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Abstract: Unmanned Aerial Vehicle (UAV) deployment has risen rapidly in recent years. They are
now used in a wide range of applications, from critical safety-of-life scenarios like nuclear power plant
surveillance to entertainment and hobby applications. While the popularity of drones has grown
lately, the associated intentional and unintentional security threats require adequate consideration.
Thus, there is an urgent need for real-time accurate detection and classification of drones. This article
provides an overview of drone detection approaches, highlighting their benefits and limitations. We
analyze detection techniques that employ radars, acoustic and optical sensors, and emitted radio
frequency (RF) signals. We compare their performance, accuracy, and cost under different operating
conditions. We conclude that multi-sensor detection systems offer more compelling results, but
further research is required.
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1. Introduction

Unmanned Aerial Vehicles (UAVs) have evolved rapidly over the past few
decades [1–10] leading to mass production of affordable drones [11,12]. From kids and
hobbyists to police officers [13] and firefighters [14], drones have found novel applications
and use cases [15–24]. For instance, Google and Amazon trialed drones for merchandise
delivery while law enforcement leverages drones for speed checks [25–30]. During disas-
ters, drones can help first responders establish communications and locate victims [31].
Unfortunately, drones can be used for illicit purposes, similar to other technological ad-
vancements [32]. Indeed, criminal groups use drones to smuggle goods and breach secure
locations, to name a few. Even benign uses of drones can be unlawful, including unin-
tentional invasion of privacy, harm to humans and infrastructure due to collisions, and
interference with other flying objects (e.g., airplanes). For example, in 2016, Dubai airport
reported that it had to shut down three times to avoid unauthorized drone activity [32].

Therefore, real-time drone detection, binary classification, and tracking have become
a necessity [11,33,35]. The drone popularity, mixed use cases, and diverse environmental
conditions have only exacerbated the detection challenges [36–40]. Currently, there are
different methods for detecting drones in the airspace: active radars (e.g., [41]), passive
radars (e.g., using spaceborne illuminators of opportunity [42]), acoustic sensors (e.g., [43]),
Radio Frequency (RF) signal detection (e.g., [44]), and visual and optical sensors (e.g., [45]),
as shown in Figure 1. The drone detection system is typically deployed in close proximity
to the area of interest. When a drone enters a protected no-fly zone, the detection system
can track it and determine whether it is a friendly or unknown intruder. Subsequently, the
system can notify an operator or enforce an automated policy.

In this survey article, we present an overview of the available approaches for detecting
drones. Our aim is to understand the design space for drone detection techniques and expose
any inherent or situational limitations for each of these approaches. We also explore other
aspects that are pertinent to selecting the drone detection approach, including cost, power
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consumption, accuracy, and environmental variables that might affect the performance of the
detection system. We discuss radars more extensively as they are the most promising method
in terms of accuracy. However, their high cost and deployment requirements can render radars
unsuitable for some use cases. We then discuss off-the-shelf acoustic sensors as a cheaper
but less accurate alternative to radars in some scenarios. Next, we explore approaches based
on RF transmission of the drone followed by visual and optical sensor detection methods.
Finally, we discuss multi-modal and sensor-fusion approaches. These use multiple sensors in
tandem or sequentially to improve detection accuracy. Table 1 summarizes the advantages
and disadvantages of the drone detection approaches discussed in this article.

Table 1. Comparison of drone detection approaches.

Detection Tech-
niques

Advantages Disadvantages

Radar

Operates in day/night, acoustically noisy, and visu-
ally impaired environments. Long range. Constant
tracking. Performs even if drone flies autonomously
(without RF emissions). Drone size/type detection via
micro-Doppler analysis.

Small RCS can affect performance (in cmWave radars,
for regular-sized commercial drones, RCS typically
ranges from −1 dBsm to −18 dBsm). Active radars
require transmission license and frequency check to
prevent interference.

Acoustic micro-
phone array

Operates independent of visual conditions (day, night,
fog, etc.). Performs even if drone flies autonomously.
Operates in LoS/NLoS. Low-cost implementation.
Low energy consumption. Easy to deploy.

Short detection range (detection range < 500 m). Per-
formance degrades in loud and noisy environments.
May work poorly in crowded urban environments due
to acoustic noise.

RF signals

Operates in day/night, acoustically noisy, visually im-
paired, and LoS/NLoS environments. No licence re-
quired. Low cost sensors (e.g., SDRs). Can locate the
controller of the drone on the ground.

Detection fails in cases where there is no RF signal
transmission from the drone. May work poorly in
crowded urban areas due to RF interference.

Vision-based
Offers ancillary information to classify the exact type
of drone. Can record images as forensic evidence for
use in eventual prosecution.

Short detection range (e.g., LiDAR sensors’ range <
50 m). Requires LoS. Relative expensive sensors. High
computational cost. Performance degrades under dif-
ferent weather conditions (fog, dust, clouds, etc) and
in visually impaired environments.

Multi-sensor
Combines advantages of multiple methods. Has better
overall performance. Robust under different scenarios
and environmental conditions.

