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Abstract: Participant movement is a major source of artifacts in functional near-infrared 
spectroscopy (fNIRS) experiments. Mitigating the impact of motion artifacts (MAs) is crucial to 
estimate brain activity robustly. Here, we suggest and evaluate a novel application of the nonlinear 
Hammerstein–Wiener model to estimate and mitigate MAs in fNIRS signals from direct-movement 
recordings through IMU sensors mounted on the participant’s head (head-IMU) and the fNIRS 
probe (probe-IMU). To this end, we analyzed the hemodynamic responses of single-channel 
oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) signals from 17 participants who performed a 
hand tapping task with different levels of concurrent head movement. Additionally, the tapping 
task was performed without head movements to estimate the ground-truth brain activation. We 
compared the performance of our novel approach with the probe-IMU and head-IMU to eight 
established methods (PCA, tPCA, spline, spline Savitzky–Golay, wavelet, CBSI, RLOESS, and 
WCBSI) on four quality metrics: SNR, △AUC, RMSE, and R. Our proposed nonlinear 
Hammerstein–Wiener method achieved the best SNR increase (p < 0.001) among all methods. Visual 
inspection revealed that our approach mitigated MA contaminations that other techniques could 
not remove effectively. MA correction quality was comparable with head- and probe-IMUs. 

Keywords: functional near-infrared spectroscopy fNIRS; motion artifact; multi-channel IMU; 
accelerometer; gyroscope; motion correction; NIRS signal improvement 
 

1. Introduction 
Functional near-infrared spectroscopy (fNIRS) noninvasively measures changes in 

oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) levels in the cortex with near-
infrared light (e.g., 760 and 850 nm) [1]. To this end, light sources and detectors are 
attached to the head. The intensity of light arriving at a detector situated several 
centimeters away from the source is measured and then converted to concentration 
changes of HbO and HbR with the modified Beer–Lambert law. Ideally, the concentration 
changes reflect neuronal activity in the superficial cortical layers [2]. Portable fNIRS 
systems have been developed to facilitate brain activation measurements in realistic 
settings with relatively freely moving subjects, e.g., during driving [3]. However, motion 
artifacts (MAs) induced in less restricted settings, e.g., by the movement of the probes, are 
an essential challenge to overcome [4]. 
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MAs come in various forms, including shape and magnitude changes, as well as 
oscillations. MAs alter the form of the observed shape of the HbO and HbR signals, 
resulting in erroneous estimates of brain activity [5]. Generally, sudden optode 
movements generate spike-like artifacts [6], whereas optode position changes generate 
baseline shifts [7], steps [8], oscillations [9], and slow drifts [10]. MAs are easier to detect 
when they have large magnitudes and contain high-frequency oscillations. However, 
small-magnitude and slow, low-frequency MAs can be hard to detect. This can limit the 
effectiveness of MA correction algorithms that include an MA detection step. 

The most consequent approach to treating MAs once they are detected is to reject the 
contaminated data segment. However, this can lead to unacceptable data loss. In order to 
remove MAs without data loss, researchers have recently developed several MA 
correction approaches. Currently, a gold standard for effectively removing the MA effects 
is still lacking [11]. Popular methods make strong assumptions about the nature of the 
hemodynamic response and the MA. Some require additional MA detection algorithms, 
e.g., spline interpolation and Targeted Principal Component Analyses (tPCAs). Others, 
such as principal component analyses (PCAs), correlation-based signal improvement 
(CBSI) [12], and wavelet filtering [13] can be run without MA detection. In addition, 
smoothing methods have been used to filter out MAs, e.g., Savitzky–Golay (SG) filtering 
[14] and robust locally estimated scatterplot smoothing (RLOESS) [15]. However, hybrid or 
combined methods, such as spline interpolation with a Savitzky–Golay filter [10], wavelet 
filtering with spline interpolation [16], and wavelet filtering with CBSI (WCBSI) [17], have 
proven to be more effective in MA correction than each method alone. It should be noted 
that all these methods can either leave residual MAs to various degrees or introduce new 
artifacts if their assumptions are not met or when the wrong parameters are chosen [17]. 

Some recent MA correction methods linearly combine direct movement 
measurements from accelerometers and gyroscopes with fNIRS to estimate and/or 
remove MAs from fNIRS data. Examples include an auto-regressive model with an 
exogenous input (ARX) [18], accelerometer data with canonical correlation analysis [11], 
and accelerometer-based motion artifact removal (ABAMAR), which uses the standard 
deviation of the accelerometer data to detect MAs in fNIRS and corrects baseline shifts 
[19]. Linear methods assume a linear relationship between the IMU measurements and 
the fNIRS artifact. In this study, we investigated the capabilities of the linear and nonlinear 
Hammerstein–Wiener model (HWM) to improve MA correction. Our HWM approach 
integrates fNIRS data with concurrent measurements from a three-axis accelerometer and 
gyroscope to estimate MAs in the fNIRS signal and uses the estimates to correct them. In 
addition, we applied a bandpass filter (BPF) to refine the data further. This filter enforces 
constraints on the signal bandwidth imposed by the slow hemodynamic response 
function (i.e., the system’s impulse response) and eliminates high-frequency noise as well 
as physiological artifacts from noise sources other than MAs [2,20].  

We evaluated the performance of our suggested nonlinear MA correction method on 
empirical data and compared it to eight popular methods. In our experiment, we recorded 
brain activity in the motor cortex with fNIRS while participants performed a hand tapping 
task in three experimental conditions. In the first condition, participants kept their heads 
motionless while performing the task. This provided a ground truth signal of the expected 
brain activation. The second and third conditions required participants to perform small 
and large head movements while performing the task. We used this dataset to thoroughly 
assess the quantitative and qualitative aspects of our suggested approach and to validate 
its performance by comparing it with the most popular MA correction algorithms. For 
evaluation, we used four metrics that capture different aspects of algorithm performance: 
area under the curve (AUC), Root Mean Square Error (RMSE), Pearson correlation 
coefficient (R), and signal-to-noise ratio (SNR). A paired t-test was performed on all 
metrics to follow up on the significant differences in the performance of each tested 
algorithm. The dataset was made open access for future development and evaluations at 
https://www.doi.org/10.17605/OSF.IO/U3F89 (accessed on 13 May 2024). 
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2. Materials and Methods 
2.1. Characteristics of the fNIRS Signal: 

The basic features of the interaction of near-infrared light (NIR) with human tissues 
relevant for functional neuroimaging are the following: (1) Human tissues are relatively 
transparent to light in the near-infrared spectral range (650–1000 nm) [21]. (2) NIR light is 
either absorbed by pigmented compounds (chromophores) or scattered in tissue [21]. (3) 
The dominant transport factor of NIR light in tissue is scattering, which is typically about 
100 times more likely than absorption [22]. (4) Hemoglobin, which is located in vessels of 
the microcirculation, such as capillaries, arterioles, and venular beds, is a main contributor 
to the absorption of NIR light in the brain. The arterial blood volume fraction in the human 
brain is approximately 30% [23]. However, in fNIRS light, sources and detectors are 
attached to the scalp, and therefore the raw fNIRS signal is caused by a complex mixture 
of contributions by the blood supply and oxygen consumption in the brain, absorption in 
the tissues between sources and detectors (the scalp, bones, and the brain), and 
autonomous and heartbeat-related blood pressure changes, to name some [24]. Some of 
these non-brain influences can be mitigated by filtering techniques. Importantly, our 
study was designed to keep such factors comparable across experimental conditions. 

