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Abstract: In recent years, deep learning methods have achieved remarkable success in hyperspectral
image classification (HSIC), and the utilization of convolutional neural networks (CNNs) has
proven to be highly effective. However, there are still several critical issues that need to be addressed
in the HSIC task, such as the lack of labeled training samples, which constrains the classification
accuracy and generalization ability of CNNs. To address this problem, a deep multi-scale attention
fusion network (DMAF-NET) is proposed in this paper. This network is based on multi-scale fea-
tures and fully exploits the deep features of samples from multiple levels and different perspectives
with an aim to enhance HSIC results using limited samples. The innovation of this article is mainly
reflected in three aspects: Firstly, a novel baseline network for multi-scale feature extraction is de-
signed with a pyramid structure and densely connected 3D octave convolutional network enabling
the extraction of deep-level information from features at different granularities. Secondly, a multi-
scale spatial-spectral attention module and a pyramidal multi-scale channel attention module are
designed, respectively. This allows modeling of the comprehensive dependencies of coordinates
and directions, local and global, in four dimensions. Finally, a multi-attention fusion module is de-
signed to effectively combine feature mappings extracted from multiple branches. Extensive exper-
iments on four popular datasets demonstrate that the proposed method can achieve high classifica-
tion accuracy even with fewer labeled samples.

Keywords: convolutional neural network (CNN); hyperspectral image (HSI) classification; limited
samples; multi-scale feature extraction; multi-scale spatial-spectral attention; pyramidal multi-scale
channel attention; multi-attention feature fusion

1. Introduction

Hyperspectral images (HSIs), at the forefront of current remote sensing image tech-
nology, utilize multiple narrowband electromagnetic waves to acquire rich spatial, radi-
ometric, and spectral information about objects of interest. With its rich information con-
tent, HSIs can be used in many fields and play a crucial role, such as: precision agriculture
[1-3]; mineral exploration [4]; environmental detection [5-7]; biomedical imaging [8,9];
food safety [10,11]; urban planning [12]; military investigation [13]; climate change studies
[14,15]; and many other fields. In these applications and studies, hyperspectral image clas-
sification (HSIC) plays a crucial role and has emerged as a prominent research area in the
field of remote sensing and earth observation.

The task of HSIC involves assigning an appropriate class label to each pixel, thereby
generating a classified map that accurately represents the distribution of land features.
The conventional approach typically consists of two primary steps: feature engineering
and classifier design. The first step involves manual extraction of feature information
based on prior knowledge [16-18], followed by its classification using a classifier [19-22].
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However, most traditional algorithms heavily rely on data preprocessing and manual fea-
ture extraction, which not only depend heavily on prior knowledge but also have limited
generalization ability. Moreover, they solely utilize spectral information while disregard-
ing the spatial correlation between pixels, thereby making it difficult to extract representa-
tive and discriminative features.

With the progressive advancement of remote sensing imaging technology, high-per-
formance computing units, and computer vision theory, deep learning techniques have
been employed for HSIC. This has led to a continuous enhancement in their classification
accuracy [23,24]. The deep learning approaches, in contrast to conventional methods, pos-
sess the capability of automatically extracting deep abstract features from input data that
are advantageous for classification tasks, thereby attaining enhanced accuracy in both
classification and recognition. The stacked autoencoder (SAE) [25] and the deep belief net-
work (DBN) [26] were initially introduced for HSIC in the field. However, these methods
not only have a large number of parameters, but also require a 1D input form and suffer
from loss of spatial information. To address this problem, several 2D convolutional neural
network (CNN) [27-29] methods have been proposed, which can directly handle the 3D
cubes patch of HSI. In order to further explore the spatial-spectral information in 3D HSI
patches, researchers proposed a 3D CNN [30-33]. However, while 2D CNN:s fail to effec-
tively exploit the spectral dimension of HSI, 3D CNN5s often encounter challenges such as
a substantial parameter count, high computational complexity, and vulnerability to over-
fitting. Subsequently, researchers proposed a hybrid network combining both 2D CNNs
and 3D CNNs [34-36]. This integration aims to improve the accuracy of predictive classi-
fication by leveraging advantages from both types.

