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Abstract: In recent years, deep learning methods have achieved remarkable success in hyperspectral 

image classification (HSIC), and the utilization of convolutional neural networks (CNNs) has 

proven to be highly effective. However, there are still several critical issues that need to be addressed 

in the HSIC task, such as the lack of labeled training samples, which constrains the classification 

accuracy and generalization ability of CNNs. To address this problem, a deep multi-scale attention 

fusion network (DMAF-NET) is proposed in this paper. This network is based on multi-scale fea-

tures and fully exploits the deep features of samples from multiple levels and different perspectives 

with an aim to enhance HSIC results using limited samples. The innovation of this article is mainly 

reflected in three aspects: Firstly, a novel baseline network for multi-scale feature extraction is de-

signed with a pyramid structure and densely connected 3D octave convolutional network enabling 

the extraction of deep-level information from features at different granularities. Secondly, a multi-

scale spatial–spectral attention module and a pyramidal multi-scale channel attention module are 

designed, respectively. This allows modeling of the comprehensive dependencies of coordinates 

and directions, local and global, in four dimensions. Finally, a multi-attention fusion module is de-

signed to effectively combine feature mappings extracted from multiple branches. Extensive exper-

iments on four popular datasets demonstrate that the proposed method can achieve high classifica-

tion accuracy even with fewer labeled samples. 

Keywords: convolutional neural network (CNN); hyperspectral image (HSI) classification; limited 

samples; multi-scale feature extraction; multi-scale spatial–spectral attention; pyramidal multi-scale 

channel attention; multi-attention feature fusion 

 

1. Introduction 

Hyperspectral images (HSIs), at the forefront of current remote sensing image tech-

nology, utilize multiple narrowband electromagnetic waves to acquire rich spatial, radi-

ometric, and spectral information about objects of interest. With its rich information con-

tent, HSIs can be used in many fields and play a crucial role, such as: precision agriculture 

[1–3]; mineral exploration [4]; environmental detection [5–7]; biomedical imaging [8,9]; 

food safety [10,11]; urban planning [12]; military investigation [13]; climate change studies 

[14,15]; and many other fields. In these applications and studies, hyperspectral image clas-

sification (HSIC) plays a crucial role and has emerged as a prominent research area in the 

field of remote sensing and earth observation. 

The task of HSIC involves assigning an appropriate class label to each pixel, thereby 

generating a classified map that accurately represents the distribution of land features. 

The conventional approach typically consists of two primary steps: feature engineering 

and classifier design. The first step involves manual extraction of feature information 

based on prior knowledge [16–18], followed by its classification using a classifier [19–22]. 
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However, most traditional algorithms heavily rely on data preprocessing and manual fea-

ture extraction, which not only depend heavily on prior knowledge but also have limited 

generalization ability. Moreover, they solely utilize spectral information while disregard-

ing the spatial correlation between pixels, thereby making it difficult to extract representa-

tive and discriminative features. 

With the progressive advancement of remote sensing imaging technology, high-per-

formance computing units, and computer vision theory, deep learning techniques have 

been employed for HSIC. This has led to a continuous enhancement in their classification 

accuracy [23,24]. The deep learning approaches, in contrast to conventional methods, pos-

sess the capability of automatically extracting deep abstract features from input data that 

are advantageous for classification tasks, thereby attaining enhanced accuracy in both 

classification and recognition. The stacked autoencoder (SAE) [25] and the deep belief net-

work (DBN) [26] were initially introduced for HSIC in the field. However, these methods 

not only have a large number of parameters, but also require a 1D input form and suffer 

from loss of spatial information. To address this problem, several 2D convolutional neural 

network (CNN) [27–29] methods have been proposed, which can directly handle the 3D 

cubes patch of HSI. In order to further explore the spatial–spectral information in 3D HSI 

patches, researchers proposed a 3D CNN [30–33]. However, while 2D CNNs fail to effec-

tively exploit the spectral dimension of HSI, 3D CNNs often encounter challenges such as 

a substantial parameter count, high computational complexity, and vulnerability to over-

fitting. Subsequently, researchers proposed a hybrid network combining both 2D CNNs 

and 3D CNNs [34–36]. This integration aims to improve the accuracy of predictive classi-

fication by leveraging advantages from both types. 

With the increasing depth of networks, residual networks and densely connected 

networks have been successively proposed. Zhong et al. [37] proposed a spectral–spatial 

residual network (SSRN) based on a 3D CNN, which employs residual blocks to mitigate 

the issue of diminishing classification accuracy with increasing model depth, thereby fa-

cilitating gradient backpropagation. Zhang et al. [38] designed a deep residual module 

(DIR) for spectral–spatial feature extraction, which avoids degradation of the network 

while locking in the effective features at each layer. Zahisham et al. [39] proposed a two-

stream residual separable convolution (2SRS) network, which utilizes deep separable con-

volutions to integrate residual blocks into two distinct streams for spatial and spectral 

processing. Dong et al. [40] proposed a two-branch cross-feedback dense network with 

context-aware guided attention (CFDcagaNet), which incorporates the DenseNet in a 

feed-forward manner to promote feature reuse and achieve higher reconstruction accu-

racy for super-resolution. However, pure ResNet and DenseNet suffer from a large num-

ber of parameters, high computational cost, and relatively small receptive fields per layer. 

Wang et al. [41] proposed a multi-scale dense connection attention network (MSDAN), 

which introduces multi-scale feature extraction to obtain features of different granularities 

using receptive fields of varying sizes. By combining DenseNet and attention mechanism, 

the classification performance is significantly improved. Wang et al. [42] proposed a uni-

fied multi-scale learning (UML) framework based on fully convolutional networks. In the 

UML framework, they introduced a multi-scale spatial channel attention mechanism and 

multi-scale scrubbing blocks to improve the distortion problem in land cover maps. More-

over, in our previous work [43,44], we delved into the extraction of multi-scale features 

and proposed two networks that incorporate attention mechanisms: the Multi-Scale Re-

sidual Network (MRA-NET) [43] and the Multi-Scale Feature Fusion Network with 3D 

Self-Attention (3DSA-MFN) [44]. Zhang et al. [45] introduced a classification method 

based on a Multi-Scale Dense Network (MSDN) with a 3D Gabor filter. Zhao et al. [46] 

proposed a bi-branch global+ multi-scale hybrid network (GMHN). These networks ex-

tract target features at various scales, effectively improving accuracy in HSIC tasks and 

demonstrating the significant value of multi-scale features in this domain. 

In recent years, the Transformer model has gained widespread adoption in various 

intelligent large-scale applications due to its incorporation of a self-attention mechanism. 
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This mechanism enables the model to effectively capture long-term dependencies in se-

quential data while demonstrating robust parallel capabilities. Sun et al. [47] proposed a 

Spectral–Spatial Feature Tag Transformer (SSFTT) method for HSIC, which captures spec-

tral–spatial features and high-level semantic features, outperforming several state-of-the-

art methods. Yang et al. [48] proposed an HSI Transformer (HiT) classification network 

that embeds convolution operations into the transformer structure to capture subtle spec-

tral differences and convey local spatial context information. Cao et al. [49] proposed a 

Transformer-based MAE using contrastive learning (TMAC), which aims to combine 

these two methods and further improve performance. Guo et al. [50] proposed a self-su-

pervised learning algorithm based on a spectral transformer and masking mechanism for 

HSIC in the presence of limited labeled data. Nevertheless, these approaches necessitate 

a substantial quantity of annotated samples. 