2.2. Modified Beer–Lambert Law in the fNIRS Measurement: 
The fNIRS technique measures relative changes in light attenuation and uses a 

modified Beer–Lambert law to quantify changes in hemoglobin concentration as given by 
the following equation [25,26]: ∆𝑂𝐷ఒ =  ∆𝑐𝜀ఒ  · 𝐿 · 𝐷𝑃𝐹 

where ∆𝑂𝐷ఒ is the optical density change, 𝜀ఒ is the chromophore’s extinction coefficient, ∆c is the concentration change, L is the distance between the light entry and exit points, 𝜆 
is the wavelength, and DPF is the differential pathlength factor. Most of the fNIRS devices 
use two wavelengths between 650 and 1000 nm to capture the HbO and HbR 
concentration changes [26,27]. 

2.3. Hammerstein–Wiener Model Configuration 
The Hammerstein–Wiener model has its application in nonlinear system 

identification and integrates elements from both the Hammerstein and Wiener models. 
The Hammerstein model was first presented by Narendra and Gallman (1966) and the 
Wiener model by Norbert Wiener (1942). The Hammerstein–Wiener model applies a static 
nonlinearity to its input followed by a linear block. Conversely, the Wiener model passes 
the input through a linear block followed by a static nonlinearity. The Hammerstein–
Wiener model combines both, resulting in a nonlinear–linear–nonlinear model structure 
as shown below in Figure 1. The Hammerstein–Wiener model represents a nonlinear 
system that is easier to implement and estimate than other linear or nonlinear models [28].  

As depicted in Figure 1, we employed the Hammerstein–Wiener model with multiple 
inputs (IMU signals) and a single output (fNIRS signal). We used MATLAB’s System 
Identification Toolbox (MATLAB version R2020a) to estimate the nonlinear and linear 
parameters. The estimation report provides details of the model configuration, e.g., the 
names of regressors used in both (first and last) nonlinear blocks, along with suggestions 
for parameters. Based on this report, we selected a sigmoid network with ten units for the 
nonlinear block and a state space model for the linear block, which is configured as a 
transfer function with three poles and two zeros with a short input delay of one. 
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Figure 1. The block diagram of the HWM MA correction pipeline. Here, s(t) is the MA-
uncontaminated fNIRS signal, and y(t) is the MA contamination by the head motion in the fNIRS 
signal. The measured fNIRS signal with the MA contamination is z(t), and u(t) holds the three-axis 
accelerometer and gyroscope signals. Both z(t) and u(t) are the inputs of the model. The HWM model 
(grey box) consists of two nonlinear blocks (m1 and m2) and one linear block h(𝜏). The model output 𝑦ො(t) represents the estimated MA signal, which is subtracted from the measured fNIRS signal with 
MA contamination z(t) to obtain the 𝑠̂(t), the MA-corrected fNIRS signal. 

2.4. Hammerstein–Wiener Model (HWM) for Artifact Removal  
The whole MA-estimation-and-removal process with the HWM is outlined in Figure 

1. We assume that the motion-contaminated fNIRS signal z(t) measured by the fNIRS 
optodes is the sum of the uncontaminated ground truth fNIRS signal s(t) and the MAs 
produced by head motions in the fNIRS signal y(t). This can be written as the following 
equation:  𝑧ሺ𝑡ሻ = 𝑠ሺ𝑡ሻ ൅ 𝑦ሺ𝑡ሻ (1)

Here, we used the HWM to estimate the MA in the fNIRS-measured signal. HW 
modelling assumes that the input–output relationship of a system can be decomposed 
into two or more interconnected elements when their output is nonlinear. More precisely, 
the HWM configuration consists of a static nonlinear block m1(.) cascading into a linear 
dynamic block h(𝜏), followed by another static nonlinear block m2(.) [29].  

The first nonlinear block m1(.) transforms the input IMU data u(t) as the following:  𝑥ሺ𝑡ሻ = 𝑐ଵ൫𝑢ሺ𝑡ሻ൯ =  ∑ ∑ 𝑐௜௤ଵ𝑢௜௤ଵሺ𝑡 − 𝜏ሻ,ொଵ௤ଵୀ଴௠௜ୀଵ   (2)

where u(t) is the input with six dimensions (ax, ay, az, gx, gy, and gz) and x(t) is the one-
dimensional output of the first nonlinear block. i is the counter and m is the number of 
IMU data channels, 𝜏 is the time delay, and t is the time interval. Cascading (2) into the 
linear stage, we have the following: 𝑤ሺ𝑡ሻ = ∑ ℎሺ𝜏ሻ൛∑ ∑ 𝑐௜௤ଵ𝑢௜௤ଵሺ𝑡 − 𝜏ሻொଵ௤ଵୀ଴௠௜ୀଵ ൟ்ିଵఛୀ଴   (3)

Here, T is the memory length. Cascading the output from the linear stage into the 
second nonlinearity, and rearranging, we obtain the output equation for the 
Hammerstein–Wiener model MA estimation: 𝑦ොሺ𝑡ሻ =  ∑ ቄ∑ 𝑐௜௤ଶ൫∑ 𝑐௜௤ଵ ∑ ℎሺ𝜏ሻ𝑢௜௤ଵሺ𝑡 − 𝜏ሻ்ିଵఛୀ଴ொଵ௤ଵୀ଴ ൯௤ଶொଶ௤ଶୀ଴ ቅ௠௜ୀଵ   (4)

where Q1 is the order of the first nonlinear kernel in Equation (2) and Q2 is the order of 
the second nonlinear kernel in Equation (4). 

In order to calculate the corrected fNIRS signal 𝑠̂ሺ𝑡ሻ , we subtract the HWM MA-
estimated signal 𝑦ොሺ𝑡ሻ from the motion contaminated fNIRS signal z(t), as described by the 
following equation: 
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𝑠̂(𝑡) = 𝑧(𝑡) − 𝑦ො(𝑡)  (5)

2.5. Motion Artifact Correction Algorithms 
Here, we briefly review the popular MA correction methods employed in this study 

for comparison with the HW method. We refer the reader to [30] for details of the methods. 
Principal component analysis (PCA) finds an orthogonal transformation (principal 

components) to transform the original time series of N fNIRS channels into N uncorrelated 
time series of the principal components. If the magnitude of the MAs is larger than the 
brain signal and is correlated across sensors, then PCA may be able to separate MAs from 
brain signals [30]. Unfortunately, PCA applied to the entire measured signal often has 
difficulty distinguishing between brain and MA signals and may, therefore, partly remove 
the signal as well [31]. An extension of traditional PCA called Targeted Principal 
Component Analysis (tPCA) aims to improve MA and brain signal separation. This 
algorithm first detects MAs, then concatenates the MA-contaminated segments to 
estimate the PCA, and finally removes MAs only from those segments. The method has 
some complexity, as the user must set several parameters [32].  

