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Abstract: The increasing popularity of pigs has prompted farmers to increase pig production to meet 

the growing demand. However, while the number of pigs is increasing, that of farm workers has been 

declining, making it challenging to perform various farm tasks, the most important among them being 

managing the pigs’ health and welfare. This study proposes a pattern mining-based pig behavior anal-

ysis system to provide visualized information and behavioral patterns, assisting farmers in effectively 

monitoring and assessing pigs’ health and welfare. The system consists of four modules: (1) data ac-

quisition module for collecting pigs video; (2) detection and tracking module for localizing and 

uniquely identifying pigs, using tracking information to crop pig images; (3) pig behavior recognition 

module for recognizing pig behaviors from sequences of cropped images; and (4) pig behavior analysis 

module for providing visualized information and behavioral patterns to effectively help farmers un-

derstand and manage pigs. In the second module, we utilize ByteTrack, which comprises YOLOx as 

the detector and the BYTE algorithm as the tracker, while MnasNet and LSTM serve as appearance 

features and temporal information extractors in the third module. The experimental results show that 

the system achieved a multi-object tracking accuracy of 0.971 for tracking and an F1 score of 0.931 for 

behavior recognition, while also highlighting the effectiveness of visualization and pattern mining in 

helping farmers comprehend and manage pigs’ health and welfare. 

Keywords: pig behavior recognition; pig behavior analysis; sequential pattern mining; association 

rule mining; data visualization; pig health and welfare 

 

1. Introduction 

In South Korea, pork is the most popular meat owing to various factors including its 

wide availability and affordability as a source of protein [1,2]. This popularity has resulted 

in a notable rise in pork consumption over the past few years, which grew from 1423.51 

thousand tons in 2006 to 2081.61 thousand tons in 2021, corresponding to a total increase 

of 46% in pork consumption [3]. To fulfill the continuously growing demand, pig farmers 

have been expanding their farming operations [4], which has contributed to the increase 

in the number of pigs raised. For example, the number of pigs raised in farms in South 

Korea grew from 9.38 million in 2006 to 11.22 million in 2021, representing a total increase 

of 20% [5]. However, the number of pigs raised in farms is increasing while the number 

of farm workers is decreasing due to factors including aging of the farm population and 

the movement of young individuals from rural villages to urban areas, seeking more fi-

nancially rewarding job opportunities, which make it difficult to recruit new workers [6]. 

The proportion of agriculture workers to the total population fell from 8% in 2006 to 5% 

in 2021 [7], contributing to the shortage of the agricultural workforce [8]. Due to this short-

age, the available farm workers are assigned greater workloads to finish within limited 
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time frames, rendering effective performance of their tasks challenging. These tasks in-

clude the management of health and welfare issues, reproduction and breeding, nutrition 

and feeding, and waste management [9–11]. Among these, the most critical issue is the 

management of pigs’ health and welfare [12,13] as this issue can lead to high mortality 

rates, low growth rates, weight loss, injuries, and an increase in veterinary costs [10,14–

16]. This ultimately results in low productivity and imposes financial burdens on pig 

farmers [12]. Hence, to maintain productivity and minimize financial losses, it is essential 

for pig farmers to manage their pigs’ health and welfare. 

Continuous monitoring of pigs’ behaviors is crucial for farmers to better manage their 

pigs’ health and welfare [17], because it can assist them in identifying subtle changes in 

behaviors that occur before or alongside subclinical and clinical signs of disease or injury. 

Ultimately, such monitoring can help farmers understand their pigs’ health and welfare 

issues [18,19]. Traditionally, the monitoring of pigs’ behaviors in farms is conducted man-

ually. However, with this approach, pig farmers need to continuously observe pigs and 

keep track of their displayed behaviors, which is time-consuming [17], error-prone [20], 

and impractical [21], considering that the number of farm workers is limited. To address 

these issues, automatic monitoring of pigs’ behaviors is more appropriate as it enables a 

more reliable and accurate continuous observation without much need for intervention 

from farm workers. Therefore, in this study, we propose a method to automatically mon-

itor and identify individual pigs, recognize their behaviors, and analyze them to provide 

pig farmers with important information that can help them effectively understand and 

manage pigs’ health and welfare. 

Recently, several studies [22–31] have reported the use of a technology-driven ap-

proach to automatically and continuously monitor and manage animals’ health, welfare, 

breeding, and production and reproduction using various sensors in what is known as 

“Precision Livestock Farming” (PLF) [32–36]. Utilizing video sensors, PLF methods have 

been proven to be efficient, noninvasive, and stress-free, which allows continuous, real-

time, and automated monitoring of animals to assist farmers in managing their livestock 

and improving their productivity. Considering these benefits, some studies [37–44] have 

leveraged PLF methods with video data to recognize pigs’ behaviors relevant to their re-

search. Table 1 summarizes some of the recent studies related to pig behavior recognition. 

Some researchers, such as Nasirahmadi et al. [37], used traditional machine learning tech-

niques because they need less data to train the model and are less computationally de-

manding. Meanwhile, others [38–44] used deep learning techniques since they can auto-

matically extract more relevant features (instead of relying on handcrafted features), 

which improves performance. Before performing behavior recognition, some of the afore-

mentioned studies used predefined bounding boxes and cropped images to localize pigs 

for validating their approach in recognizing individual postures in commercial farms [37] 

and providing a low-cost solution to monitor the aggressive behavior [40] as well as feed-

ing and drinking behaviors [44] of individual pigs. By contrast, other studies used detec-

tion techniques to automate the process of localizing individual pigs for monitoring their 

drinking, urination, and mounting behaviors in real time [38], monitoring and assessing 

their postures in response to various heat conditions [41], and improving the performance 

of individual posture recognition [42,43]. In addition to using a detection method to auto-

matically localize pigs, Alameer et al. [39] used tracking to identify individually detected 

pigs using unique identifiers (IDs) for differentiating the pigs and keeping a record of the 

behaviors displayed by each pig along with their IDs. 
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Table 1. Some of the recent studies related to pig behavior recognition published from 2019 to 2023. 

Detection 

and 

Tracking 

Behavior 

Recognition 

Method 

Targeted 

Behaviors 
Purpose 

Analysis of Recog-

nized Behaviors and 

Information Extraction 

Analysis and 

Information 

Extraction 

Technique(s) 

Ref. 

None 

Traditional 

machine 

learning 

* Posture  

To validate the proposed 

method for posture de-

tection under commercial 

farm conditions. 

No Not applicable [37] 

Detection 
Deep 

learning 

Drinking, uri-

nation, 

and mounting 

behaviors 

To provide a solution to 

monitor pigs’ behaviors 

in real time. 

No Not applicable [38] 

Detection 

and 

tracking 

Deep 

learning 

* Posture and 

drinking 

behavior 

To monitor subtle 

changes in pigs’ posture 

and drinking behavior to 

manage the pigs’ health 

and welfare. 

Yes 
Descriptive statis-

tical analysis 
[39] 

None 
Deep 

learning 

Aggressive be-

havior 

To provide a low-cost so-

lution for farmers to 

monitor aggressive be-

havior. 

No Not applicable [40] 

Detection 
Deep 

learning 
* Posture  

To monitor and assess 

pigs’ behavioral response 

under 

different heat conditions. 

No Not applicable [41] 

Detection 
Deep 

learning 
* Posture  

To improve the accuracy 

of recognizing pig pos-

ture. 

No Not applicable [42] 

Detection 
Deep 

learning 
* Posture  

To improve the perfor-

mance of posture recog-

nition in order to moni-

tor pigs within enclo-

sures. 

No Not applicable [43] 

None 
Deep 

learning 

Feeding and 

drinking 

behaviors 

To provide a low-cost so-

lution  

for monitoring feeding 

and drinking behaviors. 

No Not applicable [44] 

* Posture refers to exhibited behaviors that include some or all of the following: standing, sitting, 

sternal lying, lateral lying, prone, and sidling. 

Even though these studies have demonstrated good performance, most of them are 

mainly focused on providing recognized behaviors to help farmers manage their pigs. In 

practice, however, if farmers are solely provided with the recognized pigs’ behaviors, they 

need to read through the behavior logs manually to gain insight on the pigs’ health and 

welfare. This requires a significant effort and consumes a considerable amount of time 

that can result in missing out on important information that would assist them in manag-

ing their pigs [45]. Instead of making farmers use this approach, it is more efficient and 

accurate to analyze the recognized behaviors and provide farmers with the extracted in-

formation that can deliver valuable behavioral patterns related to the pigs’ health and 
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welfare. This will help farmers to better understand the state of their pigs, enabling effec-

tive management while also reducing labor costs and time [46], ultimately leading to pigs’ 

better health and welfare and improved farm productivity [47]. 

