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Abstract: This paper introduces a novel approach to measure deformations in geomaterials using the
recently developed ‘Smart Pebble’ sensors. Smart Pebbles were included in triaxial test specimens
of unbound aggregates stabilized with geogrids. The sensors are equipped with an aggregate
particle/position tracking algorithm that can manage uncertainty arising due to signal noise and
random walk effects. Two Smart Pebbles were placed in each test specimen, one at specimen’s mid-
height, where a geogrid was installed in the mechanically stabilized specimen, and one towards the
top of the specimen. Even with simple raw data processing, the trends on linear vertical acceleration
indicated the ability of Smart Pebbles to assess the geomaterial configuration and applied stress states.
Employing a Kalman filter-based algorithm, the Smart Pebble position coordinates were tracked
during testing. The specimen’s resilient deformations were simultaneously recorded. bender element
shear wave transducer pairs were also installed on the specimens to further validate the Smart Pebble
small-strain responses. The results indicate a close agreement between the BE sensors and Smart
Pebbles estimates towards local stiffness enhancement quantification in the geogrid specimen. The
study findings confirm the viability of using the Smart Pebbles in describing the resilient behavior of
an aggregate material under repeated loading.

Keywords: aggregate; sensor; resilient deformation; geogrid; triaxial test

1. Introduction

In the field of transportation geotechnics, it is important to study the behavior of
constructed aggregate layers subjected to vehicular traffic loading. The magnitude and
the dynamic nature of such repeated loading lead to loss of pavement structural integrity
and permanent deformation accumulation in road foundation layers, i.e., the unbound
aggregate base/subbase and subgrade [1]. Ensuring the stability of the unbound aggregate
base (UAB) layer under repeated loading, therefore, becomes one of the primary objectives
for engineering design and construction. For instances where the layer stability cannot be
achieved with compaction alone, stabilization becomes necessary. Stabilization typically
refers to improving physical properties and engineering behavior of geomaterials through
chemical or mechanical interventions. Mechanical stabilization using geosynthetics, such
as geogrids and geotextiles, has become increasingly popular owing to its constructability
and rapid implementation. Geogrids, in particular, are known to provide lateral restraint
and local stiffness enhancements through aggregate–geogrid interlock. Depending on
the manufacturing process, geogrid types used in pavement base layer stabilization can
be extruded with various geometries, woven, and welded [2]. A considerable effort in
research has been focused primarily on quantifying geogrid benefits through numerical
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modeling [3,4], the use of embedded sensors such as the bender element (BE) sensors [5,6],
and in situ evaluations [7].

Previous research efforts have focused on developing an understanding of geogrid sta-
bilization mechanisms and optimal geogrid location in granular bases [8–11]. Haas et al. [8]
reported on the measurable response improvement of geogrids when placed in the base
layer of a paved road. Their research findings provided recommendations on the placement
locations of geogrids in a base layer. For a thicker base (>10 in. or 250 mm), the optimal
location for a geogrid was determined to be the mid-depth, whereas for a thinner base
layer, the optimal location was suggested to be the subgrade and base interface [8]. The
effectiveness of geogrid installation at the subgrade and base interface has since been
confirmed in other studies for thin base layers or weak subgrade [7,9,10]. However, in the
study by Moghaddas-Nejad and Small [10], there was no measurable difference between
the performance of geogrid installed at the bottom or in the middle of the base layer under
non-channelized traffic. In the study by Al-Qadi et al., the researchers argue that placing a
geogrid in the upper one third of a thick (>10 in. or 250 mm) base layer yielded an opti-
mal performance [7]. Moreover, the Federal Highway Administration (FHWA) published
guidelines on design and construction practices pertaining to the use of geogrids and other
geosynthetics [12]. The manual provides sufficient evidentiary insight on geogrid selection,
design, and construction. Moreover, recent research studies [5,13–19] have considered
directly measuring the influence of geogrids on aggregate movement under repeated load-
ing. Notably these studies have focused primarily on railroad ballast, with a few studies
focusing on aggregate movement in pavements [17–19].