Correlation-based signal improvement (CBSI) is based on the hypothesis that HbO 
and HbR are always negatively correlated. MAs change this correlation because they have 
similar effects on both signals. Therefore, HbO and HbR are positively correlated in MA 
segments [12]. The MA correction is performed by estimating the parameters of a simple 
linear function that predicts, e.g., HbR from HbO data. However, a consequence of CBSI 
correction is that HbR and HbO become redundant, as one is predicted from the other. 
This may not be true in the actually acquired data [30].  

Wavelet correction (WC) is a time–frequency method. It is separately applied to the 
time series of every fNIRS channel and decomposes the signal in a set of frequency bands 
with varying temporal resolutions. WC produces detail and approximation coefficients 
for every frequency resolution. The outliers of the distribution of the detail coefficients are 
associated with MAs. Therefore, MAs can be eliminated by setting these outlier 
coefficients to zero before performing the inverse wavelet transform to reconstruct the 
MA-corrected signal time series [13]. The other approaches employed here perform MA 
correction by local function fitting: The spline interpolation (SI) technique first applies an 
MA detection algorithm and fits a cubic spline to the MA intervals. Then, the interpolation 
is removed from the original signal to obtain the MA-corrected signal [33]. Savitzky–Golay 
(SG) filtering is related, as it locally fits a polynomial function to the MA interval and 
replaces the observed time series with the estimate from the fitted polynomial [14]. 
Moreover, robust locally estimated scatterplot smoothing (RLOESS) first fits a locally 
weighted regression, which is then iteratively adjusted depending on the magnitude of 
the residuals [15]. 

WCBSI combines the wavelet with the CBSI approach for MA correction. In a 
previous study [17], WCBSI was proven to be the most effective MA correction method 
among the methods reviewed in this section across all quality measures reported in the 
current study. 

2.6. Participants  
We originally recorded data from twenty participants, but we lost the IMU data from 

three of them, so the analysis is based on seventeen healthy participants with an average 
age of 29 ± 4 years, including twelve females. Ten had various shades of brown hair, six 
had black hair, and one had red hair. Individual participants’ age, gender, and hair color 
are listed in Table S2 in the Supplementary Materials. Participants had no neurological or 
psychological disorders. We obtained their written informed consent prior to their 
participation in the study. The IRB of Carl von Ossietzky Universität Oldenburg approved 
the study protocol under the code (Drs. EK/2020/021-01).  
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2.7. Experimental Procedure and Study Design 
We measured the fNIRS, accelerometer, and gyroscope data while participants 

performed a hand tapping task and concurrent head movements with different 
amplitudes. A condition without head movements allowed us to empirically determine 
the ground truth fNIRS signal elicited by hand tapping. This approach allowed us to have 
significant control over the experiment. The experimental procedure was the same as in 
[17,34].  

The experiment was performed in a dark and soundproof room. The participants 
were seated comfortably in front of a 24-inch LCD computer monitor at an approximately 
75 cm distance. We used Psychtoolbox (v3.0.10), a MATLAB toolbox [35], to implement 
three tasks. Each trial involved 10 s of activity followed by a 20 s rest period for each task 
(Figure 2). This cycle was repeated 25 times, with a fixed task sequence, resulting in a total 
of 75 trials with a 41.5 min total data acquisition time per participant [17]. The experiment 
started and ended with a 120 s long baseline measurement without any overt activity from 
the participants. Psychtoolbox sent two signals at the beginning of each task to 
synchronize the IMU and the fNIRS recordings. (1) The event time for each task was sent 
to the fNIRS recording software (Oxysoft v3.0.103.3) through the lab streaming layer. (2) 
Simultaneously, a beep sound was sent to the Arduino board through the auxiliary port 
and was recorded in an extra channel in parallel with the IMU recordings. 

 
Figure 2. The experimental procedure and study design. The experiment begins with a 120 s initial 
rest period, followed by 10 s of task T1 (light blue box), involving hand tapping without head 
movements. After a 20 s rest period, 10 s of T2 (blue box) follows, involving hand tapping with small 
head movements (left–right–forward–backward). After another 20 s rest period, 10 s of task T3 
follows (dark blue box), involving hand tapping and larger head movements. This sequence is 
repeated 25 times, resulting in 75 movement blocks (25 blocks for each task). The experiment 
concludes with a final 120 s rest period. 

The participants were instructed to initially place their hands on the table and to 
avoid head movements. Upon the appearance of the word ‘tapping’ on the screen, they 
started tapping their hand on the table, keeping their head steady in the first task (T1). 
This task served to record the ground truth signal. In the second task (T2), participants 
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were asked to move their heads slightly while tapping their hands. The third task (T3) was 
similar to the second but with more substantial head movements. The head movements 
included flexion–extension (forward–backward) and left–right movements performed in 
random order. The hand tapping was performed at approximately 1 ± 0.5 Hz [17,36]. 
Participants practiced the tasks for 5–10 min before the experiment started to ensure that 
they followed the procedure correctly.  

2.8. fNIRS and IMU Data Collection and Processing  
We employed a wearable fNIRS Artinis medical OctaMon system to measure 

experimentally induced HbO and HbR changes in the motor cortex. The system consisted 
of eight sources emitting light at 850 and 760 nm wavelengths and two detectors sampled 
at 10 Hz. Sources and detectors were integrated into a specialized cap, with holder 
positions following the international transcranial positioning pattern 10/20 [37]. Detectors 
were placed in positions C3/C4 and sources in positions C1/C2, C5/C6, FC3/FC4, and 
CP3/CP4 (Figure 3). This created four fNIRS channels approximately placed over the hand 
area of the primary somatomotor cortex of each hemisphere. Before data collection, we 
checked the signal quality using the Oxysoft v3.0.103.3 recording program. This 
assessment included checking the light intensity and potential ambient light interference 
(˂1% of the total signal) and ensuring that the light wavelengths emitted from each source 
fell within the specified range of 760 ± 5 nm and 850 ± 6 nm.  

 
Figure 3. The positioning of optodes and IMUs. Positions follow the international transcranial 
positioning pattern 10/20 [37]. The fNIRS source and detector pairs are separated by 3 cm. Sources 
are shown in red and detectors in blue. The two IMU sensors are outlined in green. The head-IMU 
is at FCZ and the probe-IMU is on the top of detector C4. 

We used two MPU6050 IMUs (each housing a 3-axis accelerometer and a gyroscope; 
AZ Delivery Vertriebes GmbH, Bräugasse 9, 94469 Deggendorf Deutschland) to measure 
linear and rotational movement components. Both were firmly fixed with custom-made 
holders for precise measurements of the detector and head movements. One IMU was 
fixed centrally at the position FCZ on the cap (head-IMU). The other IMU was fixed to the 
top of the fNIRS detector used in the analysis, which was at position C4 (probe-IMU) (see 
Figure 3). Both IMU sensors were recorded at a sampling frequency of 10 Hz, the same as 
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the fNIRS sampling frequency, through an Arduino UNO board (for the code, see 
Supplementary Materials), and the data were stored on a PC.  