The utilization of deep learning methods based on the CNN in the aforementioned 

exploration has significantly advanced HSIC and enhanced classification accuracy. How-

ever, these methods often necessitate a substantial number of labeled training samples to 

ensure effective classification, which incurs significant human resources and time costs in 

labeling HSI samples. Currently, the limited size of training samples often results in issues 

such as overfitting and reduced classification accuracy in models. The primary objective 

of our research is to develop a deep learning model that can effectively learn and accu-

rately classify even with a scarcity of samples. By incorporating a deep multi-scale fusion 

attention mechanism, we aim to enhance the capacity for capturing subtle features in HSI, 

thereby improving the precision and stability of classification. The main research tasks are 

as follows: Firstly, design a deep learning architecture model based on CNN. This model 

primarily comprises modules for feature extraction, attention enhancement, information 

fusion, and classification. Secondly, investigate strategies for feature representation learn-

ing in scenarios with limited samples to enable the model to focus on key features and 

mitigate the issue of small sample sizes. Finally, evaluate and optimize the model by con-

ducting experiments on multiple datasets to assess its performance and continuously ad-

just and optimize the parameters. 

Inspired by the aforementioned approaches, we propose a deep multi-scale attention 

fusion network (DMAF-NET) based on limited training samples, aiming to fully explore 

the deeper and richer semantics of limited samples and improve HSIC accuracy. Firstly, 

the HSI data are input to the multi-scale feature backbone network to learn multilevel 

high-level semantics at varying granularities after data preprocessing. Subsequently, the 

acquired features are sequentially fed into the multi-scale spatial–spectral attention mod-

ule and the multi-scale channel attention module, and the long-distance dependence of 

the feature map is further modeled in depth through multiple scales. Then, the multi-

attention fusion module is utilized for effective feature fusion of different levels of high-

level semantics. Finally, the flattened feature map is successively passed through several 

fully connected layers, to finally output the classification result. The main contributions 

of this work are as follows: 

1. A novel baseline network for multi-scale feature extraction is designed. The baseline 

comprises three branches. Firstly, a pyramid-like structure is employed for prelimi-

nary feature extraction to capture features at different scales. Subsequently, a dense-

connected 3D octave convolutional network is utilized to learn deeper and finer-

grained features within various scale windows. This allows for effective leveraging 

of semantic information at various levels with limited samples to extract more robust 

and highly generalizable features. 

2. Considering the high-resolution and multi-dimensional characteristics of HSIs, we 

have designed a 3D multi-scale spatial–spectral attention module and a 4D pyramid-

type multi-scale channel attention module, respectively. This models the comprehen-

sive dependencies of coordinates and directions, local and global, in four dimensions, 

making the model more focused on extracting information useful for classification. 
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3. A multi-attention feature fusion module is designed. By fully utilizing the strong 

complementary and correlated information from different hierarchical features, this 

approach effectively integrates feature information from various levels and scales, 

thereby improving the performance of HSIC results under limited sample conditions. 

4. Extensive experiments based on limited labeled samples were conducted on four typ-

ical HSI datasets. The results demonstrate that the proposed DMAF-NET model out-

performs other state-of-the-art deep learning-based methods in terms of both efficacy 

and efficiency. 

The remainder of this paper is organized as follows. Section 2 describes the proposed 

network architecture in detail. Section 3 conducts comprehensive experiments. The abla-

tion experiments and other impact experiments are shown in Section 4. Finally, the con-

clusion is drawn in Section 5. 

2. Proposed Method 

In this section, we initially present a concise introduction to the proposed DMAF-

NET, followed by an elaborate exposition of each individual unit encompassed within the 

network. 

2.1. Overview of the Proposed Model 

The overall architecture of the DMAF-NET model proposed in this paper is illus-

trated in Figure 1, taking the University of Pavia dataset as a representative example. The 

DMAF-NET model is primarily composed of a multi-scale feature extraction backbone 

network, attention mechanism units, and a multi-attention feature fusion module. Con-

sidering the fact that the feature map extracted consists of four dimensions: two spatial 

dimensions, a spectral dimension, and a channel dimension, we have devised distinct 

modules to augment attention in both the space–spectral domain and channel domain; 

they are a 3D multi-scale spatial–spectral attention enhancement module and a 4D pyram-

idal multi-scale channel attention module. The DMAF-NET is an end-to-end HSIC net-

work, in which the input is the raw HSI data LWHRX  , where H W  represents the 

spatial dimension and L  represents the spectral dimension. The output is the probability 

of each pixel’s class in the HSI, denoted as cRy  11 , where c represents the number of 

land cover classes. 
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Figure 1. Architecture of the proposed DMAF-NET. 

Firstly, principal component analysis (PCA) [51] is performed on the raw HSI data, 

which can effectively reduce the dimensionality of highly redundant information and fil-

ters out bands that contribute less to classification tasks. After that, to effectively utilize 

the spatial and spectral information features inherent in HSI data, we extract a 3D cube 

consisting of neighboring pixels within a specific window size centered around the target 

pixel as a sample. Subsequently, the 3D cube samples are fed into a multi-scale feature 

extraction backbone network for deep-level learning of different granularities of features. 

The extracted multi-scale features are further enhanced through spatial–spectral attention 

and channel attention. Then, efficient fusion is performed on the three-channel multi-scale 

attention features. Finally, the model is classified and predicted through the fully con-

nected layer and Softmax layer. 

To optimize the DMAF-NET, we use cross-entropy as the loss function for the HSIC 

task, which is defined as follows: 

 
1

Cls log
N

i i
i

y p


   (1)

where iy  is the true class label and ip  is the class probability predicted by the model. 

2.2. Multi-Scale Feature Extraction Backbone Network 

The term ‘multi-scale’ refers to the process of sampling signals at various levels of 

granularity, enabling the extraction of diverse features for accomplishing a range of tasks. 

In recent years, numerous studies have demonstrated the substantial advantages of multi-

scale feature learning over single-scale feature learning in the domain of computer vision 

[52–57]. Chen et al. [58] argue that high- and low-frequency signals not only exist in nat-

ural images but also in the feature maps and channels of convolutional layers. To reduce 

spatial redundancy, they proposed employing lower-dimensional tensors to store slowly 

varying low-frequency information, and thereby introduced octave convolution. Moti-

vated by the aforementioned content, and based on our previous work [43,44], a novel 
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multi-scale feature extraction backbone network (MsFEBN) was proposed, as illustrated 

in Figure 2. 

 

Figure 2. Multi-scale feature extraction backbone network. 

MsFEBN comprises three branches, each concurrently extracting features at distinct 

scales from the input feature map on its respective branch architecture, thereby enabling 

multi-scale feature learning. Firstly, the branch employs a pyramid network consisting of 

3D convolutions with varying kernel sizes to extract multi-scale features from the input 

feature maps. Specifically, the kernel sizes used are 1 × 1 × 1, 3 × 3 × 3, and 5 × 5 × 5. 

Subsequently, the initially extracted feature maps are fed into a dense connection network 

based on 3D octave convolution to further facilitate deep-level feature learning across dif-

ferent granularities through distinct scale windows. Incorporating dense connections in a 

network can effectively alleviate the potential issue of gradient vanishing as the network 

deepens, enhancing feature propagation and reuse, ultimately leading to more robust ex-

tracted features. 
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 (2)

where HX  and LX  denote the factorization of feature map 0Y  into high-frequency 

and low-frequency components using a coefficient  ; HY  and LY  denote the high-fre-

quency and low-frequency components outputted by octave convolution; H HF  , L LF  , 

H LF  , and L HF   denote intercommunication within and between frequencies, 
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respectively; W represents the weight parameters of octave convolution; and  3DConv 

,    ,    ,  DownSample  , and  UpSample   denote the 3Dconvolution, 

3DBatchNorm, ReLu, 3DAvgPool, and Upsample functions, respectively. Subsequently, 

the first-level output is concatenated with the input along channels to obtain feature map 

1Y  as the input for second-level 3D octave convolution. Finally, on this branch, feature 

map outY  is obtained as the ultimate result, as shown in Equations (3) and (4). 

 1 1 0= Cat ,DownSample( )OctY Y Y  (3)

  2 0 1= Cat ,DownSample , DownSample( )out OctY Y Y Y  (4)

where 2OctY  is the feature map output after the second octave convolution layer, and 

 Cat   denotes the Concatenate function. 