Liu et al. [13,14] first presented the idea of using “SmartRock” for monitoring ballast
particle movements. SmartRock is a 3D-printed shell that houses an inertial measurement
unit (IMU) sensor. The 3D-printed shell, which is manufactured to a ballast-sized rock-like
shape, allows less disturbance and a better simulation of the mechanical response of a ballast
aggregate to repeated loading. The researchers performed simulations using the discrete
element method (DEM) and observed the important effects of ballast shape properties
on repeated load response. The accelerations measured by SmartRock helped determine
the primary factors affecting the permanent deformation accumulation in a ballast layer
related to lateral accelerations and rotations measured by SmartRocks. In follow up studies
by Liu et al. [15,20], the researchers used SmartRocks to evaluate the effect of sensor
placement depth and geogrid stabilization on particle movements. They concluded that
the particle movement was reduced with depth in a ballast layer. Moreover, the particle
movements and rotations diminished near the geogrid. In another study, Liu et al. [16]
used SmartRocks to delineate the ballast particle movements in track locations with soft
subgrades or mud spots under train traffic. All the previous research efforts demonstrate
that an inertial measurement unit (IMU) sensor, when implemented to appropriately
simulate aggregate particle morphology, can measure the influence of repeated loading on
aggregate movements.

Attempts have also been made towards applying smart sensing technology in the
field of pavement geotechnics. Initial results on compaction monitoring in pavement base
layer were reported by Wang et al. [17]. The study showcased the ability of SmartRocks
to measure changes in the compactive effort and corresponding changes in layer charac-
teristics. Additionally, data trends suggested that controlling particle rotations could help
enhance compaction effectiveness of an unbound aggregate base layer. Notably, geogrids
provide such rotational restraint through geogrid-aggregate interlocking. Wang et al. [17]
recommended future efforts should focus on establishing relationships between particle
movement and base layer material properties. In summary, the current state of the art
research has focused primarily on and successfully assessed the aggregate movement
using linear and rotational acceleration data. However, there exists a strong motivation for
estimating the elastic recoverable or resilient deformations experienced by the aggregate
particles under repeated loading. This paper, therefore, discusses the development and
application of the newly developed Smart Pebble sensor. The study aims to explore the
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potential applications of this smart sensing technology and report on the preliminary results
of Smart Pebble-quantified resilient movements experienced by an aggregate particle under
repeated loading in controlled, repeatable laboratory test conditions.

2. Objective and Scope

The primary objective of this paper is to introduce Smart Pebble sensor technology
for assessing aggregate movements in an unbound base layer under various stress states
during a repeated load triaxial test. For this, two Smart Pebbles were placed at different
heights in two triaxial specimens. While the first control triaxial specimen was prepared
using only a dense-graded pavement base coarse aggregate material, the second specimen
was prepared using a biaxial geogrid placed at 6 in. (152 mm) from the top or mid-height
of the specimen using the same aggregate material engineered to the same gradation.
The specimens were also instrumented with bender element (BE) shear wave transducer
pairs for simultaneously tracking the shear wave velocities. The preliminary acceleration
and rotation responses of Smart Pebbles obtained from the specimen top and mid-height
locations are discussed. Finally, the resilient deformations estimated for the two Smart
Pebbles using a newly developed sensor position tracking algorithm are presented.