Increased cost and computational complexity com-
pared to single sensors.
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en
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Figure 1. Different drone detection technologies.
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2. Radars

The current state-of-the-art in moving object detection solutions, whether it is detecting
a big drone or a small bird, involves some form of radar [46–52]. Radars offer high range
coverage, uninterrupted operations in all weather environments, and continuous coverage
during day and night. These capabilities have elevated radar technologies as one of the
best candidates for drone detection systems [53–59]. Evaluating the feasibility of using
radar for UAV detection has received considerable attention [41,60–66]. However, there are
some practical limitations and cost considerations when designing and deploying a radar
suitable for detecting drones.

2.1. Radar Configurations

Radar systems are categorized based on their configuration, particularly in terms of
the spatial arrangement of their transmitter and receiver components. The three primary
configurations are monostatic, bistatic, and multistatic, each with distinct characteristics,
advantages, and applications [42]. A visual illustration of these three radar configurations
is depicted in Figure 2.

Mono-static Bi-static

Multi-static
Receivers

Multi-static transmitters

Figure 2. Visual representation of different radar configurations: Monostatic, Bistatic, and Multistatic.

2.1.1. Monostatic Radar Configurations

In a monostatic radar setup, the transmitter and receiver are co-located or share the
same antenna system. This configuration is the most familiar and widely used in various
applications, from traffic enforcement to small drone detection [67–71]. The primary advan-
tage of monostatic radar is its simplicity, as it requires only one site for both transmission
and reception. This setup is highly efficient for short-range applications and where the
target’s relative motion to the radar is significant, facilitating strong signal reflection back
to the source.

2.1.2. Bistatic Radar Configurations

Bistatic radars feature spatially separated transmitter and receiver sites, which can sig-
nificantly vary in distance from each other. This separation introduces unique advantages,
such as increased stealth since the receiver can be placed in a covert location away from the
transmitter, reduced susceptibility to electronic countermeasures, and the ability to detect
low-observable objects such as small UAVs. Bistatic radars are particularly advantageous in
applications where monostatic radars are limited by reflection geometry or where the use
of stealth is paramount [72–76]. However, the complexity of synchronizing the transmitter
and receiver, along with the challenges in signal processing due to the geometry-dependent
bistatic range, can complicate their operation.
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2.1.3. Multistatic Radar Configurations

Multistatic radars expand on the bistatic concept by utilizing multiple receivers and,
in some cases, multiple transmitters [77]. This configuration offers enhanced coverage and
detection capabilities, as multiple perspectives on the target can reveal its position and
movement with greater accuracy and robustness against countermeasures [78–82]. Multi-
static setups can effectively detect stealth aircraft, which are designed primarily to evade
monostatic radars, by exploiting the varied angles of incidence and reflection captured by
the dispersed receivers. The primary challenges in multistatic radar systems involve the
complex coordination and data fusion from multiple sites, necessitating advanced signal
processing and networking capabilities.

In general, the differences between these configurations lie mainly in the geometry of
transmitter and receiver placements and the resulting operational advantages and com-
plexities. Monostatic radars are simple and effective for a wide range of applications
but can be limited by direct reflection requirements. Bistatic and multistatic radars, with
their spatially diverse components, offer advantages in stealth detection and operational
resilience at the cost of increased system complexity and signal processing requirements.
More specifically, bistatic and multistatic radar configurations have enabled the capability
for passive radar detection. This approach, which is not feasible in traditional monostatic
setups, offers significant advantages by eliminating the need for active transmitters. This
not only reduces costs and enhances stealth capabilities, making it harder for adversaries
to detect the radar system, but it also circumvents the regulatory requirements for broad-
casting signals. Passive radar systems leverage existing ambient electromagnetic emissions,
such as those from television and radio broadcasts, cellular networks, and even satellite
transmissions, to detect and track drones. By using these omnipresent signals, passive
radars can effectively monitor airspace without the need for additional signal generation,
blending cost efficiency with operational discretion. Further exploration of passive radar
technology will be detailed in upcoming sections, highlighting its growing importance in
modern surveillance and detection strategies.

2.2. Radar Cross Section

The main challenge is the variable size of UAVs, which can make them invisible to
traditional radars. Due to the small size of some UAVs and their main body material
construction, which can have a low reflection index, the Radar Cross Section (RCS) is
extremely small and makes them hard to detect. As is shown in Equation (1), the received
power from a target object is proportional to its RCS, a smaller RCS results in lower received
power and a lower probability of detection [55].

PRx = PTx ·
GTx · GRx · λ2

(4π3) · R4 · σ; (1)

where PRx is the target received power in the radar receiver, PTx is the radar transmit power,
GTx is the radar transmitter gain, GRx is the radar receiver gain, R is the range of the target,
and σ is the RCS of the target.

2.3. Frequency and Bandwidth

Another design parameter for radars is their operating frequency. High-frequency
radars are more expensive, but they can detect smaller-size UAVs [83]. Their larger band-
width and finer resolution generate more accurate results. As is shown in Equation (2), the
range resolution equals the speed of light divided by twice the bandwidth. As an example,
a radar with a bandwidth of 1 GHz has a range resolution of 15 cm.

∆R =
c

2B
; (2)

where ∆R is the range resolution, c is the speed of light, and B is the radar bandwidth.



