimum safety distance in Table 8 increases from the previous 4.42 n mile to
4.47 n mile. Combining the analyses of Experiments 1, 2, 3, and 4, the CNS (communication,
navigation, and surveillance) performance has a significant effect on the safety distance of
the aircraft, although its role varies among the experiments and has a significant effect. The
results of Experiment 4 also showed that in addition to CNS performance, factors such as
human factors, onboard equipment, and meteorological conditions also have an effect on
safe spacing. This study provides insights into understanding the relationship between
inter-aircraft collision risk and safety spacing. Taking other factors into account makes the
requirements for safety spacing more scientific and reasonable and helps to improve the
overall safety of aircraft fusion operations.
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5. Conclusions

When the collision count aligns with the target safety level, the derived spacing
between two aircraft becomes the minimum lateral safety spacing. Higher positioning
accuracy leads to reduced minimum safety spacing. Utilizing this methodology, further
studies can investigate the minimum vertical and longitudinal spacing for fusion operations
involving manned and unmanned aircraft. The experimental data confirm that increased
accuracy results in smaller safety spacings, consistent with standard aircraft operating
procedures. These findings also validate the 10 km horizontal safety spacing between
manned and unmanned aircraft, as specified by Zigong General Aviation Airport.

This study integrates the impacts of CNS positioning error, human factors, onboard
equipment, and meteorological conditions into the classical collision risk model, forming
the UM-EVENT model. This model, applied to the fusion operation scenario, allows
for calculating the minimum lateral safety spacing. The simulation results demonstrate
the practicality and applicability of this method in determining safety spacings for UAV-
manned aircraft fusion operations. The UM-EVENT model calculates the minimum lateral
spacing for fusion operations based on specified CNS performance parameters and target
level of safety (TLS). It also evaluates the collision risk associated with this spacing. Thus,
it offers theoretical support for the fusion operation of UAVs and manned aircraft and
contributes to the integration of UAVs into the national airspace system.

6. Outlook

The research on the safety spacing in the integrated operation of manned and un-
manned aircraft is still in the experimental stage. Due to constraints such as time, experi-
mental environment, equipment, team resources, and individual capabilities, this paper
lacks a perfect error margin. Accordingly, the following points are proposed for in-depth
investigation:

(1) Refined Error Analysis: Undertake an in-depth study for a more nuanced error
analysis, considering factors such as time, experimental environment, and equip-
ment. This aims to quantify sources of error, thereby enhancing the credibility of
research outcomes.

(2) Field Verification and Validation: Conduct on-site validation of research outcomes
utilizing real operational data to verify the applicability of experimental results.
Additionally, collaboration with other experimental teams for multi-center validation
can enhance the generalizability and reproducibility of the study.

(3) Risk Assessment and Emergency Strategies: Conduct extensive research and develop-
ment on risk assessment models, taking into account various risk scenarios. Propose
corresponding emergency strategies to establish comprehensive and operational safety
spacing standards, thereby augmenting the overall safety of integrated manned and
unmanned aircraft operations.
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