2.3. Attention Mechanism Unit 

2.3.1. Three-dimensional Multi-Scale Space–Spectral Attention Enhancement Module 

The internal structure of the 3D multi-scale spatial–spectral attention enhancement 

module (3D-MsSSAEM) is shown in Figure 3. The 3D-MsSSAEM exhibits two primary 

characteristics: Firstly, to optimize computational resources and expedite the learning 

process, channel grouping is implemented. This entails restructuring certain channels into 

batch dimensions, thereby dividing the channel dimension into multiple feature groups 

and ensuring equitable distribution of spatial semantic features within each group. Sec-

ondly, the 3D-MsSSAEM performs learning and aggregation of multi-scale spatial–spec-

tral structural information through two branches. These two branches utilize convolu-

tional kernels of 1 × 1 × 1 and 3 × 3 × 3, respectively, and cross-domain joint learning is 

performed between these two branches. This effectively establishes short-term and long-

term dependencies, resulting in a stronger spatial–spectral feature extraction capability. 

 

Figure 3. Three-dimensional multi-scale space–spectral attention enhancement module. 

Specifically, after transforming certain channel dimensions into batch dimensions, 

the resulting sub-feature groups can be denoted as H W L MX R    , where M C m  is the 

number of channels after grouping, m is the grouping factor, and the value of m is set to 

20 in the proposed model. We refer to the branches with convolution kernels of 1 × 1 × 1 

and 3 × 3 × 3 as the 1 × 1 × 1 branch and 3 × 3 × 3 branch, respectively. In the 1 × 1 × 1 branch, 

the input X is first adaptively pooled along the H-axis and W-axis in the spatial dimension 
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and the L-axis in the spectral dimension, respectively. Subsequently, the pooled outputs 

are concatenated and convolved to produce 1X , as shown in Equations (5) and (6). 
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 
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 (5)

         1 H W L= 3DConv Cat P Agp , P Agp ,AgpX X X X  (6)

where  Agp   and  P   denote the AdaptiveAvgPool and Permute function, respec-

tively. After that, decompose 1X   back into three vectors, input them separately into the 

Sigmoid function, multiply to obtain the first attention map, and reassign weights to the 

original input X, resulting in output 1X  , as shown in Equation (7). 

 

     
1

1

, , = Split

= Sig Sig Sig

H W L

H W L

X X X X

X X X X X

   


     
 (7)

where  Sig   denotes the Sigmoid function. Then, cross-domain collaborative learning is 

performed between the 1 × 1 × 1 branch and 3 × 3 × 3 branch to model the dependencies 

between diverse scales, local and global. The second and third attention maps, denoted as 

1X   and 2X  , respectively, are generated based on this process, as shown in Equation (8). 

    
      

1 2 1

2 1 2

Soft Re Agp Gn

= Gn Soft P Re Agp

X X X

X X X

    


  


 (8)

where  Gn  ,  Re  , and  Soft   denote the GroupNorm, Reshape, and Softmax func-

tion. Finally, the attention maps of the two branches are summed element-wise and the 

fourth attention map is obtained by the Sigmoid function, and then the original inputs are 

reweighted, as shown in Equation (9). 

 1 2SigoutX X X X     (9)

2.3.2. Four-dimensional Pyramid-Style Multi-Scale Channel Attention Module 

SENet [59] is a highly representative channel attention architecture method, which 

incorporates the SE module. It models the internal feature maps in the channel dimension 

through global average pooling and two fully connected layers with non-linear activa-

tions, effectively capturing the interdependencies among channels of the feature maps. 

However, the SE module only simply employs global average pooling to map spatial fea-

ture information to a low-dimensional space, overlooking the intricate structural details 

within the feature map. In light of this, we have optimized the SE module by incorporating 

a multi-scale pyramid encoding structure and proposed a 4D pyramid-style multi-scale 

channel attention module (4D-PMsCAM) suitable for HSIC, as shown in Figure 4. The 4D-

PMsCAM employs a three-layer pyramid structure for encoding, which allows the inte-

gration of spatial information at different scales, thereby constructing richer structural in-

formation and establishing longer-distance channel dependencies. 
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Figure 4. Four-dimensional pyramid-style multi-scale channel attention module. 

The encoding structure within the module is composed of three 3D adaptive average 

pooling layers with varying scales, resembling a pyramid shape. Specifically, the output 

window sizes are 1 × 1 × 1, 2 × 2 × 2, and 4 × 4 × 4, respectively. The three outputs are 

subsequently reshaped and concatenated along the channel dimension to obtain a vector 
1 1 1 Cz R    . The subsequent steps are shown in Equation (10). 

    2 1, Sigs F z W W W z    (10)

where 1

c
C

rW R


  and 2

c
C

rW R


  denote the weight parameters of the two fully connected 

layers, respectively, r is the channel dimension reduction factor, and s represents the final 

dependency relationship of the channel dimensions obtained. 

2.4. Multi-Attention Feature Fusion Module 

SKNets [60] is a learning network that effectively captures objects with varying scales 

and incorporates a module known as Selective Kernel Convolution (SK convolution). The 

SK module comprises two branches with varying sizes of convolutional kernels, employ-

ing a non-linear approach to effectively aggregate information across multiple scales. This 

adaptive mechanism enables neurons to dynamically adjust the receptive field size. Mo-

tivated by the concept of SK convolution, we propose a novel multi-attention feature fu-

sion module (MAFFM) for HSIC, as illustrated in Figure 5. 

 

Figure 5. Multi-attention feature fusion module. 

Before inputting the MAFFM, the three feature maps are concatenated into one fea-

ture map along the channel dimension. Therefore, inside the MAFFM, the input feature 

map needs to be split first to restore the original feature map of the three branches. Sub-

sequently, the three features are recombined through a straightforward element-wise 

summation for aggregation. Then, the integration of spatial information is further en-

hanced by learning to weight features and regulating the flow of information through 

gating mechanisms. Finally, the feature fusion of each branch is achieved based on the 
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weights of each branch. The average pooling method is commonly employed for spatial 

information aggregation. However, by incorporating the max pooling method, an addi-

tional crucial clue regarding distinct object features can be gathered [61], thereby enabling 

the inference of more refined attention information in the feature map. Specifically, as-

suming the three branches of splitting and restoring are A, B, and C H W L CR    , firstly, the 

three branches are aggregated to obtain a feature map U. Concurrently, spatial compres-

sion is applied to the feature map U through 3D global average pooling and 3D global 

maximum pooling, resulting in a feature vector 1 1 1 Cz R    , and the compressed feature 

vector 
1 1 1

C

rz R
  

  is obtained after passing through a fully connected layer. The process 

is depicted by Equations (11)–(13). 

U A B C    (11)

   = Agp + Mxpz U U  (12)

    ,z F z W Wz     (13)

where  Mxp   denotes the 3DAdaptiveMaxPool function, and 
c

C
rW R


 . The Softmax 

function is subsequently employed to compute the weights assigned to each branch. Ulti-

mately, the fused output feature map H W L CV R     is obtained by reconfiguring and 

summing up each branch based on its corresponding weigh, as shown in Equations (14) 

and (15). 
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, 1c c c c c c c c c cV a A b B c C a b c       (15)

where A , B , and 
c

C
rC R


 . a, b, and c denote the soft attention features of A , B , and 

C , respectively. Note that 
1

c

r
cA R


   is the c-th row of A , ca  is the c-th element of a, 

and others with c subscripts are similar. 

3. Experiments and Results 

In this section, we initially present the four classic datasets utilized and elucidate the 

experimental setup. Subsequently, a comprehensive analysis of crucial network hyperpa-

rameters is conducted. Then, we perform quantitative and qualitative experiments to 

compare and analyze our proposed model against other state-of-the-art methods. Finally, 

ablation experiments as well as other impact studies are conducted. 