Sensors 2024, 24, 2028 5 of 22

2.4. Radar Scattering

The physics behind radar systems encompasses two primary types of scattering:
forward scattering and backscattering [42,77]. Forward scattering is detailed through a
modern perspective, indicating that radar waves can scatter in the direction forward from
their original path when the bistatic angle, the angle from the transmitter, through the
target, to the receiver, is close to 180◦ [84–87]. This scattering is particularly advantageous
for detecting small or RF-absorbent targets, such as small drones, due to the enhanced
RCS in such conditions. Backscattering, on the other hand, refers to the reflection of radar
waves directly back toward the receiver [88]. Figure 3a,b provide a visual illustration of the
forward scattering/backscattering and the bistatic range/angle, respectively.

(a)

𝑅𝑟

𝑅𝑡

𝐵𝑖𝑠𝑡𝑎𝑡𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 = 𝑅𝑡 + 𝑅𝑟

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔: 
 𝛽 ≈ 180°

Target

𝑇𝑋

β
Bistatic 
Angle

𝑅𝑥

(b)

Figure 3. (a) Representation of backscattering vs. forward scattering radar configurations. Here, the
colored radars depicted at the top of the figure represent the transmitters, while the black ones at the
bottom represent the receivers; (b) Bistatic range and angle.

The RCS, a critical factor in drone detection, varies significantly with the target’s
aspect angle, impacting detection capabilities. Different parts of a drone may have vastly
different RCS values, influencing the effectiveness of radar detection from various angles.
This variability underscores the benefit of multistatic radar systems, which utilize multiple
receiver locations to increase the likelihood of detecting backscattered signals from various
aspect angles of a target.

Forward scattering offers a distinct advantage by enhancing detection capabilities
for targets that are otherwise challenging to detect due to size or material properties.
However, maintaining an optimal bistatic angle for forward scattering can be challenging
over time, limiting the practicality of such systems in some scenarios. Despite these chal-
lenges, forward scattering radars, especially in multistatic configurations with spaceborne
illuminators, are gaining renewed interest for their potential in broad-area surveillance,
demonstrating high detection probabilities even when considering real-world losses.

2.5. Radar Signal Power

In practice, radars with higher transmission power offer improved detection results. In
terms of wave modulation, CW (Continuous Wave) radars require significantly less power
than pulsed versions [41]. Thus, CW radars are more attractive for small UAV detection.
Many of the available research papers (e.g., [41]) use FMCW (Frequency Modulated Con-
tinuous Wave) radars for drone detection. This is due to their lower power consumption
compared to other wave modulation approaches.
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2.6. Active or Passive

There are two different types of radars: active and passive. Active radars are equipped
with both a transmitter and a receiver. The transmitter emits electromagnetic waves, which
illuminate proximal targets. The receiver captures all reflected signals, which are then post-
processed to expose any potential new targets. When only passive sensing is employed, the
radar system is reduced to only receivers. Target illumination in the passive radar scenario
is done by other signal sources, including cellular signals, FM radio signals, and Wi-Fi
signals, among others. As an example, in [62], Chadwick demonstrated the feasibility of
micro-drone detection at ground level using a software-defined radio receiver and UMTS
3G signals as a source of illumination. An additional illustration can be found in the
work of Robie et al. [77], wherein they presented a conceptual framework for assessing the
probability of signal interception through a model that gauges the received signal power
and coverage from satellite illumination at ground level. To expand the geographical scope
and detection potential in comparison to contemporary methodologies, they recommended
leveraging the available spaceborne illuminators, such as the proliferated Low Earth Orbit
(LEO) telecommunications satellite constellations like Starlink. Their research showcases
the fact that these constellations work in the Ka-band, resulting in significant target RCS
values when utilizing a forward scattering radar configuration.

Active sensing achieves a higher range of detection and better reliability, but it requires
significantly more transmit power. Moreover, active sensing might not be capable of
illuminating targets under diverse environmental conditions. Also, the radar operator
needs to obtain a license and maintain permits for the band that the radar transmitter
signal occupies. On the other hand, passive radars do not require any operational permits
because they do not actively transmit signals. Furthermore, their power consumption
and cost requirements are significantly lower. Therefore, an operator can accommodate
multiple receivers for the same budget of a single active radar deployment. For instance,
Chadwick et al. [62] proposed a system for drone detection using passive radar technology
leveraging available UMTS 3G cellular communication signals as illumination sources.
They considered three different ways to illuminate: using a cell phone on a call, having
micro base stations for 3G communication, and using the base stations in the closest vicinity.
All three options were deployed in the target area. They use two receivers. One is for
capturing the genuine signal before all the reflections, and the other receiver is responsible
for obtaining reflected signals. While this passive radar solution is cost-effective, it comes
at the expense of accuracy and lack of reliable coverage.

2.7. Beam Steering

The more focused and narrow the transmitted signal, the better the illumination for
detecting small objects. For instance, using omnidirectional antennas with a wide main
lobe will result in poor performance in detecting small objects. On the other hand, using a
narrow radar beam with a focused main lobe, while accurate for small objects, it decreases
the surveillance perimeter. One option is to use several antennas on the transmitter side.
Each antenna has a narrow beam but is placed in such a formation that, combined, they
cover the target area. Another option is to make the transmitter mobile by using a rotor.
This method is called mechanical beam steering, and it can cover the target area over a
period of time. In addition to mechanical beam steering, there is another approach called
electrical beam steering, in which a narrow transmitted beam scans small areas by changing
the phase of the signal over time, resulting in full target area coverage.