Various methods can be used to analyze pigs’ behaviors and extract useful infor-

mation and patterns from them. For example, Alameer et al. [39] used descriptive statisti-

cal analysis to analyze pigs’ behaviors and provide pig farmers with graphical represen-

tations that enable them to visualize the duration that pigs spent in different postures and 

drinking behaviors, as well as the pen positions where those behaviors occurred. Even 

though this method makes it easier for pig farmers to view the displayed behaviors and 

assist them in performing an initial analysis, their main purpose is summarizing data to 

produce a visual representation, which still requires farmers to manually search for pat-

terns. To provide farmers with a more detailed behavioral analysis that can assist them in 

effectively understanding and monitoring their pigs’ health and welfare, it is crucial to 

apply techniques that can automatically process pigs’ behavioral data and discover hid-

den, understandable, and valuable patterns from them. Pattern mining techniques are a 

suitable solution as they not only offer the aforementioned benefits but can also provide 

relationships and unexpected or previously unknown insights from large datasets that 

can be difficult to extract using manual observations and other analytical techniques 

[48,49]. To exploit these advantages, some researchers have utilized pattern mining meth-

ods to analyze animal behaviors. For example, Fontes et al. [50] analyzed jaguar move-

ment data using association rule mining to uncover their social interactions and relation-

ships, which are vital for understanding their ecology. Furthermore, Branco et al. [51] used 

the generalized sequential pattern (GSP) algorithm to identify and characterize the se-

quential behavior patterns of broiler chickens under different heat conditions as an initial 

step in developing a smart environment-control system. Likewise, applying pattern min-

ing techniques to pigs’ behaviors can help uncover valuable information, such as the time-

ordered sequences and interdependence among behaviors, which can serve pig farmers 

in managing and improving their pigs’ health and welfare. In fact, the pigs’ behavioral 

sequential patterns can provide insights on the type and duration of behaviors that lead 

to aggression, revealing their causes [52] and severity [53], helping farmers understand 

and address them appropriately. For example, if there is a sequence of aggressive and 

feeding behaviors in the mined behavioral sequential patterns, this may indicate that poor 

feeding conditions and a lack of proper nutrients contribute to the aggression among pigs 

[54,55]. This information will facilitate the development of evidence-based interventions 

to improve the feeding environment and the type of food to reduce the pigs’ aggressive 

behavior [54,55]. Furthermore, behavioral sequential patterns can offer insights about the 

necessity of providing pigpens with access to toys and devices (known as environmental 

enrichment [56]) to keep the pigs entertained, which will reduce stress and aggressive 

behavior. For instance, if the mined behavioral sequential patterns include activeness be-

havior followed by bar-biting in sequence, this may suggest poor environmental condi-

tions or inadequate enrichment materials in the pigpen [57]. This can help pig farmers 

understand and address the issues to alleviate pigs’ stress and frustration, as well as ag-

gressive behavior [58–60], which will enhance their health and welfare. Moreover, the as-

sociation between pigs’ behaviors can help identify patterns and relationships, contrib-

uting to improved decision-making in domains like nutrition, housing, and health and 

welfare management. For instance, if “moving” behavior is associated and positively cor-

related with “resting” behavior, it implies that active pigs have adequate time to rest, 

which reveals good welfare among the pigs [61]. This will eventually allow pig farmers to 

maintain their living conditions and improve their productivity. Therefore, it is essential 

to use pattern mining techniques to analyze pigs’ recognized behaviors as they can extract 

patterns that will assist pig farmers in making well-informed management decisions re-

garding pigs’ health and welfare. 
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Lastly, only a few studies have utilized both detection and tracking techniques to 

localize and identify individual pigs before behavior recognition [39]. However, pig de-

tection and tracking are an essential initial step for recognizing individual pigs’ behaviors 

in a pigpen with multiple pigs. In addition, pig detection and tracking information can 

add value to the understanding of pigs’ health and welfare. For instance, analyzing pigs’ 

trajectory information using descriptive statistical techniques can provide visualized lo-

comotion patterns based on the distance they have covered, which can help to evaluate 

their health status [62]. Thus, to address some of the limitations of previous research, in 

this study, we propose a system that acquires video data of pigs, detects and tracks them, 

recognizes their behavior, and analyzes the tracking and recognized behavioral data. De-

scriptive statistical analysis is first used to provide a general visualization for a quick ini-

tial exploration, and then pattern mining techniques are used to perform deeper analysis 

and automatically extract patterns. This provides pig farmers with meaningful infor-

mation that helps them to manage their pigs’ health and welfare. The system comprises 

the following features: 

(1) Acquiring pig video data. 

(2) Automatically detecting and tracking individual pigs. 

(3) Recognizing the behavior of individual pigs. 

(4) Analyzing tracked and recognized behavioral data, which, in turn, provide pig farm-

ers with extracted information that will assist them in making well-informed man-

agement decisions regarding their pigs’ health and welfare. 

Therefore, in this study, we propose a pattern mining-based system to analyze pigs’ 

behaviors to assist farmers in effectively monitoring the health and welfare of their pigs. 

In our proposed system, we first employ the ByteTrack [63] method, which is composed 

of YOLOx as the detector and the BYTE algorithm as the tracker, for the detection and 

tracking of pigs, respectively. This method demonstrates strong performance and effec-

tively addresses challenges such as occlusion, motion blur, size changes, and long-range 

association between detected and tracked objects. Then, we extract the appearance fea-

tures for each tracked pig using the Mobile neural architecture search Network (MnasNet) 

[64], which is a convolutional neural network (CNN) that performs better in terms of ac-

curacy and inference latency. Subsequently, we utilize long short-term memory (LSTM) 

to extract temporal information and recognize the pigs’ behaviors. Following this, the 

tracking information and recognized behaviors are captured and stored as log data. Sub-

sequently, we apply descriptive statistical analysis and pattern mining techniques to ex-

tract visualized information and behavioral patterns that provide insights on the pigs’ 

health and welfare. 

The rest of this paper is organized as follows. In Section 2, we describe in detail the 

method proposed in this study. Section 3 presents the experimental results and their sig-

nificance. Section 4 discusses the implication of the findings in a broader context. Lastly, 

in Section 5, we conclude our study and present recommendations for future work. 

2. Proposed Method 

The proposed architecture for the pattern mining-based pig behavior analysis system 

is depicted in Figure 1. The system consists of four main modules: (1) data acquisition 

module, (2) pig detection and tracking module, (3) pig behavior recognition module, and 

(4) pig behavior analysis module. 
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Figure 1. Overall structure of the pattern mining-based pig behavior analysis system. 

2.1. Data Acquisition Module 

The data acquisition module receives a continuous stream of video data from an in-

frared camera installed at the top of the pigpen, which continuously monitors multiple 

pigs inside it. An infrared camera was selected due to its capability of capturing video 

even in low-light conditions, rendering it suitable for 24 h continuous monitoring of pigs 

in a pigpen [26]. Subsequently, the received data were forwarded to the next module to 

detect and track the pigs. 

2.2. Pig Detection and Tracking Module 

The second module in our proposed system is the pig detection and tracking module, 

which focuses on localizing and uniquely identifying multiple pigs individually in the 

pigpen. This step is essential as it forms the basis for extracting information about the pigs’ 

location and unique IDs, which play a crucial role in the subsequent behavior recognition 

and analysis stages. Given the importance of this task, it is necessary to use a method that 

can effectively handle Multiple Object Tracking (MOT) and provide good results with 

multiple pigs. In general, there are two types of MOT methods, namely Detection-Free-

Tracking (DFT) and Detection-Based-Tracking (DBT) methods [65]. DFT methods focus 

on associating and tracking a fixed number of objects across consecutive frames without 

relying on explicit detection results. By contrast, DBT methods have the ability to handle 

a varying number of objects by detecting them in each frame and performing data associ-

ation across video frames to provide accurate and precise tracking results [65]. This fea-

ture makes DBT methods suitable for tracking multiple pigs in a pigpen. Several DBT 

methods exist [66–70] and have been applied in animal-related studies [21,71], achieving 

good results and accurately tracking multiple animals simultaneously. However, a nota-

ble limitation of these methods is their failure to consider objects with low detection 

scores, which can raise false negative values and reduce their overall performance. In our 

case, this will lead to errors in pig detection and tracking, ultimately affecting behavior 

recognition and analysis results in the later stages. Therefore, in our proposed system, it 

is also important to consider pigs with low detection scores while tracking them to ensure 
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good tracking performance. After reviewing recent studies on MOT, we selected the 

ByteTrack method proposed by Zhang et al. [63], which effectively addresses the issue 

caused by objects with low detection scores. First, this method uses a high-performance 

anchor-free detector, YOLOX [72], for detecting objects, and then employs the BYTE track 

algorithm to associate detected objects with their tracking IDs by considering every detec-

tion box, including those with a score lower than the selected threshold value. In this man-

ner, the ByteTrack method enhances MOT performance and addresses issues such as oc-

clusion, motion blur, size-changing, and long-range association between the detected and 

tracked objects, ultimately achieving good results compared with other tracking algo-

rithms [73–75]. For these reasons, in this module, we used the ByteTrack method, which 

is composed of YOLOX and the BYTE algorithm, for the detection and tracking of pigs 

from the received stream of videos. 