With the increasing depth of networks, residual networks and densely connected
networks have been successively proposed. Zhong et al. [37] proposed a spectral-spatial
residual network (SSRN) based on a 3D CNN, which employs residual blocks to mitigate
the issue of diminishing classification accuracy with increasing model depth, thereby fa-
cilitating gradient backpropagation. Zhang et al. [38] designed a deep residual module
(DIR) for spectral-spatial feature extraction, which avoids degradation of the network
while locking in the effective features at each layer. Zahisham et al. [39] proposed a two-
stream residual separable convolution (25RS) network, which utilizes deep separable con-
volutions to integrate residual blocks into two distinct streams for spatial and spectral
processing. Dong et al. [40] proposed a two-branch cross-feedback dense network with
context-aware guided attention (CFDcagaNet), which incorporates the DenseNet in a
feed-forward manner to promote feature reuse and achieve higher reconstruction accu-
racy for super-resolution. However, pure ResNet and DenseNet suffer from a large num-
ber of parameters, high computational cost, and relatively small receptive fields per layer.
Wang et al. [41] proposed a multi-scale dense connection attention network (MSDAN),
which introduces multi-scale feature extraction to obtain features of different granularities
using receptive fields of varying sizes. By combining DenseNet and attention mechanism,
the classification performance is significantly improved. Wang et al. [42] proposed a uni-
fied multi-scale learning (UML) framework based on fully convolutional networks. In the
UML framework, they introduced a multi-scale spatial channel attention mechanism and
multi-scale scrubbing blocks to improve the distortion problem in land cover maps. More-
over, in our previous work [43,44], we delved into the extraction of multi-scale features
and proposed two networks that incorporate attention mechanisms: the Multi-Scale Re-
sidual Network (MRA-NET) [43] and the Multi-Scale Feature Fusion Network with 3D
Self-Attention (3DSA-MFN) [44]. Zhang et al. [45] introduced a classification method
based on a Multi-Scale Dense Network (MSDN) with a 3D Gabor filter. Zhao et al. [46]
proposed a bi-branch global+ multi-scale hybrid network (GMHN). These networks ex-
tract target features at various scales, effectively improving accuracy in HSIC tasks and
demonstrating the significant value of multi-scale features in this domain.

In recent years, the Transformer model has gained widespread adoption in various
intelligent large-scale applications due to its incorporation of a self-attention mechanism.
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This mechanism enables the model to effectively capture long-term dependencies in se-
quential data while demonstrating robust parallel capabilities. Sun et al. [47] proposed a
Spectral-Spatial Feature Tag Transformer (SSFTT) method for HSIC, which captures spec-
tral-spatial features and high-level semantic features, outperforming several state-of-the-
art methods. Yang et al. [48] proposed an HSI Transformer (HiT) classification network
that embeds convolution operations into the transformer structure to capture subtle spec-
tral differences and convey local spatial context information. Cao et al. [49] proposed a
Transformer-based MAE using contrastive learning (TMAC), which aims to combine
these two methods and further improve performance. Guo et al. [50] proposed a self-su-
pervised learning algorithm based on a spectral transformer and masking mechanism for
HSIC in the presence of limited labeled data. Nevertheless, these approaches necessitate
a substantial quantity of annotated samples.