2.8. Mechanical or Multi-Channel Scanning

The receiver can also be installed on a motor that can mechanically turn and scan the
whole area. An alternative design makes use of static multi-channel antennas that can
receive signals from any direction. Most active radar scenarios where the transmitter and
receiver are bundled together are usually either static multi-channel or use a mechanical
rotation for both reception and transmission of signals. As an example, in [41], Noetel
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et al. investigate two methods of scanning. In the first scenario, they used a scanning
surveillance radar system. This is a mechanically scanning FMCW system operating in
94 GHz (they used mmWave radar). This radar can scan using 8 Hz frequency, resulting
in an image update rate of 8 frames per second. In the second scenario, they used a static
multi-channel radar. The radar was equipped with four channels on the receiver side to
cover the whole area. It was also able to determine the 3D location of the target. The
multi-channel approach can be used in situations where mechanical scanning is prohibited.
In both of the scenarios, since they used FMCW radar, the power consumption is low. In
addition, they were able to achieve good visibility of small objects and range resolution of
15 cm. This was due to the 1 GHz bandwidth supported by the mmWave radar.

2.9. Micro-Doppler Analysis

Micro-Doppler analysis is used in radar analysis to fingerprint and identify target
objects [89]. This is different than the Doppler effect used to determine the speed and
direction of the target object. Any vibration or movement in the target object’s body or any
other moving parts onboard the target can be measured using micro-Doppler analysis [90].
When analyzing the reflected radar signal from drones, the primary source of making
micro-Doppler analysis feasible is the drone propellers. Micro-Doppler analysis can assist
in distinguishing between drones and birds, thereby reducing false alarms. Additionally,
using micro-Doppler analysis, we can estimate the structural features of the target drone.
This includes the length of the rotors’ blades [91]. For example, in Figure 4, Gannon
et al. [91] illustrated that when the size of a propeller’s blades increases from 17 cm to 34 cm,
the Doppler response is doubled. This experiment assumed that the drone maintained the
same rotation frequency of 30 Hz.
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Figure 4. Micro−Doppler analysis simulation: (a) Two 17 cm blades (b) Two 34 cm blades, rotating at
30 Hz RPM which captured by a CW radar with center frequency of 2.41 GHz. This figure is a replica
of the one presented in the work of Gannon and Tahmoush as illustrated in [91].

2.10. Future Radar Drone Detection

One promising research direction is to leverage commodity 5G cellular communica-
tions for drone detection. Terrestrial and satellite 5G communications can be used as both
passive or active radar sources to illuminate and detect drones. Numerous research stud-
ies aim to investigate the challenges and limitations of harnessing existing and future 5G
infrastructure capabilities for drone detection. As an example, Solomitckii et al. [60] ex-
plored the idea of using 5G base station antennas for drone detection. Since 5G can
employ mmWave antennas in the base station for communications, it is conceivable
that the 5G infrastructure can also be used as radar for detection purposes. In addition,
Wang et al. [61] presented successful experimental results for drone detection from anten-
nas operating in 28 GHz. These frequencies are similar to the frequencies 5G base station
antennas use.
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We have discussed the challenges and potential design parameters when selecting
an appropriate radar for detecting small UAVs. We want to reiterate that there are many
parameters to consider. The size and materials of the target UAVs, operating environment
limitations, and the type of radar systems used are just some of the primary solution drivers.
We also need to take into account the associated cost of operation and deployment. In the
following sections, we demonstrate how radar sensors can be used alone or in combination
with other sensors to increase the reliability of flying object detection.

3. Acoustic Sensors

Drone detection using acoustic signals is emerging as a pivotal technique in the realm
of security and surveillance, leveraging the unique noise signatures generated by drones.
This method capitalizes on the distinct acoustic patterns produced by drone propellers and
motors, allowing for the identification and tracking of drones even in visually obstructed
environments. Advanced signal processing and deep learning techniques are increasingly
being employed to enhance the accuracy and speed of detection, making this approach
highly effective in safeguarding privacy, ensuring security, and monitoring restricted spaces.
The sophistication of acoustic sensor technology, coupled with the integration of AI-driven
analysis, paves the way for real-time, reliable drone surveillance systems. Some examples
of the available research and literature that focus on drone detection using acoustic sensors
can be found in [43,92–96].

As an example, in [92], Dumitrescu et al. focused on the development of an acoustic
system for UAV detection. More specifically, they focused on the creation and applica-
tion of an advanced acoustic system aimed at identifying, locating, and communicating
the position of UAVs. The core of the proposed detection and location mechanism re-
lies on the analysis of acoustic signals and the application of concurrent neural networks
(CoNNs). They detailed the development of software functional components integral
to their detection and location algorithm. Further, they elaborated on the evaluation of
detection and tracking effectiveness for remotely piloted aircraft systems (RPASs) utilizing
a specialized spiral microphone array equipped with Micro-Electro-Mechanical System
(MEMS) microphones. The detection and tracking algorithms were formulated through
the decomposition of spectrograms and the use of adaptive filters. Notably, their research
utilized various techniques such as Cohen class decomposition of spectrograms, log-Mel
spectrograms, harmonic-percussive source separation, and analysis of raw audio wave-
forms collected from the spiral microphone array. These methodologies were employed
to feed CoNNs, enabling the precise identification and classification of drones within the
monitored perimeter.