To apply the ByteTrack method for detection and tracking of multiple pigs in the 

pigpen, first, single-channel grayscale frames were extracted from the received stream of 

pig videos and transformed into three-channel red–green–blue (RGB) frames by replicat-

ing the single-channel data into two additional channels. This ensures that the extracted 

frames are in the form of three-channel RGB frames, which adhere to the input require-

ments of YOLOX-x used in this module and the MnasNet model used in the next module 

[63,64]. Next, the newly obtained RGB frames were resized to a resolution of 1440 × 800 

pixels to align with the input size of the YOLOX-x model before being forwarded for pig 

detection. Following this, the detection score for each detected pig was compared with the 

detection threshold value. If the score was greater than the threshold value, the detected 

pig was grouped as a high-confidence detection; otherwise, the detected pig was grouped 

as a low-confidence detection. At this stage, the BYTE track algorithm first assigned a 

tracking ID to the pigs with high scores and performed an association across the video 

frames. If the tracking ID remained unmatched with some detection boxes across the 

frames, then the algorithm associated them with low-score pigs to recover their tracking 

IDs. Subsequently, the individual frames (each containing pigs with bounding boxes and 

unique IDs) were outputted and arranged in sequences of three frames to align with the 

input size required by the behavior recognition model used later. Meanwhile, the pigs’ 

bounding boxes and IDs were stored as tracking information in the logged data. Further-

more, the bounding boxes were used to determine the regions of interest (ROIs) for each 

pig in the pigpen, which were then used to crop their image, enabling behavior recogni-

tion of specific individual pigs. This resulted in a total of n sequences of cropped images 

for each set of three frames, where n represents the number of pigs in the pigpen. Lastly, 

the cropped images were resized to a resolution of 224 × 224 pixels to match the input 

size of the next model before being forwarded for behavior recognition of every pig. 

2.3. Pig Behavior Recognition Module 

This module receives sequences of three cropped pig images as inputs from the detection 

and tracking module to recognize each pig’s behavior. In this context, the term “pig behavior” 

includes both normal behaviors (e.g., sleeping and moving) and aggressive behaviors (e.g., 

tail-biting and ear-biting), which are further elaborated in detail in Section 3.1. 

Behavior recognition is a field of research that has garnered much interest in past few 

years due to its potential for diverse applications, including surveillance, anomaly detec-

tion, and monitoring of animal health and welfare. To ensure good analysis of recognized 

behaviors, the selection of a suitable method that provides precise results in pig behavior 

recognition is of paramount importance, as subsequent steps depend on the accuracy of 

this phase. Accordingly, we explored recent approaches for behavior recognition in video 

data and found that deep learning methods, particularly the combination of CNN and 

LSTM (CNN–LSTM), have gained popularity and have been applied in various studies 

[29,37,76–79]. The CNN–LSTM model allows automatic extraction of more relevant fea-

tures by effectively extracting appearance information from images using CNN, which 

are then forwarded to the LSTM model to capture temporal dependencies in sequential 
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data. This enables the model to learn complex representations of the behaviors to be rec-

ognized, which improves the performance of the model [40,80]. Thus, in this module, we 

used a CNN–LSTM model for pig behavior recognition. 

Various CNN architectures can be used in the CNN–LSTM model for appearance 

features extraction from images. For example, VGG16 was used as an appearance feature 

extractor in VGG16–BiLSTM to recognize cows’ basic behaviors in order to understand 

their physiological health status. Similarly, Chen et al. [81] employed ResNet50 as the ap-

pearance feature extractor in ResNet50–LSTM to classify the drinking and drinker-playing 

behaviors of pigs to gain insight into whether the pigs had adequate water consumption. 

These CNN models have demonstrated their effectiveness in extracting representative fea-

tures for CNN–LSTM models, enabling accurate behavior recognition. However, to en-

sure improved results in pig behavior recognition, we explored and considered various 

recently developed and improved CNN models that can effectively extract representative 

features for behavior recognition in CNN–LSTM models. Among these models is the 

MnasNet, which uses a neural architecture search (NAS) technique and a depth multiplier 

(DM) value to automatically reduce the number of parameters in order to produce models 

with optimal network architectures that are lightweight and efficient [64]. The MnasNet 

model has been proven to be effective [82] as it is small in size, lightweight, and performs 

better in terms of accuracy and inference latency, which, in our case, can ensure precise 

recognition of different pigs’ behaviors while enabling fast inference and timely response. 

For these reasons, in our CNN–LSTM model, MnasNet was used to extract appearance 

features from the received sequences of cropped pig images. To use the MnasNet model, 

the DM value was first set at 0.5 to reduce the model size and make it lighter by reducing 

the number of filters in each layer by half. This model is referred to as the MnasNet0.5 

model. Subsequently, the classifier layer was removed to use the model as an appearance 

feature extractor on the received sequences of three cropped pig images from the previous 

module. This image sequence length was selected because it yielded better results for pig 

behavior recognition compared with other image sequence lengths, as demonstrated in 

the ablation study (Section 3.3.2). Next, the extracted feature vectors were forwarded to 

the LSTM as inputs for temporal feature extraction, followed by pig behavior recognition 

through a softmax layer classifier. Lastly, the pigs’ recognized behaviors were saved as 

log data to be used for analysis in the next module. 

2.4. Pig Behavior Analysis Module 

In this module, descriptive statistical analysis and data mining techniques were applied 

to extract visualized information and behavioral patterns, providing a deeper understand-

ing of pigs’ behaviors, thereby enabling informed decisions that can enhance their well-be-

ing as well as overall management practices. To apply these techniques, the tracking infor-

mation and recognized behaviors captured and stored as log data were first loaded and 

preprocessed by transforming them according to the specific format required for each anal-

ysis technique. Subsequently, descriptive statistical analysis and data mining techniques 

were applied to the preprocessed data to generate visualized information and extract be-

havioral patterns, which were then sent to the farmer to better understand and gain insights 

into the pigs’ health and welfare. Chord diagram, hexbin plot, pixel distance–time plot, and 

box plot were employed for descriptive statistical analysis while the sequential pattern min-

ing and association rule mining techniques were used for data mining. The process for each 

analysis technique is presented in more detail in the following subsections. 

2.4.1. Analysis of Aggressive Pigs’ Relationships 

Pig aggression on farms typically arises from a minority of individuals exhibiting 

aggressive behaviors [83], and identifying these individuals manually is a challenging and 

time-consuming task. If pig aggression is not effectively addressed, it can lead to unfortu-

nate outcomes such as the death of victim pigs due to fatal attacks. Therefore, it is imper-
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ative to identify both aggressors and victims within the pigpen, along with their associ-

ated aggressive relationships, in order to implement appropriate measures and ultimately 

prevent further instances of aggression [84–86]. To assist pig farmers with this issue, our 

system uses the tracking information and recognized behaviors to identify aggressor and 

victim pigs, delineate their aggressive relationships, and quantify the degree of aggression 

(such as which pigs are most targeted and which ones initiate attacks the most within the 

pigpen). Following this, the system presents this information in a visualized form using a 

chord diagram since it can display interactions among multiple elements, the extent of 

these interactions, and the initiators and receivers in a clear and intuitive manner. By em-

ploying this method, pig farmers can easily distinguish aggressors from victims, under-

stand which animals are most frequently involved in attacks, and subsequently take action 

to resolve the problem. 

2.4.2. Analysis of Locations Where Aggressive Behaviors Occur 

Identifying the key locations where aggressive behaviors take place is of great im-

portance because it can help pig farmers understand potential underlying causes (e.g., 

competition for resources and social hierarchies) and enable them to take necessary ac-

tions to address these issues [87]. To achieve this, our system uses bounding boxes of ag-

gressive pigs and presents them in a hexbin plot, since it effectively provides visualization 

of locations where aggressive behaviors occur by aggregating trajectory points and color-

coding them based on frequency. Therefore, providing farmers with a hexbin plot can 

help them to effectively visualize the key locations where aggressive behaviors occur, en-

abling a better understanding of their potential underlying causes, and subsequently im-

plementing the necessary measures to address them. 