3.1. Dataset Description 

The HSI dataset is acquired through remote sensing satellites or unmanned aerial 

vehicles, and undergoes preprocessing procedures including atmospheric correction, de-

noising, band selection, and feature extraction. Subsequently, it is annotated for classifi-

cation purposes to generate training and testing datasets. In order to assess the efficacy 

and generalizability of the proposed network model across diverse HSI datasets, we se-

lected four challenging public HSI datasets: Salinas scene (SA), University of Pavia (UP), 

Indian Pines (IP), and WHU-Hi-LongKou (LK). Among them, the SA, UP, and IP datasets 
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can be obtained from: https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Re-

mote_Sensing_Scenes  (accessed on 15 May 2024), and the LK dataset can be obtained 

from: http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm (accessed on 15 May 2024). 

The summarized details of these four datasets are presented in Table 1. 

Table 1. Datasets employed during trials. 

 SA UP IP LK 

Sensor AVIRIS ROSIS AVIRIS 
Headwall  

Nano-Hyperspec 

Wavelength (nm) 400–2500 430–860 400–2500 400–1000 

Spatial Size (pixels) 512 × 217 610 × 340 145 × 145 550 × 400 

Spectral Bands 204 103 200 270 

No. of Classes 16 9 16 9 

Labeled Samples 54,129 42,776 10,249 204,542 

Spatial Resolution (m) 3.7 1.3 20 0.463 

Areas California Pavia Indiana Longkou 

In summary, these datasets exhibit variations in terms of spatial scale, spectral range, 

and land cover categories. For instance, the SA and LK datasets encompass multiple spec-

tral dimensions, diverse land cover categories, and a substantial number of samples. The 

UP dataset possesses larger spatial dimensions, high spatial resolution, fewer spectral di-

mensions, a limited number of land cover categories, and more samples. Conversely, the 

IP dataset presents smaller spatial dimensions with lower spatial resolution while incor-

porating multiple spectral dimensions alongside diverse land cover categories; neverthe-

less, it suffers from scarcity in sample quantity, which is further exacerbated by extreme 

imbalance among them. Through this selection process that encompasses four different 

application scenarios, our model’s performance will be validated. For visual representa-

tion purposes, the pseudo-color images and the corresponding ground truth maps for 

these datasets are shown in Figure 6. The SA dataset’s ground cover consists mainly of 

crops such as bitumen, fallow, stubble, celery, lettuce, and vineyard. The UP dataset con-

sists mainly of buildings such as asphalt, gravel, and bitumen. The IP dataset consists 

mainly of vegetation such as alfalfa, corn, and soybean, etc. The LK dataset mainly in-

cludes crops such as corn, cotton, and rice. In addition, Tables 2–5 provide detailed infor-

mation on the distribution of samples for each category in each of the four datasets, as 

well as the number of training samples, respectively. 

 

Figure 6. The pseudo-color images and the corresponding ground truth maps for the SA, UP, and 

IP datasets. (a-1) Pseudo-color map of SA. (a-2) Ground truth map of SA. (b-1) Pseudo-color map of 

UP. (b-2) Ground truth map of UP. (c-1) Pseudo-color map of IP. (c-2) Ground truth map of IP. (d-

1) Pseudo-color map of LK. (d-2) Ground truth map of LK. 
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Table 2. Sample labels and sample sizes for the SA dataset. 

No 
Map 

Color 
Class Name 

Train Samples Total  

Samples 5 10 0.1% 0.5% 

1  Broccoli_weeds1 5 10 2 10 2009 

2  Broccoli_weeds2 5 10 4 19 3726 

3  Fallow 5 10 2 10 1976 

4  Fallow_rough_plow 5 10 1 7 1394 

5  Fallow_smooth 5 10 3 13 2678 

6  Stubble 5 10 4 20 3959 

7  Celery 5 10 4 18 3579 

8  Grapes_untrained 5 10 11 56 11,271 

9  Soil_vineyard_develop 5 10 6 31 6203 

10  Corn_weeds 5 10 3 16 3278 

11  Lettuce_romaine_4wk 5 10 1 5 1068 

12  Lettuce_romaine_5wk 5 10 2 10 1927 

13  Lettuce_romaine_6wk 5 10 1 5 916 

14  Lettuce_romaine_7wk 5 10 1 5 1070 

15  Vineyard_untrained 5 10 7 36 7268 

16  Vineyard_trellis 5 10 2 9 1807 

  Total Samples 80 160 54 270 54,129 

Table 3. Sample labels and sample sizes for the UP dataset. 

No 
Map 

Color 
Class Name 

Train Samples Total  

Samples 5 10 0.1% 0.5% 

1  Asphalt 5 10 7 33 6631 

2  Meadows 5 10 19 93 18,649 

3  Gravel  5 10 2 10 2099 

4  Trees 5 10 3 15 3064 

5  Painted metal sheets 5 10 1 7 1345 

6  Bare Soil 5 10 5 25 5029 

7  Bitumen 5 10 1 7 1330 

8  Self-Blocking Bricks 5 10 4 18 3682 

9  Shadows 5 10 1 5 947 

  Total Samples 45 90 43 213 42,776 

Table 4. Sample labels and sample sizes for the IP dataset. 

No 
Map 

Color 
Class Name 

Train Samples Total  

Samples 5 10 5% 10% 

1  Alfalfa 5 10 2 5 46 

2  Cornnotill 5 10 71 143 1428 

3  Corn-mintill 5 10 42 83 830 

4  Corn 5 10 12 24 237 

5  Grass-pasture 5 10 24 48 483 

6  Grass–trees 5 10 37 73 730 

7  Grass-pasture-mowed 5 10 1 3 28 

8  Hay-windrowed 5 10 24 48 478 

9  Oats 5 10 1 2 20 

10  Soybean-notill 5 10 49 97 972 

11  Soybean-mintill 5 10 123 246 2455 

12  Soybean clean 5 10 30 59 593 
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13  Wheat 5 10 10 21 205 

14  Woods 5 10 63 127 1265 

15  Buildings-Gra-Trees 5 10 19 39 386 

16  Stone-Steel-Towers 5 10 5 9 93 

  Total Samples 80 160 513 1027 10,249 

Table 5. Sample labels and sample sizes for the WHU-Hi-LongKou dataset. 

No 
Map 

Color 
Class Name 

Train Samples Total  

Samples 5 10 0.1% 0.5% 

1  Corn 5 10 35 173 34,511 

2  Cotton 5 10 8 42 8374 

3  Sesame 5 10 3 15 3031 

4  Broad-leaf soybean 5 10 63 316 63,212 

5  Narrow-leaf soybean 5 10 4 21 4151 

6  Rice 5 10 12 59 11,854 

7  Water 5 10 67 335 67,056 

8  Roads and houses 5 10 7 36 7124 

9  Mixed weed 5 10 5 26 5229 

  Total Samples 45 90 204 1023 204,542 

3.2. Experimental Settings 

The experiments presented in this article were conducted on a computer system 

equipped with an NVIDIA GeForce RTX 2060 SUPER, Intel® CoreTM i7-9700F @3.00GHz 

× 8 CPU, and 32GB of RAM. The proposed DMAF-NET was implemented using PyTorch 

1.10, Python 3.8.17, Keras 2.10, and Numpy 1.23.5 within a Linux (Ubuntu 18.04.6) oper-

ating system environment. 

In the training phase, we employed Adam as the optimization algorithm with a learn-

ing rate of 0.001, batch size of 128, training epoch set to 100, and dropout set to 0.4. Addi-

tionally, a comprehensive analysis on critical hyperparameters such as patch size and 

PCA component settings will be conducted in Section 3.3. 

In the experiment, Overall Accuracy (OA), Average Accuracy (AA), and Kappa coef-

ficient (Kappa) are utilized as quantitative metrics to evaluate the performance of each 

method. OA represents the ratio of correctly classified pixels to total pixels. AA denotes 

the average accuracy of classification for each category. Kappa is a statistical measure that 

assesses the alignment between model predictions and actual classification results, 

thereby reflecting the overall effectiveness of the classifier. In addition, the experimental 

results in the article were obtained by running the experiment 10 times with the same 

random seed and calculating the average. 