3. Laboratory Test Equipment
3.1. Smart Pebbles

Smart Pebbles are proprietary IMU systems under development by researchers at
the Tensar® Corporation in Alpharetta, GA, USA. These sensors can be used to track the
linear and rotational translation of aggregates in an unbound granular layer of a pavement.
Currently, Smart Pebbles are capable of evaluating aggregate materials in a laboratory
setup where the data could be extracted after testing using a wired communication port.
The outer shell of the sensor is a 3D-printed casing with custom insert housing for a power
source (rechargeable battery), IMU board, and communication port, as shown in Figure 1.
The sensors are capable of pre-programmed data collection at variable data acquisition
frequencies. The IMU board installed in the sensor is programmed to record the three-axis
linear acceleration and gyroscopic rotation. The data acquisition can be programmed to
start and stop by the user, and data can be filtered for both low and high frequency noises.
Up to 20 Smart Pebbles can be programmed and queried for data simultaneously using a
data acquisition box. The measurement data are saved as a comma-separated value (.CSV)
file on board a flash memory unit. The collected data are time stamped and synchronized
to the parent computer clock, which is used to program the data acquisition scheme. Smart
Pebbles offer several advantages for monitoring pavement performance trends through
individual aggregate particle and layer assembly responses studied. Their ability to capture
detailed particle movement data can provide critical insights into aggregate behavior under
dynamic traffic loads, essential for pavement engineering applications. The ability to
custom design the external casing with 3D printing allows for matching natural aggregate
morphology, preventing any inclusion effects on the sensor measurements. Although
wired communication and physical retrieval requirements limit the sensor measurements
to laboratory scale, current and ongoing development of Smart Pebbles with wireless
capabilities can resolve this limitation.
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3.2. Position Tracking Algorithm

It is often difficult to obtain reliable displacements from an IMU sensor due to inherent
noise and resulting sensor drift when double integrated. The primary engineering challenge
is to suppress direct current (DC) drift and random walk effects. More information on
these challenges are beyond the scope of the study and are presented elsewhere [21]. For
the present work, a Kalman filter-based algorithm [22], accompanied by a mathematical
model to efficiently estimate the position of the sensor in space (referred to hereafter as
“algorithm”), was developed to overcome such issues using a series of scaling, filtering,
and feedback reiteration to compute resilient displacements. A procedural overview of the
algorithm is provided in Figure 2.
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First, the mean acceleration is shifted to zero to remove random walk effects. This
is achieved simply by subtracting the mean acceleration value from the entire raw data.
Then, the data are scaled down based on sensor voltage to measurement unit conversion.
Additionally, due to random noise variations associated with data acquisition frequency,
the scaling factor is also treated as one of the tuning parameters for this algorithm. The
Kalman filter algorithm can then be implemented. The Kalman filter works iteratively to
predict the state at the next time step and then updates this prediction based on the new
measurement. The feedback is based on a mathematical model of an idealized system and
assumes the presence of an inherent noise. The latter is true for IMU sensors due to both
DC drift and random walk effects.

The Kalman filter in this application was designed to model the motion of an object
in the three x, y, and z axes based on accelerometer readings. More specifically, the
implemented Kalman filter includes a nine-dimensional state vector, encompassing the
position, velocity, and the acceleration in the x, y, and z directions. The state transition
matrix, based on Newton’s second law of motion, defines the mathematical estimate of the
state at the next time step based on previous time step. On the other hand, the measurement
matrix, a critical element of the measurement model, maps these state variables to the
measured data, in this case, the accelerometer readings from the Smart Pebbles.

To account for the system’s inherent noise, noise covariance matrices are introduced,
representing the uncertainty linked with the measurements and the process. The configura-
tion of the measurement noise covariance matrix is influenced by the accelerometer data’s
variance in each axis, reflecting the noise within the readings. The process noise covariance
matrix, symbolizing the uncertainty in the mathematical model’s predictions, is created
using a discrete white noise model, capturing the process uncertainties. With the filter
applied to the accelerometer readings, every new measurement leads to an update in the
state estimate. This adaptive process persistently fine tunes the displacement calculations
as it iterates through the next step. It should be noted here that for the purposes of this
study, and in line with standard practice of resilient modulus computation, only the last five
cycles from each stress stage were considered for computing the resilient deformations. The
application of the Kalman filter therefore offers a new method for determining displacement
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from noisy accelerometer data, effectively bypassing the constraints of simpler integration
techniques. By recognizing and adjusting for the inherent uncertainty in the measurement
process and using recursive estimation’s abilities, the proposed algorithm facilitates more
precise and reliable displacement computations. This capability bears substantial future
potential for improving the accuracy of tracking aggregate particle movements.