2.4.3. Analysis of Pigs’ Movements 

Understanding pigs’ movements can provide insights into their health and welfare. 

In fact, pigs that exhibit abnormal or restricted movement patterns may suggest underly-

ing problems that require attention [11]. For instance, if pigs experience or show difficul-

ties in moving or walking properly, this may indicate reduced or no activity, which might 

be a sign of lameness and sickness [88]. Moreover, a decrease in movement may imply 

health issues or environmental stressors that limit the pig’s mobility and exploration [59]. 

To assist farmers with this issue, our proposed system uses tracking information and em-

ploys a pixel distance–time plot, providing a clear visualization of the pigs’ movements, 

allowing for effective observation and identification of any signs that may reveal issues 

that need to be addressed. 

2.4.4. Analysis of Aggressive Behavior Variations 

The variations or changes in the exhibited behaviors of pigs over time can be at-

tributed to various factors, including health, environment, social interactions, and devel-

opmental stages [19,89–91]. Understanding these behavioral variations can assist pig 

farmers in improving animal welfare, optimizing management practices, and ensuring the 

long-term sustainability of pig farming. For instance, an increase in pigs’ aggressive be-

havior with respect to time may suggest several potential factors or issues including un-

stable social groups and inadequate nutrition [92]. By contrast, a decrease in pigs’ aggres-

sive behavior can be interpreted as positive developments including adequate space and 

resources, establishment of social hierarchy, and environmental enrichment [16,53,87]. 

Therefore, our proposed system provides a box plot to delineate the trends in pigs’ ag-

gressive behavior with respect to time. This plot allows farmers to effectively observe and 

comprehend variations in the pigs’ aggressive behavior over time, enabling them to im-

plement necessary measures for handling pigs’ aggression. 

2.4.5. Pigs’ Behavioral Sequential Patterns 
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Pigs’ behavioral sequential patterns can help identify deviations or abnormalities that 

can signal potential problems or areas of concern to the pigpen. For instance, a sequence of 

“restlessness” behavior followed by “bar-biting” or engaging in stereotypic behaviors may 

indicate poor environmental conditions or inadequate enrichment in the pigpen [57]. In ad-

dition, if a pig vocalizes or squeals, followed by aggression toward its pen mates, this may 

imply social stress or hierarchical conflicts within the group in the pigpen [87]. Therefore, in 

this module, a sequential pattern mining technique was used to identify and extract sequen-

tial patterns, which can help in understanding and addressing potential issues that can con-

tribute to the overall well-being, productivity, and health of pigs in the pigpen. 

Various sequential pattern mining techniques exist in the literature [93–99] and their 

benefits have been demonstrated in several studies [51,100]. However, most of these tech-

niques did not consider the constraints that specify the desired properties of the item attrib-

utes for generated patterns, leading to a large number of sequential patterns that may not 

provide relevant results to the user. To ensure that the farmers can effectively filter out the 

relevant and meaningful patterns, it is important to restrict the search of the sequential pat-

tern mining algorithm to smaller subsets that satisfy problem-specific constraints. For in-

stance, a farmer may seek to generate sequential patterns for pig behaviors exhibited in a 

sequence for a certain minimum amount of time to understand their impacts or severity, 

thereby helping them take appropriate action for managing their pigs. Accordingly, after 

reviewing recent studies on sequential pattern mining techniques, we selected the con-

straint-based sequential pattern mining algorithm proposed by Hosseininasab et al. [101]. 

This method effectively addresses the aforementioned issue by relying on a multi-valued 

decision diagram (MDD) representation of the database, accommodating multiple item at-

tributes and constraints. Compared with other methods, this method is efficient and scalable 

because it can restrict the mining search to smaller subsets of patterns that satisfy problem-

specific constraints, enabling pig farmers to extract desired patterns based on identified con-

straints. Thus, the constraint-based sequential pattern mining algorithm was applied in this 

study to extract sequential patterns from the recognized pigs’ behaviors. 

To mine sequential patterns, first, the support and constraint threshold values were set 

on the constraint-based sequential pattern mining algorithm. Then, the algorithm was ap-

plied to the received pigs’ behavioral data to generate sequential patterns. These generated 

patterns are essential as they can help identify potential issues, thereby assisting pig farmers 

in addressing them and ultimately contributing to the well-being of the pigs in the pigpen. 

2.4.6. Pigs’ Behavioral Association Rule Mining 

Association rule mining focuses on discovering patterns with interesting relationships 

and correlation among a large set of data items based on a defined threshold value [48,102]. 

In the context of pigs’ captured data, an association rule between exhibited behavior can be 

expressed in the form of X → Y, where X is the behavioral-antecedent and Y is the behav-

ioral-consequent of the rules. Understanding pigs’ behavioral patterns can help in address-

ing issues by providing early intervention and appropriate management strategies and 

eventually improve their living conditions, and promote good health and welfare. For ex-

ample, if pigs’ “being-attacked” behaviors are associated and correlated with their “sitting-

resting” behaviors, it can reveal the consequences of aggression to the victim pigs that ex-

hibit “resting” behavior due to the effects of the attack such as injuries, lesions, and pain 

[103]. In addition, when “moving” is associated with “eating” behavior, this may indicate 

good welfare among pigs as they need to actively search for food, access feeding areas, and 

engage in natural foraging behaviors [104]. To help farmers understand and deal with these 

issues, our system leverages the association rule mining approach, specifically the frequent 

pattern (FP) growth algorithm [105], to provide associative patterns that can assist farmers 

in identifying meaningful relationships among pigs’ behaviors, making it easier to explore 

and draw insights from them. Compared with other available methods, the FP growth al-

gorithm is faster, more efficient, and scalable for association rule mining from both long and 
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short frequent patterns, owing to its elimination of the need for the costly candidate set gen-

eration and testing approach, which is typically required for large and long patterns [106]. 

This makes the FP growth algorithm a suitable choice for analyzing pigs’ behaviors as it can 

be applied in a broad range of domains and guarantees the discovery of meaningful associ-

ative patterns from large datasets in a short amount of time. 

To extract associative behavioral patterns, the support, confidence, and lift threshold 

values were first set on the FP growth algorithm [105]. Then, the algorithm was applied 

to the received pigs’ recognized behaviors to generate associative patterns. These gener-

ated patterns can assist farmers in identifying health and welfare issues, enabling prompt 

intervention and implementation of appropriate management strategies. 

3. Experimental Results 

3.1. Data Collection and Datasets 

The video datasets for our study were collected from a pig farm in Hadong-gun, 

Gyeongsangnam-do, South Korea, using an infrared dome camera (QND-6012R, Hanwha 

Techwin Co., Changwon, Republic of Korea). The infrared dome camera was positioned 

at the top of the pigpen to record the video at ten frames per second with a resolution of 

1920 × 1080 pixels. During the recording process, each video was recorded for a maxi-

mum of one hour, enabling the collection of a large number of samples showcasing a di-

verse range of pig behaviors. Subsequently, the videos containing pigs exhibiting selected 

aggressive and potentially harmful behaviors, as well as their common daily life behav-

iors, which can help farmers to enhance the understanding and management of their pigs’ 

health and welfare, were chosen and annotated. The Video Tracking and Behavior Anno-

tation Tool (ViTBAT) was used to annotate the videos since it allows the annotation of 

both bounding boxes and IDs for object detection and tracking, as well as behaviors for 

behavior recognition experiments [107]. In this step, each pig in a frame was annotated 

with a unique ID and bounding box to create a training set for the detection and tracking 

model and further annotated with their associated exhibited behavior for the behavior 

recognition experiment. 

To train the detection and tracking model, 21,348 frames were annotated. Out of 

these, 13,779 frames were allocated for training and validation sets in an 8:2 ratio. The 

remaining 7569 frames derived from five video sequences that showcased various condi-

tions, including instances of occlusion as well as active and inactive pig movements, were 

used to test the generalization capability of the model. For the behavior recognition ex-

periment, a total of 17,213 frames were annotated, resulting in 367,002 labeled behavior 

instances, as each frame contained multiple pigs, and each pig was considered as a sepa-

rate instance. To determine the appropriate image sequence length used as the input for 

the MnasNet0.5–LSTM model for behavior recognition, an ablation study was conducted 

using various image sequence lengths on our pig behavior recognition dataset. The find-

ings, presented in Section 3.3.2, show that an image sequence length of three images 

yielded better results compared with other tested image sequence lengths. Accordingly, 

sequences of three images were selected as the input for the MnasNet0.5–LSTM model, 

resulting in 122,334 instance sequences. From these instance sequences, 70, 15, and 15% 

were used for training, validation, and testing, respectively. Table 2 shows the description 

of pigs’ behaviors and their corresponding dataset counts used in the behavior recognition 

experiment as arranged in a sequence of three images. 
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Table 2. Pig behavior description and dataset counts used for experiments on behavior recognition 

models. 