3.3. Parametric Analysis 

In practical scenarios, when a substantial number of samples are available, the sensi-

tivity of hyperparameters to classification results tends to be relatively diminished. How-

ever, in this study, we pay more attention to the classification performance under limited 

sample conditions, so some hyperparameters’ tuning is particularly important. During 

the data preprocessing stage, the spatial patch size and the optimal number of spectral 

components retained after PCA processing are critical hyperparameters that significantly 

influence both network training and final classification performance. The optimal param-

eter configurations of the proposed DMAF-NET for the four datasets are shown in Table 

6. 
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Table 6. The optimal spatial sizes and PCA components of the proposed model. 

 SA UP IP LK 

Patch size 24 × 24 16 × 16 20 × 20 24 × 24 

PCA components 24 24 44 16 

3.3.1. Analysis of the Patch Size 

The patch size refers to the rectangular size of the image space inputted into training 

and prediction modules. This rectangular image is centered on the sample pixel point, and 

its size determines the amount of spatial information contained around the sample pixel 

that is utilized for classification. In order to configure the appropriate patch size and assess 

its impact on the performance of our proposed network, we set the patch size = {(8 × 8), 

(12 × 12), (16 × 16), (20 × 20), (24 × 24), and (28 × 28)}, respectively; the impact of six sets of 

parameters was studied, and the results are shown in Figure 7. The experiments were 

conducted under fixed conditions of PCA components (SA = 28, UP = 20, IP = 32, LK = 16) 

and a consistent number of training samples (10 samples per class for each dataset). 

 

Figure 7. Classification results (%) and training time (seconds) for each dataset under different patch 

sizes. 

In the SA dataset, as the patch size increases from (8 × 8) to (24 × 24), there is a gradual 

improvement observed in the three evaluation metrics of OA, AA, and Kappa. However, 

when the patch size is set to (28 × 28), both OA and Kappa exhibit a decrease. The evalu-

ation metrics OA, AA, and Kappa in the UP, IP, and LK datasets exhibit a trend of initially 

increasing and subsequently decreasing as the patch size gradually increases, and these 

datasets peaked at (16 × 16), (20 × 20), and (24 × 24), respectively. Taken together, the patch 

sizes for the SA, UP, IP, and LK datasets were set as (24 × 24), (16 × 16), (20 × 20), and (24 

× 24), respectively. The experimental results are consistent with the theory. The SA and 

LK datasets encompass large areas of farmland, exhibiting a well-balanced distribution of 

land cover categories and high concentration, which manifests in patchy patterns. Conse-

quently, employing larger patch sizes proves advantageous for training and learning. 

Conversely, the UP dataset was shot on a university campus where land cover is more 

dispersed and less concentrated; thus, it is not advisable to employ excessively large patch 

sizes. In addition, it can be seen from the figure that the training time increases with the 

increase in the patch size. 
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3.3.2. Analysis of the PCA Components 

Since the proposed DMAF-NET uses the PCA algorithm to reduce the spectral di-

mension in the data preprocessing stage, it achieves a balance between removing redun-

dant information and retaining effective features. Therefore, the number of components 

retained after PCA (PCA components) has a great impact on the training learning and 

final classification results of the model. In the experiment, we conducted an analysis and 

study on different PCA components, and the experimental results are shown in Figure 8. 

The experiments were conducted under fixed conditions of patch sizes (SA = 24, UP = 16, 

IP = 20, LK = 24) and a consistent number of training samples (10 samples per class for 

each dataset). In these four datasets, as the number of PCA components increases, the 

three evaluation metrics OA, AA, and Kappa generally exhibit an initial increase followed 

by a subsequent decrease trend, reaching their peak values at 24, 24, 44, and 16, respec-

tively. In addition, it can be observed from the figure that the training time increases as 

the number of PCA components increases. 

 

Figure 8. Classification results (%) and training time (seconds) for each dataset with a different num-

ber of components retained during PCA operation. 

3.4. Comparison with Other Methods 

To substantiate the superiority of the proposed method, a comparative analysis is 

conducted with other prominent HSIC methods proposed in recent years, namely: the 3D-

CNN [30], HybridSN [34], SSRN [37], Tri-CNN [62], MCNN-CP [35], SSFTT [47], and Oct-

MCNN-HS [63]. The 3D-CNN is a 3D finite element model based on a CNN that incorpo-

rates regularization techniques to extract effective spatial–spectral features from HSIs. The 

HybridSN employs a hybrid architecture that integrates a 3D CNN and 2D CNN to con-

currently extract spatial–spectral feature information, thereby mitigating the model’s 

complexity compared to solely relying on the 3D CNN. The SSRN is a deep network based 

on a 3D CNN, it incorporates residual connections to mitigate the gradient problem en-

countered by deeper networks in other deep learning methods, thereby enhancing classi-

fication accuracy. The Tri-CNN is a three-branch feature fusion network based on a multi-

scale 3D-CNN. SSFTT is built upon the widely adopted Transformer architecture, ena-

bling effective extraction of spatial–spectral features and high-level semantic representa-

tions, thereby achieving remarkable classification performance. MCNN-CP integrates the 

covariance pooling technique with the HybridSN, facilitating the extraction of second-
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order information from spatial–spectral feature maps. Oct-MCNN-HS is based on the 

MCNN-CP architecture and incorporates a combination of a 3D octave and 2D Vanilla 

CNN. By utilizing synchronized shift operations to aggregate information from the same 

spatial positions along the channel dimension, it ensures more compact feature represen-

tation. To ensure the fairness of the comparative evaluation experiments, all comparative 

experiments were strictly conducted following the parameter configuration and experi-

mental procedures stated in the original text. 

3.4.1. Evaluation Results with a Training Sample Limit of 10 for Each Category 

The classification results of each method on the SA, UP, IP, and LK datasets are pre-

sented in Tables 7–10, encompassing OA, AA, and Kappa, as well as the classification 

accuracy for each category. As can be seen from these tables, the classification accuracy of 

both the 3D-CNN and the HybridSN is relatively low due to their limited integration of 

spatial–spectral features, achieved solely through convolutions. The SSRN, MCNN-CP, 

and Tri-CNN can effectively integrate spatial–spectral features with fair classification ac-

curacy. The SSFTT and Oct-MCNN-HS models are able to establish global or local de-

pendencies, thus achieving better classification performance. Obviously, the proposed 

model effectively integrates feature information from multiple scales and captures long-

range dependencies among spatial–spectral channels, resulting in superior classification 

accuracy across all datasets. Specifically, in the SA dataset, all methods achieved a classi-

fication accuracy exceeding 90%. The classification accuracies of the 3D-CNN and Hy-

bridSN even reach those of the SSRN and MCNN-CP. The proposed model achieved 

97.2%, 98.3%, and 96.9% for OA, AA, and Kappa, respectively, which were higher than 

the second-place SSFTT by 3%, 1.3%, and 3.3%. In the UP dataset, the 3D-CNN exhibits 

the lowest classification accuracy, whereas Oct-MCNN-HS demonstrates superior perfor-

mance compared to SSFTT. Our proposed model achieves 90.12%, 90.75%, and 87.3% for 

OA, AA, and Kappa, respectively, surpassing Oct-MCNN-HS by 3.32%, 1.45%, and 4.3%, 

correspondingly. In the IP dataset, the 3D-CNN is also the worst, and SSFTT and Oct-

MCNN-HS are comparable. The OA, AA, and Kappa of our proposed model reach 81.8%, 

89.2%, and 79.5%, respectively, which are 2.75%, 0.73%, and 3.07% higher than the second 

place, respectively. The classification accuracies of the proposed model are also the high-

est in the LK dataset with 96.24%, 96.81%, and 95.70% for OA, AA, and Kappa, respec-

tively. Overall, the model proposed in this paper achieves a high performance level on 

each of the four datasets with different characteristics. This is due to the fact that the model 

is based on multi-scale feature extraction and attention enhancement, which enables it to 

better discriminate the spatial–spectral feature information and has good robust perfor-

mance, thus greatly alleviating the overfitting problem under fewer samples and condi-

tions. 