2.9. Data Processing  
Before the data recording, we checked the signal quality of all tested channels 

according to the user guide of the fNIRS (Artinis medical system) using the 
manufacturer’s software (Oxysoft v3.0.103.3). The data processing was performed using 
the Homer3 v1.31.2 NIRS processing MATLAB toolbox [2], which implements the popular 
MA correction methods employed here. For HWM-based MA correction, we used the 
System Identification ToolboxTM [38] in MATLAB version R2020a. The block diagram in 
Figure 4 depicts the processing steps for all MA correction methods.  

 
Figure 4. The processing streams for each MA correction technique are indicated by colored arrows. 
The processing of the uncorrected fNIRS signal is in black. The pipelines of the different correction 
approaches are shown in pink for HWMH, olive for HWMP, green for PCA, yellow for RLOESS, 
blue for spline, cyan for splineSG, and purple for tPCA, brown for CBSI, red for WCBSI, and grey 
for the wavelet. 

The first step is applying the modified Beer–Lambert law to convert the raw intensity 
fNIRS measurements to the optical density (OD) data. The value of the differential 
pathlength factor depends on the age of the participant, and was determined by the 
method of Scholkmann and Wolf [39], which is integrated into the fNIRS manufacturer’s 
software (Oxysoft v3.0.103.3), and this factor averaged to 6 ± 0.5 for 760 nm and 850 nm 
wavelengths [40].  
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The HWM estimation is applied separately with the head-IMU and the probe-IMU 
data. The accelerometer and gyroscope data are then run through the estimated HWMs 
to estimate the MA, which is subtracted from the fNIRS signal, resulting in the HWM-
corrected fNIRS signals. HWMH refers to head-IMU correction and HWMP to probe-IMU 
correction.  

A 3rd-order Butterworth band-pass filter with a cut-off frequency of 0.01–0.1 Hz is 
applied to the corrected data to reduce very slow drifts and high-frequency noise [2,20]. 
Finally, to estimate the mean HbO and HbR response elicited by the hand tapping, all 
epochs in each experimental task (T1, T2, and T3) were averaged over a 20 s long interval, 
starting with the hand tapping. This results in three mean HbO and three mean HbR 
responses (a ground truth hand tapping response signal, a hand tapping with a small-
head-movement response signal, and a hand tapping with a large-head-movement 
response signal).  

For the correction techniques that require defined artifact intervals (spline, splineSG, 
and tPCA), we used amplitude and standard deviation thresholds to mark the data 
samples with MAs. All parameters for motion detection and the MA correction algorithms 
were the same as in [2].  

2.10. Metrics of Comparison  
In order to quantify the performance of the MA correction approaches, we compared 

the averaged 20 s epochs of the 𝐻𝑅𝐹෣  motion-corrected signal to the average HRF of the 
ground truth signal obtained without head movements individually for the HbO and HbR 
signals at different levels of motion artifacts (T2 and T1), and for each technique. We used 
four metrics for this comparison:  

The signal-to-noise ratio (SNR), measured in decibels, relates the ground truth-signal 
power to the power of the residual noise in the motion-corrected signal. It is calculated as 
in [5], where the ground truth signal is HRF(i) with i = 1, …. N, the sample index. 𝐻𝑅𝐹෣ (i) 
is the motion-corrected signal. By subtracting both, we can calculate the residual noise 
signal E(i).  𝐸(𝑖) =  𝐻𝑅𝐹෣ (𝑖) −  𝐻𝑅𝐹(𝑖),  (6)

and with that, the SNR SNR = 10 ∗ 𝑙𝑜𝑔ଵ଴ ൬∑  (ுோி(௜))మ೔ಿసభ∑ (ா(௜))మ೔ಿసభ ൰  (7)

The Area under the curve difference (△AUC) is a global measure that compares the 
overall deviation of two curves (ground truth and motion-corrected signal) from the 
baseline. We calculated 𝐴𝑈𝐶ுோி(௜)  and 𝐴𝑈𝐶ுோி෣ (௜)  using a MATLAB function for 
numerical integration (trapz). The difference is calculated using the following formula: △ 𝐴𝑈𝐶 = 𝐴𝑈𝐶ுோி(௜) − 𝐴𝑈𝐶ுோி෣ (௜) (8)

The Root Mean Square Error (RMSE) measures the average deviation between the 
ground truth signal and the motion-corrected signal using the following equation: RMSE =  ට∑ (ுோி(௜)ି ுோி෣ (௜))మ೔ಿసభ ே   (9)

Here, N is the number of samples in an epoch and i is the sample count. Note that 
RMSE is sensitive to shape and scaling differences.  

Pearson’s correlation coefficient (R) measures the similarity of the shape of the 
ground truth 𝐻𝑅𝐹(𝑖) and the motion-corrected signals 𝐻𝑅𝐹෣ (𝑖). The Pearson correlation 
ranges between −1 and 1 and is insensitive to scaling differences between the two signals. 
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2.11. Statistical Analysis  
In order to demonstrate that the HWM can reduce MAs, we compared the quality 

metrics (SNR, △AUC, RMSE, and R) between the HWM motion-corrected signal and the 
uncorrected signal with paired t-tests. For the comparison with the other MA corrections, 
we built on prior knowledge from our previous study [17], in which we demonstrated that 
WCBSI has the best MA correction performance among all comparison methods and 
quality measures employed in the present study. Therefore, in order to avoid an excessive 
number of statistical tests, we only statistically compared HWM to WCBSI, the “best in 
class” in the previous study. For each quality metric, we added a Benjamini–Hochberg 
correction with a false discovery rate of 5%. In addition, we calculated Cohen’s d as a 
measure of the effect sizes. All statistics were performed using IBM SPSS (v29.0.0.0).  

2.12. Measuring Participants’ Head Orientation during Experimental Tasks  
We measured participants’ head motion in the experimental tasks (T1, T2, and T3) by 

calculating the rotational angles of the head-IMU accelerometer data (X, Y, and Z). Figure 
2 shows pitch (θ) for the X-axis, roll (ψ) for the Y-axis, and yaw (φ) for the Z-axis. These 
angles are expressed according to the below formula in degrees relative to the Earth’s 
gravity g = 9.81 m/s2 [41].  𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 ቎ ௔ೣට௔೤మା௔೥మ቏ × ଵ଼଴గ , is the rotation angle of the x-axis. 

𝜓 = 𝑎𝑟𝑐𝑡𝑎𝑛 ቎ ௔೤ට௔మೣା௔೥మ቏ × ଵ଼଴గ , is the rotation angle of the y-axis. 

𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛 ቎ ௔೥ට௔మೣା௔೤మ቏ × ଵ଼଴గ , is the rotation angle of the z-axis. 

where ax, ay, and az are the acceleration output on the (x-, y-, and z-) axis.  

2.13. Head- and Probe-IMU Sensors’ Relationship Based on Canonical Correlation  
Analysis (CCA) 

Canonical correlation analysis (CCA) was first introduced by Hotelling (1936) with 
the goal of fitting projections of two datasets into a common space in which they are 
maximally correlated. Here, we use CCA to align the six-dimensional recording of the two 
IMU sensors (head-IMU and probe-IMU) in a common space to analyze their relationship.  