Category Behavior Description 
Number of Instances  

(Sequences of Three Images) 

Normal  

behaviors 

eating-drinking Positioned with the head in a feeder. 13,605 

sleeping 
Lying with the head on the floor without being at-

tacked by other pigs. 
36,373 

sitting-resting 

Partly erected on stretched front legs with back 

end of the body  

contacting the floor. 

41,263 

moving 
Upright body position on extended legs with 

hooves only in contact with the floor. 
8874 

Aggressive  

behaviors 

belly-nosing 

Rubbing another pig’s belly with up-and-down 

snout  

movements. 

3607 

being-belly-nosed 
The belly of one pig is being rubbed with the snout 

of another pig. 
3288 

tail-biting 
Nibbling, sucking, or chewing the tail of another 

pig. 
798 

being-tail-bitten 
The tail of one pig is being nibbled, sucked, or 

chewed by another pig. 
807 

ear-biting 
Nibbling, sucking, or chewing the ear of another 

pig. 
685 

being-ear-bitten 
The ear of one pig is being nibbled, sucked, or 

chewed by another pig. 
709 

head-knocking-the-body Hitting another pig’s body with the head or snout. 4301 

body-being-knocked-by-

head 

The body of one pig is being hit with the head or 

snout of another pig. 
3217 

head-being-knocked Pigs hitting each other’s head or snout. 4807 

 Total  122,334 

3.2. Experimental Environment and Setup 

A desktop computer running on Windows 10 operating system, with a 4.0 GHz Intel 

Core i7 central processing unit (CPU), 32 GB random access memory (RAM), and an 

Nvidia GeForce RTX 3080Ti graphics card (ZOTAC Technology Limited, Hong Kong, 

China), was used for all our experiments. All models were implemented and trained in 

Anaconda environment using Python 3.8 programming language and Pytorch 1.7 open-

source machine learning framework. Further details outlining the specifics of each exper-

iment’s environment and setup are provided in the subsequent subsections. 

3.2.1. Experimental Environment and Setup for Pig Detection and Tracking 

Three experiments were conducted to evaluate the effectiveness of the method in de-

tecting and tracking multiple pigs within the pigpen. In the first experiment, the ByteTrack 

method, consisting of the YOLOX-x detector and BYTE algorithm tracker, was used to 

demonstrate its effectiveness in detecting and tracking multiple pigs in the pigpen. The 

model was trained for 200 epochs using stochastic gradient descent (SGD) as the optimizer 

and the default hyperparameters with a batch size of 2 and a learning rate set to 1 × 10−4. 

To compare the performance, two other experiments were carried out, substituting the 

YOLOX-x detector in the ByteTrack method with other recent detectors, namely the 

YOLOv8-l [108] and YOLO-NAS-l [109] models. In the ByteTrack experiment with the 

YOLOv8-l detector, the model was trained for 200 epochs using the SGD optimizer and 
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default hyperparameters. On the other hand, the ByteTrack model employing the YOLO-

NAS-l detector was trained for 250 epochs using the Adam optimizer and default hy-

perparameters, with a batch size of 4 and a learning rate of 4 × 10−4. For all three experi-

ments, during the training process, the model weights were initialized from the COCO 

pretrained model, and their performance was evaluated using the standard MOT metrics 

defined in [110,111]. Table 3 summarizes the description of each evaluation metric, where 

↑ denotes higher scores (indicating better performance) and ↓ denotes lower scores (indi-

cate better performance). 

Table 3. Metrics used to evaluate pig detection and tracking performance. 

Metric Description 

Rcll (↑) Recall 

Prcn (↑) Precision 

GT Ground truth of ID to be tracked 

MT (↑) Number of IDs mostly tracked 

PT (↓) Number of IDs partially tracked 

ML (↓)  Number of IDs mostly lost 

IDS (↓) Number of ID switches 

MOTA (↑) Multi-object tracking accuracy 

3.2.2. Experimental Environment and Setup for Pig Behavior Recognition 

For pig behavior recognition, an ablation study was first performed to quantitatively 

evaluate the effects of the image sequence length on the proposed MnasNet0.5–LSTM 

model and to select the appropriate image sequence length based on the findings. Subse-

quently, additional experiments were conducted to compare the performance. In these 

experiments, recent efficient CNN models were used, namely lightweight models such as 

RepGhostNet [112], EfficientNetv2s [113], MobileNetV3Small [114], and MnasNet1.0. 

Each of these models was used as an appearance feature extractor in its corresponding 

CNN–LSTM variant, resulting in the RepGhostNet0.5–LSTM, EfficientNetv2s–LSTM, Mo-

bileNetV3Small–LSTM, and MnasNet1.0–LSTM models, respectively. In addition, other 

experiments were conducted using VGG16–LSTM [80] and ResNet50–LSTM [81] models, 

which were previously used for pig behavior recognition. It shall be noted that all of the 

models used the same input size (224 × 224 pixels) in the CNN and a single layer LSTM 

with 64 hidden units. For the training process, all of the models used a cross-entropy loss 

function and an SGD optimizer with a gamma value of 0.1 and an epsilon of 1 × 10−9, 

maintaining a learning rate of 0.0005, except for the MobileNetV3Small–LSTM model, 

where a learning rate of 0.001 was employed. To address class imbalance during training, 

a class-weights technique was employed within the loss function. Other specific hyperpa-

rameters for each model are presented in Table 4. 

Table 4. Hyperparameters used for experiments using different models for pig behavior recognition. 

Model CNN Output Size LSTM Input Size Number of Epochs 

VGG16–LSTM 4096 1 × 3 × 4096 40 

ResNet50–LSTM 2048 1 × 3 × 2048 50 

RepGhostNet0.5–LSTM 

1280 1 × 3 × 1280 

60 

EfficientNetv2s–LSTM 40 

MobileNetV3Small–LSTM 40 

MnasNet1.0–LSTM 60 

MnasNet0.5–LSTM 60 

The performance of all models was compared based on their inference time and F1 

score values [115], which were computed using the following equations: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

Here, true positive (TP) represents the true pigs’ behaviors accurately classified as 

true, false positive (FP) represents the false pigs’ behaviors inaccurately classified as true, 

and false negative (FN) represents the true pigs’ behaviors inaccurately classified as false. 

3.2.3. Experimental Environment and Setup for Pig Behavior Analysis 

The Pycirclize library [116] was used to plot the chord diagram, while the Matplotlib 

library was used to generate the hexbin plot, pixel distance–time plot, and box plot. On 

the other hand, the Sequence-to-Pattern Generation (Seq2Pat) library [117], which offers a 

constraint-based sequential pattern mining algorithm [101], was used as a tool for mining 

sequential patterns from pigs’ behaviors. During the mining process, the support and time 

constraint thresholds were set at 0.4 and 0.3 s, respectively. 

Furthermore, the FP growth algorithm [105] from the Sequential Pattern Mining Frame-

work (SPMF) [118] was used to generate associative correlative patterns from pigs’ behaviors, 

using threshold values of 0.4, 0.85, and 1 for support, confidence, and lift, respectively. 

3.3. Results 

3.3.1. Detection and Tracking Results 

Table 5 shows the experimental results for pig detection and tracking using the 

ByteTrack method, which consists of the YOLOX-x detector and BYTE algorithm tracker. 

The results show that in terms of detection performance, the model achieved a recall and 

precision of 0.988 and 0.983, respectively, indicating the robust ability of the model in de-

tecting multiple pigs in the pigpen. These findings are highly significant since they di-

rectly influence the capacity of the model to uniquely identify pigs. 

Moreover, in terms of tracking performance, the model achieved a MOTA of 0.971, sug-

gesting that the proposed model is capable of accurately tracking multiple pigs within the 

pigpen. Furthermore, the MT value was 134, demonstrating the effectiveness of the model 

in tracking the majority of pigs (~98.523%). Both the PT and ML values were equal to 1, 

signifying that only a few pigs were partially tracked, and a small number of pigs were 

mostly lost. Furthermore, the model attained a low IDS value of 18, showcasing its capability 

to continuously maintain the identification of most pigs across different frames. The good 

performance of the ByteTrack with YOLOX-x detector confirms that the method is efficient 

for detecting and tracking multiple pigs in a pigpen, which is an essential initial step in the 

system, as it plays a crucial role in subsequent behavior recognition and analysis. 