The utilization of deep learning methods based on the CNN in the aforementioned
exploration has significantly advanced HSIC and enhanced classification accuracy. How-
ever, these methods often necessitate a substantial number of labeled training samples to
ensure effective classification, which incurs significant human resources and time costs in
labeling HSI samples. Currently, the limited size of training samples often results in issues
such as overfitting and reduced classification accuracy in models. The primary objective
of our research is to develop a deep learning model that can effectively learn and accu-
rately classify even with a scarcity of samples. By incorporating a deep multi-scale fusion
attention mechanism, we aim to enhance the capacity for capturing subtle features in HSI,
thereby improving the precision and stability of classification. The main research tasks are
as follows: Firstly, design a deep learning architecture model based on CNN. This model
primarily comprises modules for feature extraction, attention enhancement, information
fusion, and classification. Secondly, investigate strategies for feature representation learn-
ing in scenarios with limited samples to enable the model to focus on key features and
mitigate the issue of small sample sizes. Finally, evaluate and optimize the model by con-
ducting experiments on multiple datasets to assess its performance and continuously ad-
just and optimize the parameters.

Inspired by the aforementioned approaches, we propose a deep multi-scale attention
fusion network (DMAF-NET) based on limited training samples, aiming to fully explore
the deeper and richer semantics of limited samples and improve HSIC accuracy. Firstly,
the HSI data are input to the multi-scale feature backbone network to learn multilevel
high-level semantics at varying granularities after data preprocessing. Subsequently, the
acquired features are sequentially fed into the multi-scale spatial-spectral attention mod-
ule and the multi-scale channel attention module, and the long-distance dependence of
the feature map is further modeled in depth through multiple scales. Then, the multi-
attention fusion module is utilized for effective feature fusion of different levels of high-
level semantics. Finally, the flattened feature map is successively passed through several
fully connected layers, to finally output the classification result. The main contributions
of this work are as follows:

1. A novel baseline network for multi-scale feature extraction is designed. The baseline
comprises three branches. Firstly, a pyramid-like structure is employed for prelimi-
nary feature extraction to capture features at different scales. Subsequently, a dense-
connected 3D octave convolutional network is utilized to learn deeper and finer-
grained features within various scale windows. This allows for effective leveraging
of semantic information at various levels with limited samples to extract more robust
and highly generalizable features.

2. Considering the high-resolution and multi-dimensional characteristics of HSIs, we
have designed a 3D multi-scale spatial-spectral attention module and a 4D pyramid-
type multi-scale channel attention module, respectively. This models the comprehen-
sive dependencies of coordinates and directions, local and global, in four dimensions,
making the model more focused on extracting information useful for classification.



Sensors 2024, 24, 3153

4 of 28

3. A multi-attention feature fusion module is designed. By fully utilizing the strong
complementary and correlated information from different hierarchical features, this
approach effectively integrates feature information from various levels and scales,
thereby improving the performance of HSIC results under limited sample conditions.

4.  Extensive experiments based on limited labeled samples were conducted on four typ-
ical HSI datasets. The results demonstrate that the proposed DMAF-NET model out-
performs other state-of-the-art deep learning-based methods in terms of both efficacy
and efficiency.

The remainder of this paper is organized as follows. Section 2 describes the proposed
network architecture in detail. Section 3 conducts comprehensive experiments. The abla-
tion experiments and other impact experiments are shown in Section 4. Finally, the con-
clusion is drawn in Section 5.

2. Proposed Method

In this section, we initially present a concise introduction to the proposed DMAF-
NET, followed by an elaborate exposition of each individual unit encompassed within the
network.

2.1. Overview of the Proposed Model

The overall architecture of the DMAF-NET model proposed in this paper is illus-
trated in Figure 1, taking the University of Pavia dataset as a representative example. The
DMAF-NET model is primarily composed of a multi-scale feature extraction backbone
network, attention mechanism units, and a multi-attention feature fusion module. Con-
sidering the fact that the feature map extracted consists of four dimensions: two spatial
dimensions, a spectral dimension, and a channel dimension, we have devised distinct
modules to augment attention in both the space—spectral domain and channel domain;
they are a 3D multi-scale spatial-spectral attention enhancement module and a 4D pyram-
idal multi-scale channel attention module. The DMAF-NET is an end-to-end HSIC net-
work, in which the input is the raw HSI data X € R"*"**, where H xW represents the
spatial dimension and L represents the spectral dimension. The output is the probability

of each pixel’s class in the HSI, denoted as y e R"™  where ¢ represents the number of
land cover classes.
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Figure 1. Architecture of the proposed DMAF-NET.