3.3. Repeated Load Triaxial Test Setup (TX-12)

The repeated load triaxial tests were performed using the TX-12 setup at the Univer-
sity of Illinois Urbana-Champaign. The setup is designed to accommodate a cylindrical
specimen measuring 12 in. (305 mm) in height and 6 in. (152 mm) in diameter. The setup is
connected to a hydraulic pump capable of generating deviatoric stresses corresponding
to the AASHTO resilient modulus test procedure (T 307) [23]. The hydraulic pump is con-
nected to an actuator which imparts the deviatoric stresses on the specimen. The deviatoric
stress is recorded using a load cell mounted on a steel plate on top of the specimen, which
provides a uniform surface for loading the specimen. The top plate also houses two linear
variable differential transformer (LVDT) probes mounted at 180◦ from each other. These
LVDTs measure both resilient (or recoverable) and permanent deformations across the
height of the specimen. A pneumatic pump provides a continuous supply of pressurized
air which is controlled using an analog pressure gauge valve. The accuracy of confinement
is ensured using a digital pressure gauge attached to the test chamber.

For the study, two sensors (namely Top and Mid) were placed at 2 in. (51 mm) and
5.5 in. (140 mm) from the top of the specimen, respectively. The purpose of the Top sensor
was to provide calibration reference for the Mid sensor during the development of the
position tracking algorithm. The calibration was performed by ensuring that the resilient
deformations computed using the Top sensor data approach the resilient deformations
measured using the LVDT probes, which serves as the ground truth for bulk specimen
deformations. The optimal data scaling parameter obtained during calibration is then
applied on the data for the Mid sensor to compute the resilient deformations at the specimen
mid-height. Details on the laboratory test setup, Smart Pebble, and BE sensor placement in
the specimen are provided in Figure 3 and Table 1.
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Table 1. Location and data acquisition details of the Smart Pebble sensors.

Sensor ID Geogrid Z Coordinate from the Top of Specimen,
in. (mm) Sampling Frequency, Hz Low Pass Filter, Hz

Top-CO N 1 (25) 208

136
Mid-CO N 5.5 (140) 104
Top-GG Y 1 (25) 416
Mid-GG Y 5.5 (140) 416

Note: CO refers to the control specimen and GG refers to the geogrid-reinforced specimen.

Note that a similar sensor placement strategy was used for the control specimen.
The sampling frequency was varied across the testing scheme to assess the sensitivity
of the developed position algorithm to changes in data acquisition rate. The specimens
were pulsed using a modified test sequence adopted from the AASHTO T 307 procedure.
The applied stress states are presented in Table 2. The deviatoric stresses were applied
in haversine shaped load pulses with 0.1 s loading and 0.9 s rest periods. The resilient
modulus (MR) is computed using the following Equation (1).

MR =
σd
εr

(1)

where σd is the deviatoric wheel load stress pulsed and εr is the resilient (or recoverable)
vertical strain. As evident from Equation (1), the specimen material response characteristic
that controls the resilient modulus is the resilient strain. Resilient strain is computed as the
ratio of the elastic recoverable or resilient deformations to the original height of the speci-
men. However, direct improvements in resilient modulus as a result of geogrid placement,
even at laboratory scale, are difficult to ascertain [6]. This is because geogrid influence
is rather localized and may not be pronounced in bulk on-specimen measurements. To
this end, recent research efforts in BE shear wave technology have proven effective on
laboratory as well as full scale [6]. In the present research, the localized Smart Pebble
measurements paired with BE sensor measurements are designed to provide a unique
insight into the near geogrid lateral restraint mechanism and its effectiveness in restricting
movements of aggregate particles.

Table 2. Applied stress states.

Stress
State (ST)

Confining Stress, S3
Max. Axial Stress,

Smax
Cyclic Stress, Scyclic

Constant Stress,
0.1Smax No. of Load Applications

kPa psi kPa psi kPa psi kPa psi

ST0 103.4 15 103.4 15 93.1 13.5 10.34 1.5 1000
ST1 20.7 3 20.7 3 18.6 2.8 2.07 0.3 100
ST2 20.7 3 41.4 6 37.3 5.4 4.14 0.6 100
ST3 20.7 3 62.1 9 55.9 8.1 6.21 0.9 100
ST4 34.5 5 34.5 5 31.0 4.5 3.45 0.5 100
ST5 34.5 5 68.9 10 62.0 9.0 6.89 1.0 100