Table 5. Overall results for multiple pig detection and tracking using the proposed model 

(ByteTrack with YOLOX-x detector). 

 Number of Frames Rcll↑ Prcn↑ GT MT↑ PT↓ ML↓ IDS↓ MOTA↑ 

Video00 1038 0.986 0.999 28 28 0 0 5 0.984 

Video01 1324 0.992 1.000 25 24 1 0 2 0.991 

Video02 1200 0.997 0.970 21 21 0 0 3 0.966 

Vide03 1200 0.996 0.998 28 28 0 0 6 0.994 

Video04 1600 0.962 0.939 18 17 0 1 2 0.900 

Video05 1207 0.998 0.997 16 16 0 0 0 0.995 

Overall 7569 0.988 0.983 136 134 1 1 18 0.971 
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The results of the other two experiments conducted for performance comparison are 

presented in Table 6. The ByteTrack model, comprising the YOLOX-x detector and BYTE 

algorithm tracker, was compared with two other models, substituting the YOLOX-x detec-

tor in the ByteTrack method with recent detectors (YOLOv8-l and YOLO-NAS-l). The ex-

perimental results show that the ByteTrack model with the YOLOX-x detector outper-

formed the other models across all evaluation metrics. These findings strongly suggest that 

the proposed model is significantly more accurate in detecting and uniquely identifying 

multiple pigs in the pigpen across the video frames compared with the ByteTrack model 

which replaces the YOLOX-x detector with the YOLOv8-l and YOLO-NAS-l detectors. 

Table 6. Comparison of the pig detection and tracking performance using the ByteTrack with dif-

ferent detectors. 

Model Number of Frames Rcll↑ Prcn↑ GT MT↑ PT↓ ML↓ IDS↓ MOTA↑ 

Bytetrack with 

YOLOv8-l 

7569 

0.888 0.961 

136 

104 23 9 139 0.851 

ByteTrack with 

YOLO-NAS-l 
0.964 0.978 125 8 3 75 0.941 

ByteTrack with 

YOLOX-x 
0.988 0.983 134 1 1 18 0.971 

3.3.2. Behavior Recognition Results 

In this section, the results of two experiments are presented. The first experiment is 

an ablation study, which quantitatively evaluates the effect of varying the image sequence 

length on the proposed model, MnasNet0.5–LSTM, and selects the image sequence length 

that gives the best performance. The findings from the ablation study (Table 7) indicate 

that using an image sequence length of three yielded better results compared with other 

image sequence lengths. Therefore, a sequence length of three was selected for our pro-

posed model. 

Table 7. F1 score results obtained from the ablation study for pig behavior recognition using the 

MnasNet0.5–LSTM model with various image sequence lengths. 

Image Sequence Length F1 Score 

3 0.931 

4 0.915 

5 0.909 

6 0.921 

7 0.896 

8 0.918 

9 0.903 

10 0.869 

Furthermore, the detailed results of the proposed model for pig behavior recognition 

in terms of recall, precision, and F1 score using the selected image sequence length are 

summarized in Table 8. The results show that the MnasNet0.5–LSTM model achieved a 

precision of 0.932, along with a recall and F1 score of 0.931, proving that it can accurately 

recognize pigs’ behaviors. However, a lower accuracy was observed for behaviors such as 

“head-knocking-the-body,” “body-being-knocked-by-head,” and “head-to-head-knock-

ing,” which can be attributed to the challenges associated with distinguishing these be-

haviors from others that exhibit similar postures, such as the “moving” behavior, poten-

tially leading to misclassification. 
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Table 8. Pig behavior recognition performance of the proposed model in terms of precision, recall, 

and F1 score. 

Behavior Precision Recall F1 Score Data Count 

eating-drinking 0.944 0.957 0.951 2255 

sleeping 0.970 0.984 0.977 5034 

sitting-resting 0.942 0.930 0.936 4863 

moving 0.842 0.904 0.872 1871 

belly-nosing 0.992 0.974 0.983 774 

being-belly-nosed 0.997 0.974 0.986 774 

tail-biting 0.963 0.959 0.961 242 

being-tail-bitten 0.968 0.884 0.924 242 

ear-biting 0.916 0.956 0.935 159 

being-ear-bitten 0.974 0.949 0.962 158 

head-knocking-the-body 0.756 0.802 0.778 756 

body-being-knocked-by-head 0.892 0.683 0.774 723 

head-to-head-knocking 0.876 0.876 0.876 1051 

Weighted average 0.932 0.931 0.931 18,902 

The results of the second experiment, conducted for performance comparison, are tab-

ulated in Table 9. The proposed model, MnasNet0.5–LSTM, was compared with other recent 

models (RepGhostNet0.5–LSTM, EfficientNetv2s–LSTM, MobileNetV3Small–LSTM, and 

MnasNet1.0–LSTM) as well as with the models previously used for pig behavior recognition 

(VGG16–LSTM and ResNet50–LSTM). The experimental results show that the MnasNet0.5–

LSTM model outperformed all of the other models. The MnasNet0.5–LSTM model only 

showed a slight drop of 0.004 in the F1 score when compared with the MnasNet1.0–LSTM 

model. However, as detailed in Table 10, it is evident that the proposed model significantly 

reduced the number of parameters to 2,922,613 and decreased the execution time to 1.534 s 

per sequence, making it smaller and faster than the MnasNet1.0–LSTM model. Despite the 

considerable reduction in the number of parameters, the proposed model achieved good 

performance with minimal inference time, which can ensure precise recognition of different 

pigs’ behaviors while also enabling fast inference. 

Table 9. Comparison of the pig behavior recognition performance for all models tested in this study 

using the F1 score. 

Behavior 

F1 Score  

VGG16–

LSTM 

ResNet50– 

LSTM 

RepGhost 

Net0.5–LSTM 

Efficient 

Netv2s–LSTM 

MobileNetV3 

Small–LSTM 

MnasNet 

1.0–LSTM 

MnasNet 

0.5–LSTM 

eating-drinking  0.943 0.930 0.917 0.933 0.898 0.958 0.951 

sleeping 0.982 0.927 0.925 0.968 0.962 0.980 0.977 

sitting-resting 0.934 0.893 0.878 0.922 0.917 0.942 0.936 

moving 0.861 0.779 0.764 0.803 0.846 0.873 0.872 

belly-nosing 0.951 0.925 0.931 0.857 0.963 0.972 0.983 

being-belly-nosed 0.987 0.955 0.936 0.987 0.981 0.988 0.986 

tail-biting 0.948 0.890 0.881 0.877 0.869 0.957 0.961 

being-tail-bitten 0.942 0.825 0.893 0.915 0.878 0.933 0.924 

ear-biting 0.975 0.855 0.841 0.936 0.933 0.951 0.935 

being-ear-bitten 0.968 0.959 0.962 0.930 0.954 0.949 0.962 

head-knocking-the-body 0.777 0.795 0.754 0.773 0.777 0.830 0.778 

body-being-knocked-by-head 0.717 0.730 0.685 0.746 0.695 0.757 0.774 

head-to-head-knocking 0.861 0.795 0.770 0.820 0.814 0.869 0.876 

Weighted average 0.926 0.883 0.871 0.905 0.904 0.935 0.931 
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Table 10. Comparison of the pig behavior recognition models in terms of the number of parameters 

and execution time. 

 
VGG16–

LSTM 

ResNet50–

LSTM 

RepGhost 

Net0.5–LSTM 

Efficient 

Netv2s–LSTM  

MobileNetV3 

Small–LSTM 

MnasNet 

1.0–LSTM 

MnasNet 

0.5–LSTM 

Number of parameters 135,335,309 28,125,047 3,018,069 22,163,837 3,213,849 5,087,413 2,922,613 

Execution time (s)-Per sequence 6.861 3.851 0.922 7.315 2.191 2.742 1.534 

3.3.3. Pig Behavior Analysis Results 

This section presents the results of both descriptive statistical analysis and data mining. 

These findings are divided into six main subsections, each of which is described below. 

(1) Results of Aggressive Pigs’ Relationships Analysis 

Figure 2 presents a chord diagram illustrating the aggressive interrelationships 

among pigs in the pigpen over a one-hour period when the pigs were active. Each aggres-

sive pig is represented by an external node, and the relationships between them are de-

picted by arcs. The direction in which the arcs point indicates the victim pig, while the 

origin of the arrow represents the attacker in that relationship. The size of the arcs reflects 

the frequency of repeated attacks. As shown in Figure 2, Pig15 was targeted by all of the 

other pigs, making it the primary victim in the pigpen. Pig24 was the most frequent ag-

gressor, followed by Pig17, Pig18, Pig13, Pig10, and Pig7. This observation suggests that 

Pig15 might be in a compromised state, potentially due to sickness, injury, or physical 

vulnerability, which makes it more susceptible to attacks from its peers [119]. Even though 

Pig15 exhibited aggression by attacking only Pig18, the extent of the attack was relatively 

mild compared with other instances of aggression. This implies that Pig15 may be physi-

cally weaker and less aggressive than other pigs displaying aggressive behavior. 