Firstly, principal component analysis (PCA) [51] is performed on the raw HSI data,
which can effectively reduce the dimensionality of highly redundant information and fil-
ters out bands that contribute less to classification tasks. After that, to effectively utilize
the spatial and spectral information features inherent in HSI data, we extract a 3D cube
consisting of neighboring pixels within a specific window size centered around the target
pixel as a sample. Subsequently, the 3D cube samples are fed into a multi-scale feature
extraction backbone network for deep-level learning of different granularities of features.
The extracted multi-scale features are further enhanced through spatial-spectral attention
and channel attention. Then, efficient fusion is performed on the three-channel multi-scale
attention features. Finally, the model is classified and predicted through the fully con-
nected layer and Softmax layer.

To optimize the DMAF-NET, we use cross-entropy as the loss function for the HSIC
task, which is defined as follows:

N
Cls=-) ylog(p,) 1)
i=1
where y, is the true class label and p, is the class probability predicted by the model.

2.2. Multi-Scale Feature Extraction Backbone Network

The term ‘multi-scale’ refers to the process of sampling signals at various levels of
granularity, enabling the extraction of diverse features for accomplishing a range of tasks.
In recent years, numerous studies have demonstrated the substantial advantages of multi-
scale feature learning over single-scale feature learning in the domain of computer vision
[52-57]. Chen et al. [58] argue that high- and low-frequency signals not only exist in nat-
ural images but also in the feature maps and channels of convolutional layers. To reduce
spatial redundancy, they proposed employing lower-dimensional tensors to store slowly
varying low-frequency information, and thereby introduced octave convolution. Moti-
vated by the aforementioned content, and based on our previous work [43,44], a novel
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multi-scale feature extraction backbone network (MsFEBN) was proposed, as illustrated
in Figure 2.

Dense Connectivity
Dense Connectivity

Conv : Convelution3D BN : BatchNorm3D Rl :Relu Dw : AvgPool3D Up : UpSample
H : High frequency L : Low frequency © : Concatenation & : Element-wise add

Figure 2. Multi-scale feature extraction backbone network.

MSsFEBN comprises three branches, each concurrently extracting features at distinct
scales from the input feature map on its respective branch architecture, thereby enabling
multi-scale feature learning. Firstly, the branch employs a pyramid network consisting of
3D convolutions with varying kernel sizes to extract multi-scale features from the input
feature maps. Specifically, the kernel sizes used are 1 x 1 x 1, 3 x 3 x 3, and 5 x 5 x 5.
Subsequently, the initially extracted feature maps are fed into a dense connection network
based on 3D octave convolution to further facilitate deep-level feature learning across dif-
ferent granularities through distinct scale windows. Incorporating dense connections in a
network can effectively alleviate the potential issue of gradient vanishing as the network
deepens, enhancing feature propagation and reuse, ultimately leading to more robust ex-
tracted features.

X, =3DConv(Y,)
X, =3DConv(DownSample(¥, ))
Yy =Fyn+F Ly
= 2 W) X,y + Upsample( 3 0,.,,,)" X, ) @)
Y =Fy .+,

= Z(WH_,L) DownSample +Z(WL_>L) X,
Yo = 6(ﬂ(DownSample(YH ))) +o(B(Y,))

where X, and X, denote the factorization of feature map Y, into high-frequency
and low-frequency components using a coefficient «; Y, and Y, denote the high-fre-
quency and low-frequency components outputted by octave convolution; F,_,, F,,,
F, and F,

oL .,y denote intercommunication within and between frequencies,
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respectively; W represents the weight parameters of octave convolution; and 3DConV(~)
, ﬂ() , 6() p DownSample(~) , and UpSample(~) denote the 3Dconvolution,
3DBatchNorm, ReLu, 3DAvgPool, and Upsample functions, respectively. Subsequently,

the first-level output is concatenated with the input along channels to obtain feature map

Y, as the input for second-level 3D octave convolution. Finally, on this branch, feature

map Y, is obtained as the ultimate result, as shown in Equations (3) and (4).
Y, = Cat{Y,,,,, DownSample(¥, )} 3)
Y,, = Cat{Y,,,,DownSample(¥, ), DownSample(¥;)} (4)

where Y, ,, is the feature map output after the second octave convolution layer, and

Cat () denotes the Concatenate function.