While economical, acoustic sensors have some significant drawbacks that need to
be considered when it comes to drone detection. Their primary limitation is that their
performance is highly dependent on the target’s range (distance) from the sensor. The
maximum range provided by state-of-the-art acoustic detection mechanisms is in the
order of a few hundred meters. To make matters worse, in crowded and noisy urban
environments polluted with ambient sounds and noise, the performance of acoustic sensors
degrades drastically. Thus, acoustic sensors perform poorly in detection scenarios where
patrol drones or other noisy equipment are employed to conduct the surveillance. In
general, in any deployment scenario where the ambient noise is too high, acoustic sensors
perform poorly. On the plus side, acoustic sensors are inexpensive and can be easily
acquired, installed, and deployed. In addition, they can perform well under any weather
conditions, both in the daytime and at night, and they do not need a Line of Sight (LoS) to
the target object. All being said, when used on their own, they do not offer performance
guarantees due to their aforementioned drawbacks. However, as a companion sensor, they
can boost the overall system performance and accuracy.
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Furthermore, the application of deep learning techniques to drone detection and
identification using acoustic features is gaining prominence due to the increasing utilization
of drones in various sectors and the associated security concerns. A novel approach has
been developed by Al-Emadi et al. in [94] that automates the process of drone detection and
identification by harnessing the acoustic characteristics of drones. This method leverages
different deep learning algorithms, addressing the challenge posed by the scarcity of
acoustic drone datasets. A hybrid drone acoustic dataset has been created, combining
recorded drone audio clips and artificially generated drone audio samples using Generative
Adversarial Networks (GANs). The effectiveness of drone audio in conjunction with deep
learning algorithms such as Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and Convolutional Recurrent Neural Networks (CRNNs) in drone
detection and identification has been explored. The study confirms the advantages of
applying deep learning techniques to this domain and highlights the beneficial role of
GANs in generating realistic drone audio clips, enhancing the system’s capability to detect
new and unfamiliar drones.

Expanding the horizons of acoustic surveillance, the deployment of acoustic sensors
atop UAVs opens a new realm of possibilities, including patrolling and monitoring roles.
These drone-mounted acoustic cameras can serve as vigilant sentinels in the sky, not only
for detecting other drones but also for a broader range of surveillance applications. In
this context, we can refer to the work of Salom et al. [95]. They introduced an acoustic
camera intended for direct attachment to a UAV airship. Comprising 64 microphones, a
central processing unit, and software explicitly devised for detecting low-level acoustic
signals in the far field, this innovation is a testament to the evolving capabilities of aerial
surveillance. With an aperture spanning 2 m and designed for operations at altitudes up to
300 m, the camera is a tool for a spectrum of applications, such as urban and industrial noise
monitoring, security surveillance, rescue operations, and wildlife monitoring. Although
their initial demonstrations were ground-based, the camera is poised for airship integration,
marking an example in the domain of acoustic surveillance from the skies.

4. RF Ground Communication Sensors

One of the most widely used approaches to detect the presence of a drone in no-fly
zones is by sensing the RF communications between the drone and ground controllers [97].
This method leverages RF sensors working as receivers scanning for RF communication
channel transmissions [97,99–104]. The RF sensors are designed to detect the RF frequency
ranges that drones use for control and data signaling with ground controllers. The first step
is to distinguish existing versus new RF communications. Then, using the newly extracted
RF communications, they have to further identify unique RF signatures for drones using
techniques such as the ones presented in [32,44,105–107].

As an example, in [106], Nemer et al. presented a UAV identification and detection
system based on a hierarchical concept using ensemble learning. Their system had four
classifiers that worked in a hierarchical fashion. The first classifier determines whether
the UAV is available, and the second one specifies the type of UAV detected. The last
two classifiers specify the flying mode of some UAVs (merely on, hovering, flying, flying
with video recording). They had a pre-processing stage with feature extraction and noise
filtering to improve performance.

In another example [101], Alam et al. discussed a comprehensive system combining RF
signals and deep learning for detecting and identifying drones. Their approach involves an
advanced multiscale convolutional network model to process the RF data. They validated
the effectiveness of their model through various metrics, demonstrating high accuracy
in distinguishing different drones and identifying specific models, even in challenging
conditions with noise.
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Digulescu et al. explored using Ultra-Wideband (UWB) sensing to distinguish be-
tween the drone and human movements indoors [109]. They employed advanced signal
processing methods like wavelet transform and phase diagram concepts to process UWB
sensor data, aiming to enhance security by differentiating between authorized human
presence and potential drone threats in sensitive areas.