These findings are significant as they can assist pig farmers in identifying both at-

tacker and victim pigs, understanding their aggressive relationships, and assessing the 

degree of aggression. This information can ultimately guide pig farmers in taking appro-

priate action such as separating the aggressive pigs or improving pigpen conditions to 

address the aggressive behaviors in the pigpen. 

 

Figure 2. Chord diagram which enables visualization and identification of the interrelationships 

among aggressive pigs. 

(2) Results of Aggressive Behaviors Locations Analysis 

The scenario depicted in Figure 3 represents the locations where aggressive behav-

iors occurred within the pigpen over a one-hour duration. As shown in the figure, the 

majority of aggressive incidents among pigs took place around or near the feeding area, 

with only a few occurrences observed far from it. These findings suggest that the primary 

cause of aggression may be related to food shortage, dominance battles over access to 

food, and competition for limited feeding space [11,120]. Understanding these underlying 
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causes can guide pig farmers in devising strategies to mitigate aggression, such as adjust-

ing feeding schedules or creating a more structured feeding environment to alleviate com-

petition among pigs. 

 

Figure 3. Hexbin plot which enables visualization of the locations where aggressive behaviors oc-

curred in the pigpen. 

(3) Results of Pigs’ Movements Analysis 

The pixel distance–time plot is presented in Figure 4, where Figure 4a shows the com-

bined plot for Pig1 and Pig3, enabling easy comparison of pixel movements among the 

pigs. Meanwhile, Figure 4b and c provide a separate plot for each pig, allowing clear vis-

ualization of their individual movements. As shown in Figure 4b, Pig1 exhibited a higher 

level of activity, reaching a peak distance above 175.0 pixels around the 55th to 60th mi-

nute, signifying more substantial movement compared with Pig3. Moreover, most of the 

time, Pig1 displayed higher activity levels than Pig3, denoting a greater overall activity. 

These observations imply that Pig1 is more likely to be a healthy pig [121]. By contrast, as 

presented in Figure 4c, Pig3 showed reluctance in movement or maintained a low level of 

locomotion, with the majority of its covered distance staying below 25 pixels. This sug-

gests that Pig3 may be more likely to have welfare issues such as illness, leg weakness, 

and lameness [121,122]. 

These behavioral patterns are important as they can assist pig farmers in understand-

ing the activity levels of pigs, identifying restlessness, and recognizing reduced move-

ment, all of which may indicate the pigs’ health and welfare status [11]. 

 
(a) 
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(b) (c) 

Figure 4. Pixel distance–time plot which enables visualization of the pigs’ movement patterns: (a) 

combined pixel distance–time plot for Pig1 and Pig3, (b) pixel distance–time plot for Pig1, and (c) 

pixel distance–time plot for Pig3. 

(4) Results of Aggressive Behavior Variations Analysis 

Figure 5 shows a box plot that highlights the variations in pigs’ aggressive behaviors 

throughout a week, based on data captured at different time intervals (08:00 to 10:00, 12:00 

to 14:00, and 16:00 to 18:00), covering the periods when the pigs were active [123]. The results 

show that the aggressive behaviors decreased during the first three days, where the median 

and mean values decreased from 168 and 172 aggressive counts per second to 34 and 47 

aggressive counts per second, respectively. However, on the fourth day, there was a slight 

increase in aggressive behavior compared with the third day, with a potential outlier of 404 

aggressive counts per second, indicating unusual aggressiveness that might necessitate fur-

ther investigation to identify the causes. Moreover, the results demonstrate that aggressive 

behaviors further decreased during the last three days, where the median and mean values 

decreased from 61 and 100 aggressive counts per second to 16 and 26 aggressive counts per 

second, respectively. In fact, as depicted in Figure 5, there was a noticeable decrease in the 

pigs’ aggressive behavior throughout the week, which may imply an improvement in the 

pigs’ living conditions, including adequate space and resources, the establishment of social 

hierarchy, and environmental enrichment [16,53,87]. Therefore, these findings enable pig 

farmers to comprehend the variations in pigs’ aggressive behaviors over time, detect unu-

sual spikes in aggressiveness, implement necessary measures to address the identified is-

sues, and ultimately maintain the pigs’ living conditions. 

 

Figure 5. Box plot illustrating the variations of the pigs’ aggressive behaviors. 
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(5) Results of Behavioral Sequential Pattern Mining 

Table 11 presents the results of mining sequential behavioral patterns in pigs for the 

data captured during daytime when the pigs were active over a three-week period. A total 

of 15 behavioral sequential patterns were found, varying in sequence size from 2 to 3. The 

results show that patterns 1 and 2 stood out with a support value of 0.586, signifying the 

most prevalent behavioral sequential patterns. These patterns predominantly involved 

transitions between “sleeping” and “sitting-resting” behaviors in sequence, or vice versa, 

representing normal behavior in healthy pigs [124]. In addition, patterns 6, 12, and 13 

demonstrated that “eating” behavior was followed by aggressive behavior in a sequential 

manner, with a maximum support value of 0.462. This emphasizes that many pigs exhibit 

aggressive behavior after they start feeding, potentially indicative of problems such as 

insufficient food and feeding space in the pigpen [125,126], as well as inadequate nutrient 

supply in the food provided [127]. These findings further confirm the effectiveness of us-

ing both descriptive statistical analysis and data mining techniques. In fact, while the 

hexbin plot in (2) of Section 3.3.3 reveals the area where aggression mostly occurs, behav-

ioral sequential patterns provide more detailed evidence about the behavior leading to 

aggression. Lastly, patterns 11 and 15 show that “eating” behavior was followed by 

“sleeping” behavior in sequence, with a maximum support value of 0.432. This highlights 

that many pigs tend to sleep after eating, which may be attributed to the digestive process, 

potentially signifying normal behavior in healthy pigs [128]. Identifying these patterns 

can be helpful as it enables pig farmers to gauge and understand normal exhibited behav-

iors as well as the causes of aggressive behavior, such as inadequate nutrient supply in 

the food provided and the lack of food and feeding space in the pigpen. All of these factors 

can assist pig farmers in developing solutions aimed at addressing observed deviations 

or abnormalities, enhancing the feeding environment and food quality, and maintaining 

the pigs’ living conditions. This can ultimately help reduce aggressive behaviors among 

pigs, improving their health and welfare [54,55]. 

Table 11. Results of behavioral sequential pattern mining. 

# Behavioral Sequential Pattern Support 

1 [‘sleeping’, ‘sitting-resting’] 0.586 

2 [‘sitting-resting‘, ‘sleeping’] 0.586 

3 [‘head-to-head-knocking’, ‘sleeping’] 0.543 

4 [‘moving’, ‘sleeping’] 0.515 

5 [‘moving’, ‘head-to-head-knocking’] 0.503 

6 [‘eating’, ‘head-to-head-knocking’] 0.462 

7 [‘sleeping’, ‘sitting-resting’, ‘sleeping’] 0.461 

8 [‘head-to-head-knocking’, ‘sitting-resting’] 0.457 

9 [‘moving’, ‘sitting-resting’] 0.456 

10 [‘moving’, ‘eating’] 0.443 

11 [‘eating’, ‘sleeping’] 0.432 

12 [‘moving’, ‘eating’, ‘head-to-head-knocking’] 0.388 

13 [‘eating’, ‘head-to-head-knocking’, ‘sleeping’] 0.379 

14 [‘head-to-head-knocking’, ‘sleeping’, ‘sitting-resting’] 0.367 

15 [‘moving’, ‘eating’, ‘sleeping’] 0.369 

(6) Results of Association Rule Mining on Pigs’ Behaviors 

Table 12 shows the results of association rule mining on pigs’ behaviors for the data 

captured during the same period as in (5) above. A total of 15 patterns were generated, 

with an antecedent size ranging from 1 to 3 and a consequent size of 1. Moreover, all gen-

erated patterns had a confidence value above 0.850, implying a high degree of reliability 

for pig farmers to have a considerable level of trust. In addition, the lift value (greater than 
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1) signifies a notably stronger co-occurrence of these behaviors than would typically be 

anticipated, helping pig farmers in observing and understanding these coinciding behav-

iors for better management of such occurrences. 