Table 7. Classification results of various methods for the SA dataset with 10 training samples for 

each category. 

Class No. 3D-CNN HybridSN SSRN Tri-CNN MCNN-CP SSFTT Oct-MCNN-HS Proposed 

1 100.00 99.33 96.46 99.60 100.00 99.97 99.93 99.80 

2 99.06 98.67 99.98 98.57 99.00 99.89 99.98 99.78 

3 99.44 99.33 94.29 99.38 99.50 99.91 99.90 100.00 

4 99.30 99.33 79.90 98.30 98.00 98.82 98.33 98.99 

5 92.76 96.03 98.58 97.59 92.67 95.94 91.82 98.86 

6 98.89 96.33 100.00 98.30 99.50 98.86 99.13 99.13 

7 99.19 99.67 99.85 98.23 100.00 99.91 99.67 99.34 

8 81.71 74.67 90.66 80.87 79.83 85.94 79.70 93.17 

9 99.74 100.00 94.66 99.60 99.00 99.87 99.98 99.46 

10 94.21 95.67 89.39 95.87 96.50 96.82 96.42 95.95 

11 97.22 100.00 98.13 98.02 100.00 99.89 99.87 100.00 
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12 99.03 94.67 99.93 96.50 95.83 96.28 98.77 98.96 

13 99.45 98.67 100.00 97.67 95.17 97.81 98.86 99.37 

14 98.77 98.87 98.03 98.90 97.83 99.28 97.78 97.30 

15 71.73 81.67 65.93 80.74 79.83 84.66 89.35 94.52 

16 97.07 99.13 96.16 97.19 98.67 99.17 97.54 97.70 

OA (%) 91.20 ± 2.01 91.20 ± 1.07 91.10 ± 1.71 92.52 ± 1.97 91.90 ± 1.77 94.20 ± 1.07 93.40 ± 1.25 97.20 ± 1.05 

AA (%) 95.50 ± 1.38 95.80 ± 0.90 93.90 ± 1.90 96.01 ± 1.95 95.70 ± 0.95 97.00 ± 0.84 96.70 ± 0.47 98.30 ± 0.73 

Kappa × 

100 
90.25 ± 2.25 90.30 ± 1.19 90.00 ± 1.91 91.04 ± 1.90 91.00 ± 1.97 93.60 ± 1.19 92.70 ± 1.38 96.90 ± 1.08 

The bolded value indicates the optimal value. 

Table 8. Classification results of various methods for the UP dataset with 10 training samples for 

each category. 

Class No. 3D-CNN HybridSN SSRN Tri-CNN MCNN-CP SSFTT 
Oct-MCNN-

HS 
Proposed 

1 50.82 60.42 80.81 66.52 72.67 79.52 83.02 81.29 

2 76.62 79.78 73.26 79.98 85.67 85.64 87.60 93.22 

3 74.38 81.96 83.25 80.77 82.17 92.24 84.98 90.04 

4 68.22 82.62 87.90 85.60 88.17 85.84 91.22 83.68 

5 97.74 99.78 100.00 99.90 99.33 99.41 100.00 99.64 

6 81.22 69.64 91.39 70.04 81.50 92.60 88.83 95.40 

7 95.62 99.40 99.32 97.41 96.67 97.99 98.68 98.33 

8 51.02 47.54 94.78 65.55 72.00 59.33 73.06 79.19 

9 72.02 76.92 99.93 78.82 94.00 98.23 96.28 95.90 

OA (%) 71.33 ± 3.04 74.20 ± 2.2 82.20 ± 0.99 82.20 ± 2.90 83.00 ± 1.67 84.67 ± 5.46 86.80 ± 1.47 90.12 ± 1.09 

AA (%) 74.19 ± 3.53 77.60 ± 3.73 90.10 ± 2.20 82.90 ± 4.01 85.70 ± 1.56 87.87 ± 3.34 89.30 ± 1.33 90.75 ± 1.23 

Kappa × 

100 
63.82 ± 3.89 66.90 ± 3.20 77.40 ± 1.34 75.97 ± 3.66 77.90 ± 2.01 80.30 ± 6.57 83.00 ± 1.90 87.30 ± 1.19 

The bolded value indicates the optimal value. 

Table 9. Classification results of various methods for the IP dataset with 10 training samples for 

each category. 

Class No. 3D-CNN HybridSN SSRN Tri-CNN MCNN-CP SSFTT Oct-MCNN-HS Proposed 

1 99.40 97.62 100.00 98.52 100.00 99.53 98.61 98.15 

2 37.34 42.02 52.19 60.12 66.00 64.46 77.26 67.98 

3 54.31 58.62 58.23 59.02 65.60 78.39 78.37 77.03 

4 79.23 84.44 79.88 84.84 96.40 95.72 96.99 93.83 

5 76.99 81.56 85.90 83.59 88.40 85.52 84.50 90.80 

6 92.18 95.28 86.78 95.98 96.80 97.32 97.94 94.37 

7 99.80 99.82 100.00 99.98 100.00 100.00 100.00 100.00 

8 96.47 99.62 86.86 99.60 95.80 93.27 96.44 99.61 

9 99.80 99.94 100.00 99.99 100.00 100.00 100.00 100.00 

10 64.55 67.02 75.29 68.12 77.80 85.68 85.74 80.27 

11 52.03 53.42 53.05 60.42 66.80 64.36 58.47 74.34 

12 39.89 56.62 42.65 56.65 58.60 69.94 70.18 70.14 

13 99.49 96.62 99.23 94.69 97.80 99.82 100.00 96.92 

14 81.63 76.82 93.55 79.77 88.00 94.62 85.77 96.27 

15 56.41 85.42 81.74 85.40 81.40 87.45 91.53 90.78 

16 99.00 95.20 100.00 97.21 94.20 99.60 100.00 97.19 

OA (%) 62.77 ± 4.73 66.40 ± 3.16 68.70 ± 4.30 73.46 ± 3.76 76.50 ± 2.72 79.05 ± 2.95 78.70 ± 1.14 81.80 ± 1.21 

AA (%) 76.81 ± 2.19 80.60 ± 1.93 80.10 ± 2.12 81.88 ± 1.93 85.90 ± 1.35 88.47 ± 1.67 88.90 ± 0.90 89.20 ± 0.98 

Kappa × 100 58.72 ± 4.80 62.70 ± 3.42 64.70 ± 4.46 69.70 ± 2.49 73.60 ± 2.96 76.43 ± 3.18 76.10 ± 1.27 79.50 ± 1.08 
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The bolded value indicates the optimal value. 

Table 10. Classification results of various methods for the LK dataset with 10 training samples for 

each category. 

Class No. 3D-CNN HybridSN SSRN Tri-CNN MCNN-CP SSFTT Oct-MCNN-HS Proposed 

1 99.99 99.80 80.81 99.80 93.77 97.57 86.11 98.29 

2 96.77 97.33 73.26 97.33 77.68 93.59 92.58 99.49 

3 99.86 99.96 83.25 99.96 98.10 100 99.37 96.67 

4 62.99 70.78 87.90 70.78 86.27 93.12 85.68 89.69 

5 80.16 82.28 100.00 82.28 92.63 96.76 96.47 98.24 

6 99.89 99.98 91.39 99.98 89.56 90.10 91.25 100.00 

7 95.23 95.70 99.32 95.70 91.67 98.97 98.68 98.43 

8 70.68 73.64 94.78 73.64 62.89 87.31 90.86 89.29 

9 90.55 86.48 99.93 86.48 85.60 94.25 87.99 95.99 

OA (%) 87.20 ± 3.00 87.38 ± 3.12 87.80 ± 2.99 91.88 ± 3.62 89.54 ± 2.45 94.99 ± 4.47 90.50 ± 3.17 96.24 ± 2.09 

AA (%) 89.57 ± 3.66 89.40 ± 4.00 89.19 ± 2.18 92.41 ± 4.20 86.49 ± 2.36 94.47 ± 3.22 91.84 ± 3.03 96.81 ± 2.13 

Kappa × 100 83.58 ± 2.86 83.03 ± 3.65 86.49 ± 3.01 90.05 ± 3.55 86.48 ± 3.01 93.48 ± 6.28 87.70 ± 4.01 95.70 ± 1.89 

The bolded value indicates the optimal value. 