3. Results  
3.1. Qualitative Comparison of Motion Artifact Correction Methods  

In this section, we provide a brief qualitative comparison of how different MA 
correction methods cope with different types of MAs. Figure 5 provides an illustrative 
example of single-trial HbO and HbR signals with various MA types marked in red. These 
include baseline shifts, drifts, and spikes. It can be seen in these examples that for both 
small (T2) and large (T3) head movements, the nonlinear HWM approach excels in 
eliminating the high-amplitude spikes, rectifying the up- and down-baseline shifts, and 
successfully mitigating slow drifts. All methods seem to correct both up and down spikes, 
but this may be at least partly due to the low-pass filters applied as the last step after MA 
correction. Of the other MA correction methods tested, only HWMH, HWMP, WCBSI, 
and RLOESS corrected the downshift and slow drift in T2. Furthermore, in T3, our 
suggested HWMH, HWMP, and WCBSI succeeded in remedying the up-baseline shift, 
but none of the other techniques did. Notably, HWMH and HWMP perform best in 
resetting the offset amplitude of the signal in all three tasks. Moreover, only HWMH and 
HWMP maintain consistent fNIRS response amplitudes across all three tasks (T1, T2, and 
T3). Note how well the HWM-corrected HbO and HbR time courses follow the expected 
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time courses (positive for HbO and negative for HbR), with comparable peak amplitudes 
toward the end of the movement interval despite large head movements. Also, note the 
similarity between the HWM corrections obtained with the head- and the probe-IMUs. In 
the following, we will provide a quantitative evaluation of the performance of all MA 
correction algorithms. 

 
Figure 5. Effects of the different MA correction methods on various types of MAs are marked in red. 
The intervals of the three tasks (T1, T2, and T3) are marked in blue. Single-trial time series of (a) 
HbO, (b) HbR, (c) the probe-IMU, and (d) the head-IMU are shown. The uncorrected signal is shown 
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as a black dashed line. Compared to all other methods, HWMH and HWMP correction (pink and 
green solid lines) exhibit remarkable efficacy in mitigating all types and magnitudes of MA for both 
hemoglobin signals during the T2 and T3 intervals. The corrected signals generated by the other 
MA corrections are shown as dashed lines with different colors: spline (blue), spline SG (cyan), 
RLOESS (orange), tPCA (purple), CBSI (brown), wavelet (grey), PCA (green), and WCBSI (red). 

3.2. Quantitative Comparison of Motion Correction Methods 
All measures of MA correction quality are referenced to the average tapping-related 

fNIRS activations measured in the T1 epochs without head movement. Consequently, no 
MA correction was applied to obtain T1 averages. We consider them to be the empirical 
ground truth to which we compare the MA-contaminated and the MA-corrected fNIRS 
responses measured in the T2 and T3 epochs with small and large head movements, 
respectively. As depicted in Figure 4, averages for comparison with the ground truth 
signal were taken after MA correction. To quantify the results, we calculated four distinct 
quality metrics, capturing different aspects of signal quality (see the Methods Section): the 
SNR capturing the residual noise level, △AUC, the RMSE capturing the magnitude and 
shape reconstruction combined, and the Pearson correlation coefficient R capturing shape 
reconstruction alone. The epochs to calculate the metrics were 20 s long and started with 
the beginning of the respective tasks.  

Our main interest was in the comparison of the performance of our novel nonlinear 
HWM MA correction approach with the uncorrected average epochs (i.e., averaging as 
the only MA treatment) and the linear WCBSI correction that we recently suggested [17] 
and proved to be superior to all alternative MA correction methods tested in the previous 
study (spline, spline SG, RLOESS, CBSI, PCA, tPCA, and wavelet) and here. Therefore, in 
order to reduce the number of statistical comparisons among MA correction methods, we 
focused on testing differences between the HWM- and WCBSI-corrected signals. 
Furthermore, our results indicated that MA correction success is virtually identical with 
the head-IMU (HWMH) and the probe-IMU (HWMP). Therefore, we averaged the quality 
measures over the two corrections into a single value for the HWM. We used this average 
value for the statistical comparisons. 

All tests were conducted as two-tailed paired t-tests. In the plots below, we use the 
symbol (*) to indicate significance levels p < 0.05 (**) for p < 0.01 and (***) for p < 0.001 [11]. 
We added Benjamini–Hochberg-corrected p-values for a false discovery rate (FDR) of 5% 
with n = 8 comparisons (two signals (HbO and HbR), two movement levels (T2 and T3), 
and two methods (WCBSI and HWM) for each quality measure and calculated Cohen’s d 
as a measure of the effect size. 

Signal-to-noise ratio (SNR) relates the power of residual noise after MA correction to 
the power in the ground truth signals. A higher SNR value indicates a better MA 
correction. Figure 6 summarizes the averaged SNR (17 participants) for the HbO and HbR 
signals after MA correction in tasks T2 and T3 for each correction approach. The SNRs 
differ very little between HWM types (all two-tailed paired t-tests with df = 16: HbO T2: p 
> 0.05, Cohen’s d = 0.451; HbO T3: p > 0.05, Cohen’s d = 0.287, HbR T2: p > 0.05, Cohen’s d 
= 0.448; HbR T3: p > 0.05, Cohen’s d = 0.262). Therefore, we averaged the HWMP and 
HWMH SNRs for HWM correction in the following analysis.  

Compared to uncorrected signals, the SNR increased significantly with HWM 
correction for both HbO and HbR in T2 and T3 (all two-tailed paired t-tests with df = 16: 
HbO T2: p < 0.001, Cohen’s d = 1.918; HbO T3: p < 0.001, Cohen’s d = 3.620; HbR T2: p < 
0.001, Cohen’s d = 2.012; HbR T3: p < 0.001, Cohen’s d = 2.180). All the comparisons are 
still significant after Benjamini–Hochberg correction for n = 8 comparisons at an FDR of p 
< 0.05 (corrected p-values: HbO T2: p < 0.001; HbO T3: p < 0.001; HbR T2: p < 0.001; HbR 
T3: p < 0.001).  

Compared to WCBSI, the SNR increased numerically with HWM correction for both 
HbO and HbR in T2 and T3 (see Figure 6). This difference reached significance in the 
uncorrected paired t-tests (all two-tailed paired t-tests with df = 16: HbO T2: p < 0.05, 
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Cohen’s d = 0.530; HbO T3: p < 0.001, Cohen’s d = 1.46; HbR T2: p < 0.05, Cohen’s d = 0.692; 
HbR T3: p < 0.05, Cohen’s d = 0.700). Also, after Benjamini–Hochberg correction for n = 8 
comparisons at an FDR of p < 0.05, the measures were significantly different (corrected p-
values: HbO T2: p < 0.05; HbO T3: p < 0.001; HbR T2: p < 0.05; HbR T3: p < 0.05). 

 
Figure 6. Mean signal-to-noise ratio (SNR) with standard errors after MA correction for the different 
correction methods plus the SNR of the uncorrected data. SNRs for HbO and HbR signals are shown 
in red and blue, respectively. The left panel shows SNRs for experimental tasks T2 (small head 
movements) and the right panel for T3 (large head movements), with a significance level of p < 0.001. 
Note that HWMH and HWMP have superior SNRs compared to all other methods tested. Three 
stars (***) indicate a significance level of p < 0.001, and one star (*) p < 0.05. 