3.4. Bender Element Sensors

Two pairs of BE sensors were used to measure the shear wave velocity (Vs) of in hori-
zontal direction across each aggregate specimen. Each BE sensor is a layer of conductive
metal sandwiched between two piezoelectric plates. These plates are then subjected to alter-
nating voltage differences, which lead to a controlled cyclical bending strain development
in the BE sensor, similar to the action of a fish tail. When embedded in granular media, this
movement produces an elastic shear wave. By placing another BE sensor on the opposite
end of the specimen, the elastic wave signature is received and visualized through an
oscilloscope. The first arrival time can then be determined from the time difference between
excitation and reception. The Vs is simply computed as the ratio of the tip-to-tip distance
between the two BE sensors and the first arrival time. The small-strain shear modulus
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(Gmax) and the corresponding small-strain elastic modulus (EBE) can then be calculated as
important material properties using Equations (2) and (3) as follows:

Gmax = ρV2
S (2)

EBE = 2G(1 + ν) (3)

where ρ and ν are aggregate material’s bulk density and Poisson’s ratio, respectively. More
information on BE sensors and the data interpretation can be found elsewhere [6,24]. In
this study, BE sensors were strategically installed at the same depths as the Smart Pebble
sensors (see Figure 2). This allowed the researchers to relate the shear wave velocity trends
with the resilient deformation trends. Note that resilient modulus (MR) relates the materials
overall resilient response to repeated loading, whereas the small-strain shear modulus
measured by the BE sensor pairs primarily capture the local stiffening effect of the geogrid.

4. Materials
4.1. Aggregate Properties

Crushed limestone aggregates conforming to INDOT No. 53 gradation were used
in this study. Dry sieving was carried out on four representative batches to develop as-
received particle size distribution curves per ASTM C136 [25] procedure. The results of
the dry sieving are shown in Figure 4a. The material had an average particle size (D50) of
0.16 in. (4 mm) with a top particle size of 1 in. (25 mm). The moisture–density characteristic
curve, established as per the standard Proctor ASTM D698 [26] test procedure, is presented
in Figure 4b. The material exhibited an optimum moisture content (OMC) of 5.1% and a
maximum dry density of 128.2 pcf (2060 kg/m3). The control specimen was compacted to
a bulk density of 133.4 pcf (2137.5 kg/m3) while the geogrid specimen was compacted to a
bulk density of 134.1 pcf (2148.5 kg/m3), both at OMC.
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Figure 4. Aggregate properties (a) particle size distribution and INDOT No. 53 gradation band and
(b) moisture–density curve per ASTM D698.

4.2. Geogrid Type and Properties

A biaxial extruded geogrid with a square aperture as shown in Figure 5 was used in the
study. The dimensions and pertinent characteristics of the geogrid are presented in Table 3.
Based on certain recommendations from previous research [27], the ratio of aperture size
to average particle size (D50) should be more than 2.5 for developing strong interaction
between the geogrid and aggregate. Therefore, with a D50 value of 0.16 in. (4 mm), any
geogrid with an aperture size greater than 0.4 in. (10 mm) will be sufficient to develop
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appropriate aggregate–geogrid interlock. In accordance, the selected geogrid with a 1.3 in.
(33 mm) square aperture size was deemed appropriate in this study.
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Table 3. Geogrid specifications.

Property Value

Nominal Aperture Dimensions 1.3 in. (33 mm)
Minimum Rib Thickness 0.03 in. (0.76 mm)
Number of Apertures in the Specimen 8 nos.
Polymer Material Polypropylene

5. Results and Discussion
5.1. Vertical Acceleration

Figure 6a–d present the overall linear vertical acceleration trends from the four Smart
Pebble sensors installed in the control and geogrid specimens. Linear vertical acceleration
pertains to the sensor’s acceleration data measured in the direction opposing gravity, cap-
tured, and depicted over time. The recorded data are plotted against time. The magnitude
of the cyclic linear acceleration is clearly driven by the repeated loading experienced by the
sensors. Note that, even under zero loading and after filtering, there exists some inherent
sensor noise. This further necessitates the particle tracking algorithm and optimizing
scaling parameters using the LVDT data as the ground truth. Additionally, a measurement
anomaly was observed in the Top-GG sensor data at stress state ST3. Note that this anomaly
occurred in between the loading stages ST2 and ST3. Therefore, it will not affect the resilient
deformation computations, which are performed using the last five cycles only for each
stress state. Therefore, the anomalous data were replaced with background sensor noise
and the final plot is shown in Figure 6c.