2.3. Attention Mechanism Unit
2.3.1. Three-dimensional Multi-Scale Space-Spectral Attention Enhancement Module

The internal structure of the 3D multi-scale spatial-spectral attention enhancement
module (3D-MsSSAEM) is shown in Figure 3. The 3D-MsSSAEM exhibits two primary
characteristics: Firstly, to optimize computational resources and expedite the learning
process, channel grouping is implemented. This entails restructuring certain channels into
batch dimensions, thereby dividing the channel dimension into multiple feature groups
and ensuring equitable distribution of spatial semantic features within each group. Sec-
ondly, the 3D-MsSSAEM performs learning and aggregation of multi-scale spatial-spec-
tral structural information through two branches. These two branches utilize convolu-
tional kernels of 1 x 1 x 1 and 3 x 3 x 3, respectively, and cross-domain joint learning is
performed between these two branches. This effectively establishes short-term and long-
term dependencies, resulting in a stronger spatial-spectral feature extraction capability.

HXWxL®CXB

/ X Reshape “%
X!
X

Reshape ¥ _
B Element-wise add
GroupNorm Adaptive Avepool 3L Softmax & Matrix multiplication
€ Concatenate

Figure 3. Three-dimensional multi-scale space-spectral attention enhancement module.

3x3x3

Specifically, after transforming certain channel dimensions into batch dimensions,
the resulting sub-feature groups can be denoted as X € R”"***"  where M =C/m isthe
number of channels after grouping, m is the grouping factor, and the value of m is set to
20 in the proposed model. We refer to the branches with convolution kernels of 1 x 1 x 1
and 3 x 3 x3 as the 1 x 1 x 1 branch and 3 x 3 x 3 branch, respectively. In the 1 x 1 x 1 branch,
the input X s first adaptively pooled along the H-axis and W-axis in the spatial dimension
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and the L-axis in the spectral dimension, respectively. Subsequently, the pooled outputs
are concatenated and convolved to produce X/, as shown in Equations (5) and (6).

1

Agpy (X) =2,
1 .
Agpy, (X)= Trl f,L Xy )

1 ,
Agp (X)=—— 3,

X{ =3DConv(Cat {P(Agp, (X)),P(Agpy (X)), Agp, (¥)}) (6)

where Agp(-) and P(-) denote the AdaptiveAvgPool and Permute function, respec-
tively. After that, decompose X, back into three vectors, input them separately into the

Sigmoid function, multiply to obtain the first attention map, and reassign weights to the

original input X, resulting in output X", as shown in Equation (7).
X}, X, X, = Split( X))

7

X/'= X xSig(X}, )xSig(X, )xSig(X}) @)

where Sig(-) denotes the Sigmoid function. Then, cross-domain collaborative learning is

performed between the 1 x 1 x 1 branch and 3 x 3 x 3 branch to model the dependencies
between diverse scales, local and global. The second and third attention maps, denoted as
X" and X, respectively, are generated based on this process, as shown in Equation (8).

X{'= x] xSoft (Re(Agp(Gn (X))

X] = Gn(X])xSoft(P(Re(Agp(3)))) (®)

where Gn(-), Re(-), and Soft(-) denote the GroupNorm, Reshape, and Softmax func-

tion. Finally, the attention maps of the two branches are summed element-wise and the
fourth attention map is obtained by the Sigmoid function, and then the original inputs are
reweighted, as shown in Equation (9).