The visual results of land cover classification using each method on the SA, UP, IP, 

and LK datasets are illustrated in Figures 9–12. From these classification maps, it can be 

seen that the 3D-CNN and HybridSN are the least effective, with more misclassifications 

and the most noisy points; SSFTT and Oct-MCNN-HS have higher classification accura-

cies and relatively clearer feature boundaries; and our proposed method has the highest 

classification accuracy and the best fidelity. This is consistent with the quantitative com-

parison results in Tables 7–10. Specifically, in the SA dataset, all methods misclassify to 

varying degrees in the vineyard and lettuce regions in the upper left of the dataset. Among 

them, the SRNN has more pepper noise points, while our proposed method clearly 

achieves the best classification performance with only a few misclassifications in the vine-

yard region. In the UP dataset, the 3D-CNN and HybridSN had more misclassifications 

in the intermediate meadow and bare soil regions of the dataset; the other methods had 

some misclassifications in the intermediate bare soil and bottom grass regions, and our 

proposed method had the least number of misclassifications. In the IP dataset, the 3D-

CNN, HybridSN, SSRN, and Tri-CNN have the most misclassification errors in the corn 

and soybean areas in the upper left corner of the dataset, and there are large areas of cat-

egory confusion. SSFTT and Oct-MCNN-HS have fewer misclassifications and the bound-

aries of ground objects are relatively clear. However, our proposed method clearly out-

performs them all. In the LK dataset, all methods in the middle region of the dataset have 

more misclassifications, except our proposed method, which has the least misclassifica-

tions. 

 

Figure 9. Classification maps generated by all of the competing methods on the SA dataset with 10 

training samples for each category. (a) 3D-CNN. (b) HybridSN. (c) SSRN. (d) Tri-CNN. (e) MCNN-

CP. (f) SSFTT. (g) Oct-MCNN-HS. (h) Proposed method. 
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Figure 10. Classification maps generated by all of the competing methods on the UP dataset with 10 

training samples for each category. (a) 3D-CNN. (b) HybridSN. (c) SSRN. (d) Tri-CNN. (e) MCNN-

CP. (f) SSFTT. (g) Oct-MCNN-HS. (h) Proposed method. 

 

Figure 11. Classification maps generated by all of the competing methods on the IP dataset with 10 

training samples for each category. (a) 3D-CNN. (b) HybridSN. (c) SSRN. (d) Tri-CNN. (e) MCNN-

CP. (f) SSFTT. (g) Oct-MCNN-HS. (h) Proposed method. 

 

Figure 12. Classification maps generated by all of the competing methods on the LK dataset with 10 

training samples for each category. (a) 3D-CNN. (b) HybridSN. (c) SSRN. (d) Tri-CNN. (e) MCNN-

CP. (f) SSFTT. (g) Oct-MCNN-HS. (h) Proposed method. 

3.4.2. Evaluation Results with Different Training Sample Sizes 

In order to comprehensively assess the effectiveness and superiority of the classifica-

tion model, we also evaluated it on the SA, UP, IP, and LK datasets based on different 

numbers of training samples. We conducted a study employing two sampling strategies: 

fixed quantity sampling and fixed proportion sampling. 

The classification results obtained by fixed quantity sampling from each category are 

illustrated in Figure 13. For the SA, UP, and LK datasets, a random selection of 5, 10, 15, 

and 20 samples was made for analysis and research in each category. Considering the 

serious imbalance in the number of categories within the IP dataset (with only 20 samples 

available for oats), a random selection of 5, 10, and 15 samples was conducted for analysis 

and research. The graphs reveal that our proposed model exhibits exceptional perfor-

mance across all three datasets, surpassing other methods in terms of OA, AA, and Kappa. 

Figure 14 illustrates the classification results obtained through sampling with a fixed pro-

portion. In the SA, UP, and LK datasets, random sampling was performed at 0.1%, 0.2%, 

0.5%, 1%, and 5% of the sample size for each category, respectively, whereas for the IP 

data, random sampling was performed at 5%, 10%, and 15% of the sample size for each 

category (when less than 5%, oats and grass-pasture-mowed were not sampled). Figure 

14(a-1–a-3,b-1–b-3) indicate that all methods exhibit a rapid increase in classification ac-

curacy between 0.1% and 0.5% of the sample quantity. Once the sample reaches 0.5%, the 

classification accuracy plateaus, resulting in slower improvements with further increases 
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in sample quantity. In the UP dataset, the proposed method exhibits slightly inferior per-

formance compared to the SSRN when trained with only 0.1% of the samples; however, it 

outperforms all other methods when beyond 0.2%. 

 

Figure 13. Classification results (%) for all competing methods using different amount of training 

samples on the three datasets; fixed quantity sampling is used for each category. (a-1) The OA of SA 

dataset. (a-2) The AA of SA dataset. (a-3) The Kappa of SA dataset. (b-1) The OA of UP dataset. (b-

2) The AA of UP dataset. (b-3) The Kappa of UP dataset. (c-1) The OA of IP dataset. (c-2) The AA of 

IP dataset. (c-3) The Kappa of IP dataset. (d-1) The OA of LK dataset. (d-2) The AA of LK dataset. 

(d-3) The Kappa of LK dataset. 
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Figure 14. Classification results (%) for all competing methods using different amount of training 

samples on the three datasets; fixed proportion sampling is used for each category. (a-1) The OA of 

SA dataset. (a-2) The AA of SA dataset. (a-3) The Kappa of SA dataset. (b-1) The OA of UP dataset. 

(b-2) The AA of UP dataset. (b-3) The Kappa of UP dataset. (c-1) The OA of IP dataset. (c-2) The AA 

of IP dataset. (c-3) The Kappa of IP dataset. (d-1) The OA of LK dataset. (d-2) The AA of LK dataset. 

(d-3) The Kappa of LK dataset. 

Comparing the experimental results of the two sampling strategies, our proposed 

model shows more significant advantages compared to other models in the comparative 

experiment with a fixed quantity sampling strategy across all datasets. However, when it 

comes to proportional sampling, if the training sample size is less than 0.5%, due to the 

limited number of trainable samples provided by certain categories with low total counts 

in imbalanced datasets, the classification accuracy of all classification methods tends to be 

lower. 
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3.4.3. Computational Complexity 

The number of total parameters of the model and the training time have always been 

two important metrics in assessing the computational complexity of the model. The total 

parameters and training time of all models on the SA, UP, and IP datasets are summarized 

in Table 11. The 3D-CNN has the highest number of parameters, and the SSRN consumes 

the longest training time. SSFTT is based on the Transformer structure with parallel com-

puting capability, so its training time is short and the number of parameters is small. Our 

proposed method is second only to SSFTT in terms of training time, and the number of 

parameters is much lower than that of the 3D-CNN, HybridSN, and Oct-MCNN-HS. The 

results indicate that our method exhibits the characteristics of low computational resource 

consumption and rapid convergence speed in limited sample classification tasks. 

Table 11. Total parameters and training times for all models on SA, UP, and IP datasets. 