As evident from the acceleration magnitudes for both control and geogrid specimens,
the acceleration measured by the sensor at the specimen’s mid-height is smaller compared
to that observed at the top of the specimen. The same trend persists over all the stress states:
ST0 (conditioning) through ST5. The highest acceleration trends were observed consistently
for the conditioning stage. For the same stress ratio (deviator stress divided by confining
pressure, i.e., ST0, ST1, and ST4), the deformation and in turn the acceleration always in-
crease as the deviator stress increases. On the other hand, with the same confining pressure
(i.e., ST1, 2, and 3; ST 4 and 5), the deformation and, in turn, the acceleration stay similar or
increase as the deviator stress increases. The higher deviator stress and deformation will
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still lead to a stress-hardening behavior of unbound aggregates as demonstrated through
resilient modulus trends observed for the ratio between the two.
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5.2. Resilient Deformation

The LVDT measurements were used to calibrate the filtering and scaling parameters
for the Top sensors in both specimens (Top-CO, and Top-GG) as they measured the displace-
ment throughout the entire length of specimen, which provides a measure of the specimen’s
overall stiffness. After calibrating, the same parameters were applied to the Mid sensor
(Mid-CO, and Mid-GG). Even with error minimization and data filtering, some noise due
to inherent sensor uncertainty could not be filtered out. However, this uncertainty is consis-
tent across all measurements. As a result, the algorithm predictions should be interpreted
with a primary focus on comparison, especially between Mid and Top sensors, instead of
the absolute values. Position z-coordinates were computed for each stress state for the top
and middle sensors in both control and geogrid specimens. The resilient displacements
were then obtained as the absolute difference between the z-coordinates corresponding to
the peak load of the repeated load pulse. The resulting resilient deformations are presented
in Figure 7a,b.
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Figure 7. Comparing resilient deformations recorded by the two Smart Pebble sensors installed in
(a) the control specimen and (b) the geogrid stabilized specimen. Notes: The vertical axis shows
resilient deformations recorded in mm (1 in. = 25.4 mm). The axes labels ST0 through ST5 refer to the
applied stress states, see Table 2.

As evident from the results, with an appropriate scaling factor and parameter tuning,
the Top sensor measurements can be reasonably matched with the LVDT measurements
on the bulk specimen. The optimized algorithm then produces reasonable estimates of the
Mid sensor position. Moreover, as tabulated in Table 4, the movement reduction ratios of
resilient deformation measured by the Top sensor and the Mid sensor for the control and
the geogrid specimens are 1.05 and 1.26, respectively. The ratios represent the reduction in
an aggregate particle movement placed in the middle of the triaxial specimen compared to
the top of the specimen. Due to aggregate–geogrid interlock near geogrid, it is expected
that the resilient deformations will be smaller near the geogrid when compared to the top of
the specimen. The results highlight the position tracking ability of the Smart Pebble sensors
when paired with the position tracking algorithm. Additionally, it provides evidence that,
with the proposed algorithm, the aggregate–geogrid interlock can be effectively quantified
under the pulsed loading.
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Table 4. Computed resilient deformations.

Stress Stage
Resilient Deformation (mm)

Control Specimen Geogrid Specimen
LVDT Top-CO (208 Hz) Mid-CO (104 Hz) Top-CO/Mid-CO LVDT Top-GG (416 Hz) Mid-GG (416 Hz) Top-GG/Mid-GG

ST0 0.198 0.148 0.124 1.194 0.203 0.157 0.140 1.121
ST1 0.032 0.032 0.032 1.016 0.030 0.033 0.022 1.500
ST2 0.044 0.053 0.052 1.019 0.057 0.064 0.055 1.164
ST3 0.070 0.087 0.075 1.168 0.089 0.120 0.092 1.304
ST4 0.036 0.044 0.047 0.946 0.047 0.054 0.041 1.317
ST5 0.065 0.082 0.085 0.959 0.084 0.120 0.101 1.188

Average 1.050 Average 1.266
Std. Dev. 0.096 Std. Dev. 0.127
COV (%) 9.2 COV (%) 10.0

Note: 1 in. = 25.4 mm.