The results reveal that pattern 2 was the most associative and positively correlated 

behavioral pattern, with a support value of 0.637, indicating that many pigs spent their 

time in “resting” behavior. Furthermore, pattern 4 showed that “body-being-knocked-by-

head” was associated and positively correlated with “sitting-resting” behavior, with a 

support value of 0.412. This pattern highlights that, when a pig becomes victim of an at-

tack, the pig is more likely to rest due to injuries, lesions, and pain [103]. This signifies a 

severe problem for many pigs that might necessitate intervention due to its support value. 

Providing such behavioral patterns can help farmers gauge the effects of an aggression, 

prompting essential actions to address the issue such as enhancing pen layouts, reducing 

overcrowding, and mitigating any aggression sources among pigs. In addition, patterns 

2, 3, 5, 6, 10, and 11 show the associations and positive correlations among normal pig 

behaviors. Understanding these behavioral patterns can significantly assist pig farmers in 

enhancing and maintaining informed decision-making regarding nutrition, housing, and 

health and welfare management. For instance, in pattern 5, “eating” and “moving” behav-

iors were associated and positively correlated with “sleeping” behavior (with a support 

value of 0.413), signifying that an active pig tends to rest upon receiving food. This finding 

indicates good welfare among pigs [61], enabling pig farmers to maintain the current farm 

layout, housing, and food, thereby enhancing the optimal living standards and produc-

tivity of the pigs. Therefore, providing farmers with information about pigs’ associative 

and correlative behavioral patterns is of paramount importance. This information can help 

pig farmers comprehend and address issues to improve farming practices, which will ul-

timately enhance the welfare and productivity of their pigs. 

Table 12. Results of association rule mining on pigs’ behaviors. 

# Antecedent Consequent Support Confidence Lift 

1 eating head-to-head-knocking 0.496 0.886 1.249 

2 sitting-resting sleeping 0.637 0.869 1.106 

3 moving  sleeping 0.564 0.865 1.101 

4 body-being-knocked-by-head  sitting-resting 0.412 0.857 1.168 

5 eating Λ moving sleeping 0.413 0.889 1.131 

6 eating Λ sleeping moving 0.413 0.907 1.390 

7 eating Λ sleeping head-to-head-knocking 0.419 0.920 1.297 

8 eating Λ head-to-head-knocking  moving 0.427 0.860 1.317 

9 eating Λ moving head-to-head-knocking 0.427 0.918 1.294 

10 sitting-resting Λ moving sleeping 0.483 0.904 1.151 

11 sleeping Λ moving sitting-resting 0.483 0.855 1.166 

12 sitting-resting Λ head-to-head-knocking sleeping 0.476 0.878 1.117 

13 moving Λ head-to-head-knocking sleeping 0.479 0.882 1.123 

14 sitting-resting Λ moving Λ head-to-head-knocking sleeping 0.406 0.908 1.156 

15 sleeping Λ sitting-resting Λ head-to-head-knocking moving 0.406 0.852 1.306 

Λ represents a conjunction (logical AND) between behaviors in a generated pattern. 

3.3.4. System Graphical User Interface 

A graphical user interface (GUI) was developed to assist pig farmers in conveniently 

accessing information that can effectively help them understand and manage their pigs’ 

health and welfare. This GUI enables them to visualize patterns related to aggressive pigs’ 

relationships, their locations and variations, as well as pigs’ movements using descriptive 

statistical analysis, as depicted in Figure 6. In addition, the GUI is an interactive tool for 
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pig farmers to visualize sequential and associative behavioral patterns through data min-

ing techniques, as shown in Figure 7. 

To utilize this feature, users first load the video stream and select their desired anal-

ysis technique: either descriptive statistical analysis or data mining. This process is illus-

trated in figures as step 1 and step 2, respectively. Upon selection, corresponding patterns 

to be generated for the chosen technique are displayed, allowing users to select one or 

more by checking the respective boxes; this is depicted as step 3 in figures. Subsequently, 

in step 4, users must specify the intended time frame for each selected pattern. In step 5, 

users generate the patterns by clicking on the “Generate Patterns” button. These patterns 

are then displayed as visualization results or behavioral patterns, depending on the se-

lected analysis technique, as shown in step 6. 

 

Figure 6. Descriptive statistical analysis interface: proposed system screenshot. 

 

Figure 7. Data mining interface: proposed system screenshot. 
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4. Discussion 

With the development of PLF, several studies have utilized video sensors coupled 

with deep learning to recognize pigs’ behavior. While these studies have yielded promis-

ing results, they often fall short in providing farmers with easily interpretable and action-

able insights for effective management of their livestock. This limitation arises as it re-

quires a significant amount of time and effort for farmers to read through behavior logs 

manually, often resulting in the oversight of crucial information relevant to their pigs’ 

health and welfare. In addressing this challenge, this paper proposes an approach that 

utilizes the YOLOX model and BYTE algorithm for detection and tracking of individual 

pigs, alongside the MnasNet-LSTM model for recognizing pigs’ behavior. Additionally, 

the method integrates descriptive statistical analysis and data mining techniques to pro-

vide farmers with visualized information and behavioral patterns. Consequently, it offers 

a viable solution for farmers, facilitating a comprehensive understanding and effective 

management of their pigs’ health and welfare. 

By providing farmers with readily accessible and interpretable insights into their 

pigs’ behavior, it facilitates informed decision-making and proactive intervention to main-

tain and manage animal health and welfare. Furthermore, the adoption of such technol-

ogy stands to enhance overall farm productivity and sustainability by optimizing resource 

allocation and minimizing the risk of aggressive behaviors, disease outbreaks, or subop-

timal management practices. 

5. Conclusions 

Continuous monitoring of pigs’ behaviors can assist in identifying subtle changes 

that precede or accompany subclinical and clinical signs of diseases or injuries, thereby 

helping pig farmers in understanding and managing the health and welfare of their pigs. 

To equip farmers with appropriate solutions, we proposed a system that can automati-

cally monitor, identify, and track individual pigs, recognize their behaviors, and analyze 

the tracking and behavior information to provide visualized information and behavioral 

patterns. This can effectively assist pig farmers in understanding and managing the health 

and welfare of their pigs. The system consists of four modules: (1) data acquisition mod-

ule, (2) pig detection and tracking module, (3) pig behavior recognition module, and (4) 

pig behavior analysis module. The first module continuously receives a video stream from 

an infrared camera installed at the top of the pigpen, which monitors multiple pigs, and 

then forwards the video stream to the second module. Upon receiving the video, the sec-

ond module uses the YOLOX-x detector to detect pigs, followed by the BYTE track algo-

rithm to uniquely identify them by assigning a tracking ID to the detected pigs and per-

forming an association between them across video frames. Subsequently, the pigs’ bound-

ing boxes and IDs are stored as tracking information in the logged data and are also used 

to identify ROIs representing each pig in the pigpen, which are then used to crop their 

images and forward them to the third module. In the third module, the MnasNet–LSTM 

model is applied to the received sequences of cropped pig images to recognize the behav-

ior of each specific pig and save the recognized behaviors as log data for further analysis. 

Finally, in the fourth module, the tracking information and recognized behaviors of the 

pigs are analyzed using descriptive statistical analysis and data mining techniques to pro-

vide pig farmers with visualized information and pattern mining results that can help 

them effectively understand and manage the health and welfare of their pigs. 

Based on the experimental results, in terms of detection performance, our system 

achieved a recall and precision of 0.988 and 0.983, respectively. In terms of tracking per-

formance, our system achieved a MOTA of 0.971. Our system also attained an F1 score of 

0.931 for behavior recognition. These findings reveal that the method can robustly and 

accurately detect and track multiple pigs in the pigpen, as well as recognize their behav-

iors. Furthermore, the experiments demonstrated the effectiveness of descriptive statisti-

cal analysis and data mining in providing visualized information and behavioral patterns 
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that can effectively help pig farmers understand and manage the health and welfare of 

their pigs. In future research, we intend to focus on improving the pigs’ tracking and be-

havior recognition performance by introducing multiview cameras in order to enhance 

the visibility of pigs from various angles, directions, and positions. In addition, since some 

pigs’ vocalizations are associated with health and welfare issues such as postweaning 

multisystemic wasting syndrome (PMWS), porcine reproductive and respiratory syn-

drome (PRRS), mycoplasma hyopneumoniae (MH), and aggression; as such, we will also 

explore the use of sound data to introduce a multimodal system for monitoring pigs’ 

health and welfare. Finally, in addition to using standard metrics, we will explore the pos-

sibility of using additional statistical tests on the selected models to ensure a more rigor-

ous validation of the selected technique. 
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