In sum, we obtained for both head movement levels the highest SNRs with the HWM 
correction. The SNR reached up to 13–14 dB for both HWMH and HWMP, which amounts 
to a ratio of ca 20:1 to 25:1.  

The area under the curve difference (△AUC) measures the difference between the 
integrals of the ground truth signal and the MA-corrected signals. This is a global measure 
that can, for example, detect signal rescaling, and smaller values indicate better MA 
correction. Reported alone, it can be hard to interpret. Figure 7 shows the ΔAUCs for the 
different correction approaches for HbO and HbR separately. Note that the HbR signals 
were multiplied by −1 to compensate for the sign flip. The ΔAUC did not show significant 
differences between HWMP and HWMH correction (all two-tailed paired t-tests with df 
= 16: HbO T2: p > 0.05, Cohen’s d = 0.316; HbO T3: p > 0.05, Cohen’s d = 0.041; HbR T2: p > 
0.05, Cohen’s d = 0.139; HbR T3: p > 0.05, Cohen’s d = 0.141). Therefore, we averaged the 
HWMP and HWMH ΔAUCs for HWM correction in the following analysis.  

Compared to uncorrected signals, ΔAUC decreased significantly with HWM 
correction for both HbO and HbR in T2 and T3 (all two-tailed paired t-tests with df = 16: 
HbO T2: p < 0.001, Cohen’s d = 1.011; HbO T3: p < 0.001, Cohen’s d = 1.195; HbR T2: p < 
0.01, Cohen’s d = 0.730; HbR T3: p < 0.001, Cohen’s d = 2.180). All effects remained 
statistically significant after Benjamini–Hochberg correction for n = 8 comparisons at an 
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FDR of p < 0.05 (corrected p-values: HbO T2: p < 0.05, HbR T2: p < 0.05, HbO T3: p < 0.001, 
HbR T3: p < 0.01).  

 
Figure 7. Mean area under the curve difference (△AUC) with standard errors after MA correction 
for the different correction methods plus the uncorrected data. △AUCs for HbO and HbR signals 
are shown in red and blue, respectively. The left panel shows results for experimental tasks T2 (small 
head movements) and the right panel for T3 (large head movements). Three stars (***) indicate a 
significance level of p < 0.001, and two stars (**) p < 0.01. Note that HWMH and HWMP corrections 
produce fNIRS signals with the smallest AUC deviation from the ground truth signal. 

Compared to WCBSI, ΔAUC decreased numerically with HWM correction for both 
HbO and HbR in T2 and T3 (see Figure 7). This difference reached significance in the 
uncorrected paired t-tests (all two-tailed paired t-tests with df = 16: HbO T2: p < 0.001, 
Cohen’s d = 1.120; HbO T3: p < 0.001, Cohen’s d = 1.081; HbR T2: p < 0.01, Cohen’s d = 
0.708; HbR T3: p < 0.001, Cohen’s d = 0.964), After Benjamini–Hochberg correction for n = 
8 comparisons at an FDR of p < 0.05, all effects remained significant (corrected p-values: 
HbO T2: p < 0.05; HbO T3: p < 0.05; HbR T3: p < 0.05; HbR T2: p < 0.05). 

In sum, similar to SNR, the HWM produced for ΔAUC the best MA correction results 
over the range of head movements investigated (T2 ΔAUC: 5.2 × 10−5 for HbO and 3.5 × 
10−5 for HbR; T3 ΔAUC: 3.7 × 10−5 for HbO and 4.6 × 10−5 for HbR).  

The Root Mean Square Error (RMSE) quantifies the unscaled averaged absolute 
discrepancy between the ground truth signal and the MA correction signals. Lower RMSE 
scores signify more effective MA correction. Figure 8 depicts the RMSE measures of MA 
correction success in the experimental conditions T2 and T3. There are only minor RMSE 
differences between HWMP and HWMH (all two-tailed paired t-tests with df = 16: HbO 
T2: p > 0.05, Cohen’s d = 0.361; HbO T3: p > 0.05, Cohen’s d = 0.267; HbR T2: p > 0.05, 
Cohen’s d = 0.538; HbR T3: p > 0.05, Cohen’s d = 0.423). Therefore, we calculated the 
following analysis using the average HWM-correction RMSE score. 

Compared to uncorrected signals, the RMSE decreased for both HbO and HbR in T2 
and T3 (all two-tailed paired t-tests with df = 16: HbO T2: p < 0.05, Cohen’s d = 0.494; HbO 
T3: p < 0.05, Cohen’s d = 0.624; HbR T2: p < 0.05, Cohen’s d = 0.611; HbR T3: p < 0.01, 
Cohen’s d = 0.903). Most of the tests remained significant after Benjamini–Hochberg 
correction for n = 8 comparisons at an FDR of p < 0.05; the comparison measures were 
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significant (corrected p-values: T2; HbO T2: p < 0.05, HbR T2: p < 0.05, and HbR T3: p < 
0.01). Only the comparison of the HbO RMSE scores for the large head movements (T3) 
did not pass correction (HbO T3: p > 0.05). We consider the HWM-correction effect to be 
statistically marginal but note that the mean numerical RMSE was smaller for all HWM-
corrected than for uncorrected signals (see Figure 8).  

 
Figure 8. Mean RMSE with standard errors after MA correction for the different correction methods 
plus the uncorrected data. RMSEs for HbO and HbR signals are shown in red and blue, respectively. 
The left panel shows results for experimental tasks T2 (small head movements) and the right panel 
for T3 (large head movements). HWMH and HWMP corrections produce fNIRS signals, with the 
smallest RMSE from the ground truth signal. Two stars (**) indicate p < 0.01, and one star (*) p < 0.05. 

Compared to WCBSI, the RMSE decreased numerically with the HWM correction for 
both HbO and HbR in T2 and T3 (see Figure 8). This difference reached significance in the 
uncorrected paired t-tests only in condition T2, the smaller head movement (all two-tailed 
paired t-tests with df = 16: HbO T2: p < 0.05, Cohen’s d = 0.593; HbO T3: p > 0.05, Cohen’s 
d = 0.421; HbR T2: p < 0.01, Cohen’s d = 0.870; HbR T3: p > 0.05, Cohen’s d = 0.470). The 
same pattern emerges after Benjamini–Hochberg correction for n = 8 comparisons at an 
FDR of p < 0.05: only the differences for T2 remained significant (corrected p-values: HbO 
T2: p < 0.05; HbO T3: p > 0.05; HbR T2: p < 0.01; HbR T3: p > 0.05). 

In sum, we obtained consistently the best numerical RMSE scores with the HWM 
correction. However, the differences between the uncorrected and WBCSI-corrected 
RMSEs tended to be marginal in the larger-head-movement condition T3 and did not 
survive correction for multiple comparisons.  