For RF sensing of drones, the common assumption across all approaches is that there
exists an RF communication link between the target drone and its ground controller. It
is further assumed that this control signal can be captured and precisely analyzed even
in the presence of other signals. Indeed, for many commercial drones, RF signals are the
primary means for communicating navigation commands to the drone from the ground
controllers and, reversely, when downloading captured data such as images, videos, and
other sensory information captured by the drones. While these assumptions are valid for
many commercial off-the-shelf drones, there are drones capable of flying autonomously
without the need to receive periodic navigation commands. Moreover, in some scenarios,
drones are equipped with an adequate amount of onboard memory to capture sensory
information for prolonged periods of time. Thus, even when a drone supports RF commu-
nications, there could be extended periods of time in which there is no RF communication
between drones and ground controllers. Another challenge with RF sensing for drone
detection is the presence of environmental RF noise. This is especially true in urban areas
where wireless activity is prevalent, generating overlapping and constant RF transmissions
emanating from both ground and aerial targets that are not necessarily drones. For instance,
people use their Wi-Fi devices to stream videos from the Internet while they are walking
on the high floors of a tall building, which resembles the movement and transmission
originating from a drone. Thus, merely depending on RF sensing is not reliable for urban
environments due to environmental and noise considerations, including the presence of
multiple concurrent communications from both stationary and moving targets. On the
other hand, in less populated or rural areas where there are few wireless devices, the RF
channels are primarily silent. Therefore, it is easy to sense the communications between
drones and their ground controller.

While using RF ground communication signals for drone detection has limitations, it
offers a cost-efficient and easy-to-implement mechanism [44,110–114,116]. It can be useful
when operating over a more extended area and period of time. Moreover, it can be combined
with other sensors as it operates under any weather or light conditions, and it does not
need direct LoS. Additionally, this method can detect the drone even before it takes off and
when it appears to be stationary (i.e., the drone has landed or it is just hovering). As long as
there exists an active RF communication link from or to the drone, the RF sensors can detect
it [117–119]. More importantly, this is the only method that can locate the ground controller
of the drone as well as the drone itself [120,121]. In other words, among the various drone
detection methodologies, the utilization of RF signals stands out due to its unique capability
not only to detect drones but also to pinpoint the location of the drone controller on the
ground using various positioning techniques [122–128]. To achieve this, it leverages the
communication link between the drone and its controller, which continuously exchanges
RF signals for operation and control. By analyzing these signals, it is possible to trace back
to the controller’s exact location, providing a significant advantage in scenarios where
identifying the operator is as critical as detecting the drone itself. This dual-functionality
aspect of RF signal analysis makes it a critical tool in comprehensive drone surveillance and
security measures, offering a layer of intelligence that purely detection-oriented techniques
cannot provide. A graphic representation of RF sensing for drone detection and localizing
the controller is depicted in Figure 5.
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Figure 5. Using RF sensors to localize the ground controller of the intruder drone.

5. Optical Sensors

Optical sensors include cameras, gated lasers, and other visual sensing modalities that
perform optical processing. The use of optical sensors provides another approach to detect
and classify UAVs [129]. Similar to using radars, there are two approaches for deploying
optical sensors: active and passive. In active sensing, the detection system leverages an
optical signal emitted by a gated laser (e.g., LiDAR [130]) to illuminate an area or a target
of interest. The detection occurs by processing the reflected optical signals from the target.
The passive method leverages an optical receptor such as a camera to capture images
or video for visual processing and classification of drones. The main advantage of using
cameras is their ability to reveal additional information assisting drone classification. Image
and video processing techniques can be applied to distinguish between drones and other
flying objects or birds. Visual classification can separate intruder and friendly drones and
determine the type of drone. Thus, optical sensing can go beyond mere object detection to
object classification with high accuracy when available.

As an example of active optical systems, in [131], Chen et al. explored the application
of LiDAR in drone detection, particularly focusing on the challenges posed by small UAVs
and their detection at long distances due to low laser energy reflection. This research
highlights the potential of single-photon LiDAR systems, known for their high sensitivity
and temporal resolution, to detect UAVs even in night environments. The system utilizes
time-correlated single photon counting (TCSPC) for high-resolution drone search, empha-
sizing the influence of the field of view (FOV) on detection efficacy, hence representing a
step toward practical, low-power drone detection.

Furthermore, in another study [132] proposed by Aldao et al., a detect and avoid
system for UAV navigation in Urban Air Mobility (UAM) corridors is introduced, utilizing
a solid-state LiDAR sensor for detecting and positioning unauthorized flying objects within
corridor airspace. Their proposed system, leveraging point clouds generated by the sensor
and a Second Order Cone Program (SOCP), computes real-time avoidance trajectories.
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They provided tests in various scenarios and showed results with execution times suitable
for real-time implementation on modern onboard computers.

In [133], as an example study of image-based passive optical systems, Lv et al. pre-
sented a method to improve drone detection accuracy and speed in high-resolution images
using a combination of background difference and a lightweight network. The approach in-
cludes advanced features like the Ghost module and Simplified Attention Module (SimAM)
attention mechanism to enhance feature extraction and accuracy. The Ghost module is
a neural network design that aims to reduce computational requirements by generating
more feature maps from cheaper operations. SimAM is an attention mechanism designed
to enhance the representational capacity of convolutional neural networks by recalibrating
feature maps in a computationally efficient manner. Both are innovations intended to
optimize performance and efficiency in deep learning models, such as those used for drone
detection. Their method achieved some improvements in detection accuracy and speed,
balancing efficiency and precision for high-resolution drone detection.