5.3. Shear Wave Velocity

Shear wave velocity profiles of the control and geogrid test specimens were measured
using a set of two BE sensor pairs and are presented in Figure 8a,b. Owing to the high-
est confinement and the highest deviatoric stress, Vs was observed to be highest for the
conditioning stage. A typical trend of increasing Vs was observed among the stress states
ST1 through ST5. Additionally, the VS profiles are closely grouped based on the confine-
ment applied for each stress state. These observations confirm the findings of previous
researchers [6]. The Vs ratios between the top and bottom BE sensors were observed as
1.06 and 1.257 for control and geogrid specimens, respectively. Higher shear wave velocity
measurements near the geogrid (specimen mid-height) location, when compared to the top
of the specimen location (see Figure 8b), clearly indicate the local stiffness enhancement
brought by geogrid. For the control test, the top and middle Vs measurements are quite
similar, which agrees with Smart Pebble measurements.
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6. Conclusions

This paper introduced Smart Pebble sensing technology and its accompanying ag-
gregate particle tracking algorithm and sensor arrangements which have been recently
developed to quantify inter-particle responses when installed in constructed assemblies of
geomaterials subjected to repeatedly applied vehicular traffic loads. The algorithm for data
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processing and movement tracking encapsulates scaling and parameter tuning within a
Kalman filter recursive feedback loop. Triaxial test specimens were prepared using a dense-
graded aggregate material with two of the specimens also stabilized with a biaxial geogrid
placed at specimen mid-height. Two Smart Pebble sensors were strategically positioned
near the geogrid and towards the top of the triaxial specimen. The study also employed
the proven technology of bender element (BE) sensors to corroborate the efficacy of the
geogrid stabilization measured using the Smart Pebble sensors.

The following key conclusions can be drawn from the results of this investigation.
Firstly, through the application of a Kalman filter-based algorithm and scaling procedure,
the Smart Pebbles successfully captured the microscale resilient movements within a
triaxial specimen. Secondly, once attuned to a specific physical state, the position tracking
algorithm requires no additional parameter tuning and is equipped to manage uncertain
signal noise, underscoring the potential for future field application of the Smart Pebble.
Lastly, the ratio of resilient deformations measured at the top of the specimen and just
above the geogrid was calculated to be 1.27. The BE sensors corroborated this result as
the shear wave velocity (Vs) measured near the geogrid was nearly 1.26 times than that
measured near the top of the specimen. These findings greatly demonstrate the successful
preliminary applications of the Smart Pebble sensor and Kalman filter-based position
tracking algorithm in quantifying the resilient response improvement of aggregates due
to a geogrid under repeated loading. This further suggests that the use of Smart Pebbles
within a laboratory or field context can aid engineers and designers in making informed
decisions to ensure designs of mechanically stabilized pavement foundation layers.

The current study introduced a substantial initial understanding into the potential
applications of Smart Pebble sensing units for continuous and precise assessment of the
thickness designs and field performance trends of road foundation layers. However, a
limitation of the system is the wired data extraction; future enhancements to the sensor
should comprise a wireless communications unit and a superior battery for remote opera-
tion. With such wireless capabilities, an in situ assessment of the sensors and the position
tracking algorithm is possible. Full scale testing could be undertaken as a future step
for field implementation and could be paired with repeated load testing using devices
such as the automated plate load testing (APLT) equipment. Future research should also
focus on confirming the compatibility of the position tracking algorithm with other inertial
measurement unit (IMU) sensors. Importantly, due to variances in sensor specifications,
the existing algorithm may not be universally applicable to all IMU sensors available in the
market. To address this limitation, subsequent research could explore the use of supervised
machine learning tools on extensive datasets gathered through a variety of sensing units.
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