Model 

SA UP IP LK 

Total 

Params 

Training 

Time 

Total 

Params 

Training 

Time 

Total 

Params 

Training 

Time 

Total 

Params 

Training 

Time 

3D-CNN 9,073,184 43.4 s 9,072,281 29.2 s 36,168,224 190.3 s 9,072,281 49.7 s 

HybridSN 4,845,696 58.9 s 4,844,793 34.8 s 5,122,176 263.3 s 4,844,793 64.9 s 

SSRN 749,996 1470 s 396,993 395 s 735,884 1440 s 760,155 1491 s 

Tri-CNN 6,878,436 69.8 s 6,870,593 40.9 s 7,420,236 250.6 s 6,819,399 82.1 s 

MCNN-CP 1,654,368 97.5 s 1,367,986 28.4 s 3,128,928 434.1 s 1,653,465 1249 s 

SSFTT 153,224 5.9 s 152,769 5.8 s 153,224 5.3 s 153,621 6.5 s 

Oct-MCNN 3,846,096 63.9 s 3,681,353 27.8 s 5,156,816 232 s 3,845,193 67.8 s 

Proposed 2,932,878 40.1 s 2,604,295 13.5 s 2,778,254 54.2 s 2,717,895 46.1 s 

4. Discussion 

In this section, we conducted ablation experiments and some other influential studies 

to evaluate the efficacy of the proposed model. The experiments in this section were con-

ducted based on a statistical analysis of 10 samples for each category. 

4.1. Ablation Studies 

In order to further investigate the potential contributions of individual units within 

the proposed model, an independent role analysis was conducted in this subsection. The 

proposed DMAF-NET network comprises the following key components: the multi-scale 

feature extraction backbone network (MsFEBN), 3D multi-scale space–spectral attention 

enhancement module (3D-MsSSAEM), 4D pyramid-style multi-scale channel attention 

enhancement module (4D-PMsCAM), and multi-attention feature fusion module 

(MAFFM). In the DMAF-NET framework, we systematically eliminated each of the afore-

mentioned components and conducted impact experimental studies. The experimental 

results are shown in Figure 15. These graphs demonstrate that each component contrib-

utes positively to the classification task. Firstly, when utilizing only the MsFEBN without 

incorporating any attention mechanism or feature fusion module, the classification accu-

racies on the SA, UP, and IP datasets are 95.6%, 86.6%, and 79.3%, respectively. These 

results demonstrate that the MsFEBN is well-suited for efficient feature extraction in lim-

ited sample classification tasks. Second, the classification accuracy decreases on all three 

datasets when the 3D-MsSSAEM or 4D-PMsCAM are not utilized. Additionally, the elim-

ination of both attention mechanisms leads to a further decline in classification accuracy. 

Specifically, the SA, UP, and IP datasets exhibit decreases of 1.5%, 0.9%, and 2%, respec-

tively with accuracies dropping to 95.7%, 89.2%, and 79.8%. These results demonstrate 

that both attention mechanisms enhance important information while suppressing redun-

dant information at different levels and depths. Furthermore, the absence of the MAFFM 

resulted in reductions in classification accuracy by 0.5%, 1.5%, and 1.3% for the SA, UP, 
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and IP datasets, respectively. This observation highlights the effective integration of se-

mantic information from diverse levels and perspectives by the MAFFM, leading to im-

proved classification accuracy even with limited samples. 

 

Figure 15. Classification results (%) of ablation experiments. 

4.2. Other Impact Studies 

4.2.1. The Influence of Different Size Convolution Kernels in Three Branches of Baseline 

To substantiate the rationality of selecting diverse sizes of convolutional kernels 

across the three branches in our proposed MsFEBN, we conducted comparative experi-

ments encompassing varying kernel sizes. As illustrated in the previously mentioned Fig-

ure 2, the three branches were configured with convolutional kernels of 1 × 1 × 1, 3 × 3 × 3, 

and 5 × 5 × 5, respectively; let us denote them as 1–3–5. In the comparative experiment, we 

also employed four additional combinations: 3 × 3 × 3, 5 × 5 × 5, and 7 × 7 × 7, denoted as 

3–5–7; similarly, there were also 1–3–7, 1–5–7, and 3–3–3. The experimental findings are 

depicted in Figure 16. The figure reveals that the 1–3–5 combination has the highest clas-

sification accuracy, followed by the 3–5–7 combination, and the other three combinations 

have relatively low accuracy. This also confirms that choosing the appropriate scale for 

multi-scale learning is superior to single-scale learning. It can also be seen from the figure 

that the training times for the 1–3–5 combination and the 3–3–3 combination are the lowest 

across all three datasets. This is because the computational time consumed increases with 

the increase in convolutional kernel size. 

 

Figure 16. The influence of different size convolutional kernels in three branches of baseline. 

4.2.2. The Influence of Varying Numbers of 3D Octave Convolutions in Three Branches 

of Baseline 

We conducted experimental verification of the number of cascaded 3D octave con-

volutions in the three branches of the MsFFBN. The experiment compared the effective-

ness of one, two, and three 3D octave convolutions in each branch. The experimental re-

sults are presented in Figure 17. The classification accuracy in all three datasets reached 

its peak when employing a cascade of two 3D octave convolutions. Simultaneously, with 
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an increase in the number of cascades, the network depth gradually expanded, resulting 

in a corresponding rise in computational time. 

 

Figure 17. The influence of varying numbers of 3D octave convolutions in three branches of baseline. 

4.2.3. The Influence of Different Dimensionality Reduction Method 

Based on the model proposed in this article, we conducted comparative experiments 

on three dimensionality reduction methods, namely FastICA [64], FactorAnalysis [65], 

and PCA. The experimental results are presented in Figure 18. The results consistently 

demonstrate that FastICA exhibits the poorest performance across all three datasets, fol-

lowed by FactorAnalysis, while PCA attains the highest level of accuracy. This is mainly 

due to the fact that FastICA has higher requirements for non-Gaussianity and non-linear 

independence of the data, and FactorAnalysis is also not applicable to non-linearly corre-

lated data, as well as having a more complex process of selecting the appropriate number 

of factors, which makes FastICA and FactorAnalysis perform poorly on relatively linear 

HSI data. However, PCA is a linear dimensionality reduction technique that effectively 

preserves the maximum variance in HSIs, thereby retaining the essential characteristics of 

the data and capturing their overall structure with high efficacy. 

 

Figure 18. Classification results (%) of different dimensionality reduction method. 

5. Conclusions 

This article explores the application of CNNs in deep learning to HSIC. Considering 

that obtaining sufficient labeled training samples for HSIC is a costly and time-consuming 

task, we propose a deep multi-scale attention network suitable for limited training sample 

conditions. The network primarily comprises a multi-scale feature extraction backbone 

network, an attention mechanism unit, and a feature fusion unit. The attention mechanism 

units consist of a 3D multi-scale spatial–spectral attention module and a 4D pyramid-style 

multi-scale channel attention module. In the network, the multi-scale feature extraction 

backbone network possesses the capability to extract features at various levels and gran-

ularities; attention units effectively model long-range dependencies in feature mappings 

across multiple scales, accentuating significant contributions while suppressing redun-

dant features; and the fusion module effectively fuses high-level semantic information 

from multiple branches at different levels. Extensive experiments were conducted on four 
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publicly available datasets. A comprehensive comparison was performed with seven 

other methods, namely the 3D-CNN, HybridSN, SSRN, Tri-CNN, SSFTT, MCNN-CP, and 

Oct-MCNN-HS. The results demonstrate that the proposed DMAF-NET model attains su-

perior classification accuracy, enhanced robustness, and improved generalization capa-

bility. 

The DMAF-NET model, however, is based on supervised training and does not fully 

mitigate the limitations imposed by annotated labels. Moreover, in comparison to the 

widely adopted Transformer architecture, it exhibits marginally lower efficiency. In the 

future, we will investigate the potential of incorporating semi-supervised or unsupervised 

methods in HSIC to further diminish reliance on annotated samples for this task. 
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