The major drawback of optical sensors is their dependence on an uninhibited LoS to the
target. Moreover, their accuracy degrades significantly in visually impaired environments.
For instance, even when using night vision cameras, the quality of captured information
in reduced or deprived light settings is far from optimal. In fact, cameras may fail to
produce reliable detection results for small targets under different weather conditions
(e.g., foggy, cloudy, rainy, etc). Another limitation is that cameras offer a narrow beam
for detection. This means that single cameras cannot cover large areas of interest at once.
Therefore, we have to use multiple cameras or rotate one camera to swipe the area of
interest. While active visual sensing (i.e., lasers) are not as sensitive as regular cameras to
weather conditions, they can only provide detection at a very short range from the target.
A graphic representation of the maximum range of detection for different sensors is shown
in Figure 6. Hammer et al. [45] conducted experimental tests to evaluate the feasibility
and practical performance of employing LiDAR for drone detection systems. While the
results appear to be encouraging, the system had to operate in a very short range, requiring
a direct LoS to the target. When the target was within the sensor LoS and at a short range
to the LiDAR system, a full 3D scan of the target was produced.

 

Figure 6. Maximum range of detection for different sensors. ‘High’ represents ranges around 1 mile,
‘Short’ is for less than 1000 feet, and ‘Too Short’ indicates less than 350 feet.
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6. Multi-Sensor Approach

All of the sensor modalities have limitations that can render them unreliable under
certain environmental and weather conditions [134,135]. We posit that a robust drone
detection system should rely on more than one sensing modality. Aptly chosen sensing
modalities can complement each other and increase the overall reliability and identification
robustness. Therefore, we can achieve better performance by fusing different types of
sensors based on environmental conditions.

In other words, sensors need to complement each other’s shortcomings to enhance the
overall system quality and reduce the risk of misdetection. For instance, an acoustic system
alone may perform poorly because it cannot detect drones at higher altitudes. However,
by integrating this system with active radar, we can achieve detection over longer ranges.
Furthermore, we can improve the accuracy of detection for short ranges by designing a
system that fuses data from both radar and acoustic sensors. For long ranges, we assign
a much higher weight to the radar’s output, and for shorter ranges, we assign greater
weight to the acoustic sensors. This approach ensures a better quality of detection across all
ranges. In other words, when combining results from different sensors, a system needs to
assign weight to the outcomes based on their strengths and shortcomings. This way, at any
given time, we trust the sensor that has better strength for that specific scenario, while in
situations where that sensor performs poorly, the other sensors will have a higher weight
in the decision-making process and complement the system.

To that end, Laurenzis et al. [136] collected data from a heterogeneous sensor network
consisting of acoustic antennas, small FMCW radar systems, and optical sensors. The
authors applied acoustic sensors, radar, and LiDAR. Their goal was to monitor a wide
azimuthal area (360 degree) to simultaneously track multiple drones with various degrees
of success. In addition, they deployed optical sensors for sequential identification with a
very narrow field of view. In another example [137], Giovanneschi et al. propose a drone
detection system that consists of two stations. One was a static multi-sensory network, and
the other one was a sensor unit installed onboard a moving vehicle. They initially studied
a fixed multi-sensory network that included an acoustic antenna array, a stationary FMCW
radar, and a passive/active optical sensor unit. The active optical sensor was LiDAR. A
mobile vehicle equipped with passive/active optical sensing was brought in to augment
the sensory network and cover areas behind obstacles. In contrast, the static multi-sensory
network monitored a stationary area with a sensor-dependent sensing coverage. The data
fusion from the multi-sensory network and the moving vehicle offered better performance
for target detection.

7. Discussion

After a comprehensive investigation of existing research, it was concluded that a
reliable drone detection system requires a combination of multiple sensor modalities. In
light of this, we present a few sample systems that we have designed and proposed for
further investigation and performance evaluation in future research.

Figure 7 portrays the initial exemplar that we have devised as a multi-sensor drone
detection system. As is shown in the figure, first, an off-the-shelf low-energy acoustic sensor
captures all acoustic signals in the environment and uses machine learning algorithms to
process the signals. If the algorithms detect the presence of a drone, it triggers another
sensor where a pan tilt zoom (PTZ) camera takes the stage to confirm the detection and
classify the drone as friendly or intruder.

As an additional example of a detection system, we suggest utilizing 5G cell towers in
an innovative adaptive multi-sensor system to identify the existence of an intruder drone,
classify its type, and locate its ground controller. The massive antenna-array systems in
5G cell towers have the potential to be utilized as high-frequency, high-resolution radars
suitable for detecting drones, as has been demonstrated in prior research [138–140].
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Figure 7. Acoustic antenna arrays for drone detection used in conjunction with a PTZ camera to
confirm the presence of the drone and classify it as benign or intruder.

In this proposed example, an adaptive multi-sensor detection system is presented that
combines 5G technology with additional auxiliary sensing modalities to address scenarios
where 5G has limitations. The system is designed to operate in both crowded urban
environments and quiet rural areas and consists of three main blocks: Detection, Validation,
and Localization. These blocks work together to provide drone detection, classification,
and localization of the ground controller. Further details on each block will be provided,
including the key role played by 5G technology in achieving the system’s objectives.

Detection: The first step in the drone detection process is the realization of the presence
of any airborne object, including friendly or hostile drones. In this part, we show the
detection block and explain how it can adapt to different environments. The 5G base
station antennas, operating as active radars with millimeter-wave technology, and acoustic
antenna arrays are the two main components of this block.