X, =X xSig(X"+ X)) 9)

2.3.2. Four-dimensional Pyramid-Style Multi-Scale Channel Attention Module

SENet [59] is a highly representative channel attention architecture method, which
incorporates the SE module. It models the internal feature maps in the channel dimension
through global average pooling and two fully connected layers with non-linear activa-
tions, effectively capturing the interdependencies among channels of the feature maps.
However, the SE module only simply employs global average pooling to map spatial fea-
ture information to a low-dimensional space, overlooking the intricate structural details
within the feature map. In light of this, we have optimized the SE module by incorporating
a multi-scale pyramid encoding structure and proposed a 4D pyramid-style multi-scale
channel attention module (4D-PMsCAM) suitable for HSIC, as shown in Figure 4. The 4D-
PMsCAM employs a three-layer pyramid structure for encoding, which allows the inte-
gration of spatial information at different scales, thereby constructing richer structural in-
formation and establishing longer-distance channel dependencies.
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Figure 4. Four-dimensional pyramid-style multi-scale channel attention module.

The encoding structure within the module is composed of three 3D adaptive average
pooling layers with varying scales, resembling a pyramid shape. Specifically, the output
window sizes are 1 x 1 x 1, 2 x 2 x 2, and 4 x 4 x 4, respectively. The three outputs are
subsequently reshaped and concatenated along the channel dimension to obtain a vector
z e R"""“ . The subsequent steps are shown in Equation (10).

s=F(z,W)=Sig(W,0(W,z)) (10)

where W, R™ and W, e R™ denote the weight parameters of the two fully connected

layers, respectively, r is the channel dimension reduction factor, and s represents the final
dependency relationship of the channel dimensions obtained.

2.4. Multi-Attention Feature Fusion Module

SKNets [60] is a learning network that effectively captures objects with varying scales
and incorporates a module known as Selective Kernel Convolution (SK convolution). The
SK module comprises two branches with varying sizes of convolutional kernels, employ-
ing a non-linear approach to effectively aggregate information across multiple scales. This
adaptive mechanism enables neurons to dynamically adjust the receptive field size. Mo-
tivated by the concept of SK convolution, we propose a novel multi-attention feature fu-
sion module (MAFFM) for HSIC, as illustrated in Figure 5.

IR 1X1%1%C

HXxWxLxC

D Element-wise add X Matrix multiplication

Figure 5. Multi-attention feature fusion module.

Before inputting the MAFFM, the three feature maps are concatenated into one fea-
ture map along the channel dimension. Therefore, inside the MAFFM, the input feature
map needs to be split first to restore the original feature map of the three branches. Sub-
sequently, the three features are recombined through a straightforward element-wise
summation for aggregation. Then, the integration of spatial information is further en-
hanced by learning to weight features and regulating the flow of information through
gating mechanisms. Finally, the feature fusion of each branch is achieved based on the



Sensors 2024, 24, 3153

10 of 28

weights of each branch. The average pooling method is commonly employed for spatial
information aggregation. However, by incorporating the max pooling method, an addi-
tional crucial clue regarding distinct object features can be gathered [61], thereby enabling
the inference of more refined attention information in the feature map. Specifically, as-
suming the three branches of splitting and restoring are A, B, and C e R""*", firstly, the
three branches are aggregated to obtain a feature map U. Concurrently, spatial compres-
sion is applied to the feature map U through 3D global average pooling and 3D global
maximum pooling, resulting in a feature vector z e R* "¢, and the compressed feature

><l><l><£

vector z'e R " is obtained after passing through a fully connected layer. The process
is depicted by Equations (11)—(13).

U=4+B+C 11)
z=Agp(U)+Mxp(U) (12)
z'=F(z,W)=0(B(Wz)) (13)

where Mxp(+) denotes the 3DAdaptiveMaxPool function, and W e RS The Softmax

function is subsequently employed to compute the weights assigned to each branch. Ulti-
mately, the fused output feature map V e R”"*"*“ is obtained by reconfiguring and
summing up each branch based on its corresponding weigh, as shown in Equations (14)
and (15).

e
a, = g
c eAz+eBLz +e(,z
eB('.z
b=—r———7 14
c eA(,z +eBLz +e(,(,z ( )
Cz
e
C.=—F7— 7
c eA‘.z +eBLz + eC(.z
V.=a,A +bB +c.C,, a,+b +c, =1 (15)

cox&
where A4', B',and C'eR ’.a,b,and cdenote the soft attention featuresof 4, B, and

l><£
C, respectively. Note that 4’ € R " is the c-th row of 4', a_ is the c-th element of a,
and others with c subscripts are similar.