Pearson’s correlation coefficient (R) captures the relative shape similarity between the 
ground truth signal and the MA-corrected signals. R is a normalized value, where a value 
of one indicates that the shapes of the two curves are perfect reproductions of each other, 
and zero indicates that they are unrelated. Note that R is insensitive to scaling differences. 
Figure 9 shows the correlation coefficients for the different correction approaches for HbO 
and HbR separately. The highest correlations are obtained with the proposed HWMH and 
HWMP approaches. Again, the correlation coefficients obtained with HWMP and HWMH 
are very similar and do not differ significantly (all two-tailed paired t-tests with df = 16: 
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HbO T2: p > 0.05, Cohen’s d = 0.113; HbO T3: p > 0.05, Cohen’s d = 0.402; HbR T2: p > 0.05, 
Cohen’s d = 0.085; HbR T3: p > 0.05, Cohen’s d = 0.329). Therefore, we calculated the 
following analysis with the averaged HWM Pearson correlation coefficient in the 
following analysis.  

 
Figure 9. Mean Pearson correlation coefficient with standard errors after MA correction for the 
different correction methods plus the uncorrected data. Rs for HbO and HbR signals are shown in 
red and blue, respectively. The left panel shows results for experimental tasks T2 (small head 
movements) and the right panel for T3 (large head movements). Three stars (***) indicate a 
significance level of p < 0.001. Note that HWMH, HWMP, and WCBSI produce MA-corrected fNIRS 
signals with the highest correlation with the ground truth signal. 

Compared to uncorrected signals, R increased significantly for both HbO and HbR 
in T2 and T3 (all two-tailed paired t-tests with df = 16: HbO T2: p < 0.001, Cohen’s d = 1.498; 
HbO T3: p < 0.001, Cohen’s d = 0.941; HbR T2: p < 0.001, Cohen’s d = 1.329; HbR T3: p < 
0.001, Cohen’s d = 1.696). Also, after Benjamini–Hochberg correction for n = 8 comparisons 
at an FDR of p < 0.05, all comparisons remained significant (corrected p-values: HbO T2: p 
< 0.001; HbO T3: p < 0.01; HbR T2: p < 0.001; HbR T3: p < 0.001). 

HWM correction achieves similarly accurate shape reconstructions to WCBSI (see 
Figure 9). The mean R overall conditions are for HWM 0.86 (STD = 0.03) and for WCBSI 
0.86 (STD = 0.02). Consequently, there were no significant differences between any 
conditions (all two-tailed paired t-tests with df = 16: HbO T2: p > 0.05, Cohen’s d = 0.226; 
HbO T3: p > 0.05, Cohen’s d = 0.190; HbR T2: p > 0.05, Cohen’s d = 0.054; HbR T3: p > 0.05, 
Cohen’s d = 0.271). Also, after Benjamini–Hochberg correction for n = 8 comparisons at an 
FDR of p < 0.05, no comparison was significant (corrected p-values: HbO T2: p > 0.05; HbO 
T3: p > 0.05; HbR T2: p > 0.05; HbR T3: p > 0.05). In addition, Pearson correlations were 
remarkably similar across head movement levels (T2 HbO: R = 0.89 vs. T3 HbO R = 0.86 
and T2 HbR: R = 0.87 vs. T3 HbR R = 0.81).  

Given the observation that RMSE values were somewhat lower for the HWM than 
for WCBSI, and the fact that RMSE is sensitive to scaling and shape whereas Pearson 
correlation is only sensitive to shape, this suggests that the difference between WCBSI and 
HWM may be found mostly in scaling differences, at least at the smaller-head-movement 
levels in T2. Importantly, reliable response-amplitude estimates are key in many analysis 
approaches that operate on MA-corrected data. 
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3.3. IMU Data Analysis 
3.3.1. Head Orientation Analysis across Experimental Tasks 

In this section, we analyze the head motion characteristics in the three experimental 
conditions. Figure 10 shows the mean pitch (θ), roll (ψ), and yaw (φ) head rotations for 
the three tasks, derived from the accelerometer data of the head-IMU. As instructed, head 
orientation remained stable during the T1 task, from which we derived the ground truth 
fNIRS responses. T2 and T3 show considerable head rotations, and those increased from 
T2 to T3 (T2: θ∼10°, ψ∼7°, and φ∼4°, T3: θ∼12°, ψ∼8°, and φ∼7°). 

 
Figure 10. Mean head rotation angles in the three experimental conditions: pitch (θ, blue) is the 
rotation angle around the x-axis, roll (ψ, red) is the rotation angle around the y-axis, and yaw (φ, 
grey) is the rotation angle around the z-axis. Error bars indicate the standard error of the mean. 

3.3.2. Canonical Correlation Analysis (CCA) of the Head- and Probe-IMU Motion Signals 
We originally assumed that the head-IMU and the probe-IMU might measure at least 

partly independent motion signals, as only the probe-IMU could measure the probe in 
addition to the head movements. In practice, it turned out that both IMUs combined with 
the HWM provide indistinguishable motion correction performance. This suggests that 
the simpler head mount was sufficient for the HWM correction in our recording setup. 
However, an equal level of MA correction does not necessarily mean that the two IMUs 
measured comparable motion acceleration signals, as the HWM may adapt to different 
inputs. Here, we wanted to see if the actual movement signals measured were comparable 
between the two IMU positions. As the IMUs are attached with different orientations, their 
sensor channels are not directly comparable. To align them, we used CCA, which finds a 
common space in which linear combinations of the original sensor channels (the CC 
factors) are maximally correlated. If both IMUs measured comparable motion signals, 
CCA should find a transformation for each sensor such that the CCA time series of the 
head- and probe-IMUs are highly correlated. Figure 11 depicts the mean CCA correlations 
for the two sensors. The three CCA channels for the accelerometers indicate a very high 
correlation, indicating that the IMU accelerometers measure virtually identical signals. 
For the gyroscopes, one CCA channel has a very high correlation and the second a 
somewhat lower one. The fact that the correlation in the third CCA channel is low is likely 
due to the nature of the head movements, which rotate around only two axes. Therefore, 
CCA can only find two correlated rotation axes. In sum, this analysis implies that head- 
and probe-IMUs measured very similar signals in our fNIRS measurement setup. 
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Figure 11. The correlation coefficients of the first three CCA variables are denoted by the colors blue, 
red, and grey, respectively, for the accelerometer and gyroscope measurements. These coefficients 
represent the relationships between the head-IMU and probe-IMU in three degrees of freedom. 

4. Discussion  
The main goal of this study was to develop and test a novel application of the linear–

nonlinear Hammerstein–Wiener model for optimizing the MA correction of fNIRS 
measurements in a realistic experiment and to compare this approach with the most 
popular MA correction techniques. Notably, our approach provides the best, or at least 
on par with the “best in class”, MA correction, WCBSI, of the other investigated methods 
in several MA correction quality metrics, for both hemoglobin signals (HbO/HbR) and 
among a range of movement levels (small and large movement tasks). For both 
hemoglobin signals and movement tasks, the HWM correction method produces the best 
SNR of the MA corrected signals among all MA correction methods investigated. The 
HWM-corrected fNIRS also had the lowest values for differences in AUC and RMSE, 
indicating that it best recovers the shape and amplitude of the ground truth signal. This 
exceptional performance, reflected by the lowest value of (△AUC) among all other 
techniques, underscores its pronounced capability to effectively mitigate the high-
amplitude spikes and high up–down-baseline shifts by successfully resetting the signal’s 
baseline offset. The lowest RMSE values for HWM-corrected fNIRS indicate minimal 
errors between the ground truth signal and MA-corrected signals compared to the other 
tested algorithms. Additionally, the HWM correction significantly improves the Pearson 
correlation between the MA corrected signal and the empirically measured ground truth 
signal compared to the uncorrected signal. Interestingly, the WCBSI method, which we 
previously developed [17], is on par with the HWM correction regarding the Pearson 
correlation. This suggests that WCBSI recovers the shape of the fNIRS signal with 
comparable quality to the HWM. However, the lower performance of WCBSI in the other 
quality measures indicates that it does not recover the amplitude of the signal as well as 
the HWM. Finally, visual inspection indicates optimal correction of segments with very 
low-amplitude and slow MAs by HWM, a task beyond the capability of other techniques. 