While radars are the most promising method for detecting airborne objects—especially
in crowded urban areas with visual impairment and RF noise—using conventional radars
is challenging due to the small size of commercial drones. However, by employing dense
5G base station networks in the urban area, the system benefits from the high-frequency
mmWave signals, which are better suited for detecting small objects. The radar’s transmit-
ted signal must be shorter than the object’s size to detect it. Higher frequencies available in
5G mmWave technology means smaller wavelengths and better visibility, even for small
drones. Moreover, the large bandwidth available in the 5G mmWave range increases the
resolution. This was explained in detail in Equation (2).

The phased antenna array in the 5G base station provides an electronic scanning
capability, making the process more reliable and faster than mechanically scanning dishes.
Additionally, using the existing 5G infrastructure offers cost-efficiency and avoids the
need to install additional high-frequency radars. Finally, the received signals from 5G
base station antennas can undergo micro-Doppler analysis, allowing for more precise
information on the detected object’s shape, type, and other features.

The complementary sensors employed in the detection block are the acoustic an-
tenna array receivers, which can perceive the propeller noise of the drone. By utilizing a
pre-trained machine learning model using the acoustic signals obtained by the acoustic
antenna arrays in different environments and drone scenarios, we can accurately detect the
drone’s presence in the environment. The acoustic sensor is cost-effective, both in terms
of equipment and power consumption, but it has limitations in terms of short ranges and
poor performance in noisy environments. This sensor can be valuable in scenarios where
noise is minimal, such as in rural areas where the density of 5G base stations is insufficient
to establish a reliable drone detection system.

In summary, the core of our drone detection system is the detection block, which
encompasses two sensors. Firstly, we employ 5G base station antennas functioning as
high-frequency large bandwidth radars that can track an intruding drone by beam-steering
through its Multiple-Input Multiple-Output (MIMO) technology. Secondly, we utilize
an acoustic antenna array connected to a machine learning program that can detect the
presence and the type of drone by analyzing the propeller noise received by the array. The
data obtained from these two sensors are fused together in a decision algorithm, where
each datum has a unique weight based on the environmental conditions. For instance, in
a densely populated urban area, more emphasis is given to the 5G data, whereas in rural
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areas with fewer 5G base stations, the system assigns greater weight to the data acquired
from the acoustic sensors. Thus, the system overcomes the limitations of each sensor by
compensating for each other’s flaws, providing a reliable drone detection mechanism.

Validation: The aim of this stage is twofold: to verify the identified object with greater
scrutiny and to classify it accurately by eliminating the likelihood of falsely detecting
small entities such as birds or friendly drones. This is accomplished by directing a camera
towards the identified target. While in less crowded surroundings, such as rural areas, a
PTZ camera with remote directional and zoom capability would suffice, in crowded urban
settings, where multiple obstacles obstruct the view, the system harnesses a surveillance
drone equipped with a camera, which can approach the target for a closer look. To facil-
itate communication between the surveillance drone and the ground controller, such as
navigating the surveillance drone toward the target and transmitting real-time video data,
5G technology’s sidelink communications are employed.

Localization of the Controller: Up to this point, we have outlined the initial two
blocks of our drone detection process. Here, we introduce the use of an RF sensor, which
is utilized in both rural and urban environments, to locate the controller of the drone on
the ground, which is crucial for subsequent steps in the detection process. With this, we
conclude our proposed multi-sensor drone detection system, which employs a fusion of
various sensor modalities working in tandem to ensure a robust drone detection system.
A summary of our adaptive multi-sensory drone detection methodology can be found in
Table 2.

Table 2. Our proposed adaptive multi-sensor detection system.

Stations Detection Validation Localization

Urban
The 5G cell tower antennas function
as phased-array active radars with
high-resolution

Surveillance drones equipped with
cameras (optical sensors) that can fly
close to the target and provide a bet-
ter view

RF sensing to localize the con-
troller of drone on the ground

Rural
Machine learning program to ana-
lyze data captured with acoustic an-
tenna arrays

PTZ camera to provide a better view at
the target

RF sensing to localize the con-
troller of drone on the ground

8. Conclusions & Future Work Discussion

We presented an overview of the available methods for drone detection. The radar
sensors appear to be the most promising approach for detecting drones. However, their cost
is relatively high. On the other hand, acoustic sensors are limited to low-noise environments
but offer low energy and deployment costs. Furthermore, we discussed how RF sensing
can detect the drone’s communications with a ground controller. However, many drones
can fly autonomously and remain silent for a prolonged period of time. This will hinder
RF sensing from detecting their presence. We also discussed optical sensors that can be
used actively, such as LiDAR, or in passive mode, like video and still imaging. Visual
sensors offer advantages when it comes to target identification. However, their accuracy is
impaired by distance, lack of LoS to the target, and environmental conditions. Finally, we
presented recent studies that combine different sensing modalities to develop more reliable
and accurate approaches for drone detection.

Our survey clearly indicates that using multiple classes of sensors can mitigate some
of the individual sensor limitations. Moreover, it can boost detection robustness under
adverse operational scenarios. There are clear trade-offs between energy consumption, cost,
performance, and operational requirements that individual sensors might fail to optimize.
The use of multiple sensing modalities that are operational only when needed might be the
answer. Thus, improving multi-sensor performance using combined cross-sensing learning
algorithms and on-demand versus continuous sensing should be investigated further in
future studies.
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