3. Experiments and Results

In this section, we initially present the four classic datasets utilized and elucidate the
experimental setup. Subsequently, a comprehensive analysis of crucial network hyperpa-
rameters is conducted. Then, we perform quantitative and qualitative experiments to
compare and analyze our proposed model against other state-of-the-art methods. Finally,
ablation experiments as well as other impact studies are conducted.

3.1. Dataset Description

The HSI dataset is acquired through remote sensing satellites or unmanned aerial
vehicles, and undergoes preprocessing procedures including atmospheric correction, de-
noising, band selection, and feature extraction. Subsequently, it is annotated for classifi-
cation purposes to generate training and testing datasets. In order to assess the efficacy
and generalizability of the proposed network model across diverse HSI datasets, we se-
lected four challenging public HSI datasets: Salinas scene (SA), University of Pavia (UP),
Indian Pines (IP), and WHU-Hi-LongKou (LK). Among them, the SA, UP, and IP datasets
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can be obtained from: https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Re-
mote_Sensing_Scenes (accessed on 15 May 2024), and the LK dataset can be obtained
from: http://rsidea.whu.edu.cn/resource. WHUHi_sharing.htm (accessed on 15 May 2024).
The summarized details of these four datasets are presented in Table 1.

Table 1. Datasets employed during trials.

SA upP 1P LK
Sensor AVIRIS ~ ROSIS AVIRIS Headwall
Nano-Hyperspec
Wavelength (nm) 400-2500  430-860 400-2500 400-1000
Spatial Size (pixels) 512x217 610 x 340 145 x 145 550 x 400
Spectral Bands 204 103 200 270
No. of Classes 16 9 16 9
Labeled Samples 54,129 42,776 10,249 204,542
Spatial Resolution (m) 3.7 1.3 20 0.463
Areas California Pavia Indiana Longkou

In summary, these datasets exhibit variations in terms of spatial scale, spectral range,
and land cover categories. For instance, the SA and LK datasets encompass multiple spec-
tral dimensions, diverse land cover categories, and a substantial number of samples. The
UP dataset possesses larger spatial dimensions, high spatial resolution, fewer spectral di-
mensions, a limited number of land cover categories, and more samples. Conversely, the
IP dataset presents smaller spatial dimensions with lower spatial resolution while incor-
porating multiple spectral dimensions alongside diverse land cover categories; neverthe-
less, it suffers from scarcity in sample quantity, which is further exacerbated by extreme
imbalance among them. Through this selection process that encompasses four different
application scenarios, our model’s performance will be validated. For visual representa-
tion purposes, the pseudo-color images and the corresponding ground truth maps for
these datasets are shown in Figure 6. The SA dataset’s ground cover consists mainly of
crops such as bitumen, fallow, stubble, celery, lettuce, and vineyard. The UP dataset con-
sists mainly of buildings such as asphalt, gravel, and bitumen. The IP dataset consists
mainly of vegetation such as alfalfa, corn, and soybean, etc. The LK dataset mainly in-
cludes crops such as corn, cotton, and rice. In addition, Tables 2-5 provide detailed infor-
mation on the distribution of samples for each category in each of the four datasets, as
well as the number of training samples, respectively.

(a-1) (a-2) b-1)  (b2) (c-1) (c-2) (d-1) d2)

Figure 6. The pseudo-color images and the corresponding ground truth maps for the SA, UP, and
IP datasets. (a-1) Pseudo-color map of SA. (a-2) Ground truth map of SA. (b-1) P