There are two important differences between the HWM MA correction method 
developed here and the other popular approaches we tested. First, the HWM method uses 
IMU-based measurements of the head movements and integrates them into the MA 
correction process. This is different from the other MA correction approaches, which do 
not use movement information but try to correct MAs based on statistical signal features, 
employing signal processing techniques, or making assumptions about the relation 
between HbO and HbR signals. When these assumptions are violated, these techniques 
may fail to various degrees. Second, HWM correction is a nonlinear technique, while most 
other techniques are linear. The superior performance of the nonlinear HWM correction 
method indicates that the linearity of the MA is a strong assumption that is likely violated 
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in practice. Different types of movement artifacts may not only have different dynamics, 
but also different amplitude scaling behavior, which is not possible to capture with linear 
methods. This may be the reason why the linear methods are good at correcting some 
types of MA but not others, as indicated by the examples in Figure 5.  

The HWM method was insensitive to differences in the placement of the IMUs used 
for correction in our fNIRS measurement setup, in which we used a standard cap with 
optode holders. This suggests that IMU placement can be solved in a relatively simple 
way by attaching it to the optode holder cap. An open question is whether the use and 
integration of multiple IMUs can further improve the HWM correction. In principle, the 
approach can handle inputs from multiple IMUs. However, the CCA analysis indicates 
that multiple IMUs may provide redundant information. In this case, no further 
improvement can be expected. 

The advantage of the HWM method lies in its ability to estimate the MA based on 
IMU data by using the linear–nonlinear Hammerstein–Wiener model’s integration of the 
participants’ head movement data and the fNIRS data. This allows for precise 
quantification and removal across a wide range of movement levels. Another advantage 
of the HWM method is that it is a fully automated correction technique that does not 
require user-defined parameter entry for each movement level. Other MA correction 
methods rely on the manual selection of appropriate threshold parameters that must be 
adjusted based on the level of MA contamination before MA correction. Importantly, 
opposed to the “best in class” WCBSI, the HWM method corrects the HbR signal 
independently of the HbO signal. This way, it provides independent HbR and HbO 
estimates. Conversely, (W)CBSI combines the HbR and HbO signals in one synthetic 
signal that can be expressed as HbO or as HbR, but both synthetic signals are fully linearly 
dependent. Another important advantage is that the HWM method performs comparably 
over the movement levels employed here. This robustness against MA-level variations is 
consistent with [18,42].  

A limitation of this study is that all processing was conducted offline. Although most 
fNIRS studies implement offline analyses in some use cases, online MA correction may be 
desirable. However, processing time may become an issue with larger sensor arrays 
because the HWM correction method is a channel-by-channel processing technique, and 
processing time scales approximately linearly with the number of fNIRS channels. Table 
S1 (Supplementary Materials) shows that the processing time for a single fNIRS channel 
consisting of HbO and HbR signals amounts to approximately 30 s for 40 min of data. This 
is comparable to most other techniques (16–690 s). However, for whole-head recordings 
with more than 100 fNIRS channels, the processing time may become considerable. 
Notably, the HWM correction was faster than that of wavelet, WCBSI, and RLOESS, which 
took 62, 65, and 690 s, respectively. However, future investigations should test the 
capability to perform online corrections. Another limitation of our study pertains to the 
performance of HWM correction in real-world recordings where head movements, e.g., 
during walking, may be even stronger or MAs have different dynamics. This requires 
further investigations into new datasets recorded under diverse conditions. However, the 
observation that the HWM can correct MAs caused by different levels of head movements 
and a range of different types of MAs without a loss in accuracy opens the possibility that 
it could also produce favorable results in less controlled fNIRS recording settings. Finally, 
the HWM correction requires additional head movement recordings, for example, from 
an IMU. These can be obtained with a commercial movement-tracking system or, as was 
done in this study, with a relatively cheap custom-made system. The MPU6050 three-axis 
accelerometer and gyroscope IMU used here are relatively cheap consumer-grade devices 
that were read at the low sampling rate of the fNIRS device with a cheap standard 
Arduino Uno microcontroller board. The code for the Arduino board is provided in the 
Supplementary Materials. With that, it should be possible to reproduce our head motion 
measurement setup with minimal soldering skills.  
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5. Conclusions 
In the current study, we developed and tested a novel application of the nonlinear 

Hammerstein–Wiener model for combining the IMU-based head movement recordings 
with fNIRS recordings for the correction of fNIRS motion artifacts. According to four 
commonly used quality metrics (SNR, △AUC, RMSE, and R), the IMU-based HWM 
approach significantly improves MA removal compared to several popular MA correction 
techniques. Furthermore, we found that the placement of the IMU sensor on the 
participant’s head or on the top of the fNIRS probe did not significantly affect the 
performance of the HWM approach. Based on our results, we conclude that combining 
HWM with IMU-based motion data is the most favorable approach to improve the quality 
and reliability of the MA correction of fNIRS signals. 

Supplementary Materials: The following supporting information can be downloaded at 
https://www.mdpi.com/article/10.3390/s24103173/s1, Arduino codes; Table S1: The processing time 
for each tested technique; and Table S2: The participant’s age, gender, and hair colour. 
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ABAMAR Accelerometer-based motion artifact removal 
ARX Exogenous auto-regressive model  
AUC Area under the curve 
BPF Bandpass filter 
CBSI Correlation-based signal improvement 
CCA Canonical correlation analysis 
DPF Differential pathlength factor  
FDR False discovery rate 
fNIRS Functional near-infrared spectroscopy 
HbO Oxyhemoglobin  
HbR Deoxyhemoglobin  
HRF Hemodynamic response function  
HWM Hammerstein–Wiener model 
HWMH Hammerstein–Wiener model of the head sensor 
HWMP Hammerstein–Wiener model of the probe sensor 
Hz Hertz  
IMU Inertial measurement unit  
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IRB Institutional Review Board  
LCD Liquid-crystal display 
MA Motion artifact 
NIR Near infrared  
nm nanometers 
OD Optical density 
PCA Principal component analyses 
R Pearson correlation coefficient 
RLOESS Robust locally estimated scatterplot smoothing 
RMSE Root Mean Square Error 
SG Savitzky–Golay 
SI Spline interpolation 
SNR Signal-to-noise ratio 
tPCA Targeted principal component analysis 
WC Wavelet correction 
WCBSI Wavelet with correlation-based signal improvement 
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