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Abstract: In today’s world, a significant amount of global energy is used in buildings. Unfortunately,
a lot of this energy is wasted, because electrical appliances are not used properly or efficiently.
One way to reduce this waste is by detecting, learning, and predicting when people are present in
buildings. To do this, buildings need to become “smart” and “cognitive” and use modern technologies
to sense when and how people are occupying the buildings. By leveraging this information, buildings
can make smart decisions based on recently developed methods. In this paper, we provide a
comprehensive overview of recent advancements in Internet of Things (IoT) technologies that have
been designed and used for the monitoring of indoor environmental conditions within buildings.
Using these technologies is crucial to gathering data about the indoor environment and determining
the number and presence of occupants. Furthermore, this paper critically examines both the strengths
and limitations of each technology in predicting occupant behavior. In addition, it explores different
methods for processing these data and making future occupancy predictions. Moreover, we highlight
some challenges, such as determining the optimal number and location of sensors and radars, and
provide a detailed explanation and insights into these challenges. Furthermore, the paper explores
possible future directions, including the security of occupants’ data and the promotion of energy-
efficient practices such as localizing occupants and monitoring their activities within a building.
With respect to other survey works on similar topics, our work aims to both cover recent sensory
approaches and review methods used in the literature for estimating occupancy.

Keywords: internet of things; occupancy detection; estimation and prediction; artificial intelligence;
machine learning; smart buildings; cognitive buildings

1. Introduction

The significance of energy efficiency in buildings has become critical in addressing
the challenge of climate change and reducing carbon emissions. Buildings are accountable
for a substantial portion of global energy consumption and carbon emissions, equating to
almost 40% of total energy usage and 36% of total carbon dioxide emissions [1]. Therefore,
enhancing the energy efficiency of buildings has become a crucial priority for policymakers,
building owners, and operators.

The importance of energy efficiency in buildings can be observed from various per-
spectives [2,3]. Energy-efficient buildings can diminish energy usage and lower energy
bills, which can result in cost savings. Building owners and operators can increase their
profitability by reducing energy waste and optimizing building systems. This is espe-
cially critical for building owners seeking to attract and retain tenants, as energy-efficient
buildings that also improve the usage of building systems provide lower operating costs
and more comfortable indoor environments. Energy-efficient buildings can help reduce
greenhouse gas emissions and mitigate the effects of climate change. The building sector
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accounts for a significant amount of carbon emissions, and reducing energy consumption in
buildings can help decrease the sector’s impact on the environment. This can be achieved
through various measures such as, among others, better insulation; optimized heating,
ventilation, and air conditioning (HVAC) systems; and installation of renewable energy
systems. Energy-efficient buildings can create a more sustainable and resilient built envi-
ronment. Energy-efficient buildings, with the smartness they must demonstrate, can help
generate more comfortable and healthy indoor environments for occupants by decreasing
energy waste and improving building performance. This is especially important in global
health crises, such as the COVID-19 pandemic, as energy-efficient buildings can help ensure
better indoor air quality and minimize the risk of infectious disease transmission. Energy
efficiency in buildings can help create green jobs and support the development of a low-
carbon economy. By investing in energy-efficient buildings, building owners and operators
can create new job opportunities and contribute to the growth of the green economy. This
is especially significant for governments and policymakers, who aim to generate new jobs
and promote economic growth while reducing carbon emissions.

Energy efficiency can be achieved in buildings thanks to the Internet of Things (IoT) [4]
technologies that have been spreading so much in the last few years. Such technologies
enable the creation of so-called smart buildings (SBs) [5] and cognitive buildings [6], which
are buildings augmented with sensing/actuating, elaboration, and cognitive capabilities.
Among the operations that SBs can perform to greatly assist in reducing energy con-
sumption in buildings, occupancy prediction plays an important role [7,8]. By predicting
occupancy, building managers/owners can more effectively manage building systems and
reduce energy waste by accurately forecasting whether the building (or a specific room) is
occupied and also how many people are occupying a precise area [9]. For instance, with
few occupants, building systems like lighting and HVAC can be adjusted or switched off in
some parts of the building to save energy. This decreases energy consumption and prolongs
the lifespan of building systems and equipment. Moreover, occupancy prediction can
optimize the utilization of building systems. By automatically adapting building systems
according to the number of occupants, energy consumption can be lowered without affect-
ing comfort levels. For instance, an HVAC system can be calibrated to maintain a pleasant
temperature depending on how many people are in the room rather than sustaining a
constant temperature. Additionally, occupancy prediction can identify underutilized areas
of a building, enabling building operators to optimize space usage and diminish energy
consumption. For example, if a particular area of a building is frequently unoccupied,
building operators may choose to repurpose that space or decrease the energy consumption
of that area. Occupancy prediction can provide valuable information on building usage
and assist building operators in making informed decisions about building systems and
energy consumption, resulting in substantial reductions in energy waste and expenses.

A wide range of monitoring methods belonging to the IoT, including cameras, sensors,
radars, and wearable technology, have been employed in research to monitor room envi-
ronments, each offering unique capabilities for data collection and monitoring [10]. Once
data have been collected from these monitoring techniques, various methods are applied
to predict building occupancy. These methods process the collected data and generate
occupancy predictions by considering the complex interplay of factors within the build-
ing environment. By employing these sophisticated techniques, building managers can
optimize energy efficiency, resource allocation, and space utilization based on anticipated
occupancy patterns.

Although considerable research has been conducted on occupancy prediction in build-
ings, in our understanding, there are still gaps in this area that need to be addressed. These
gaps may include identifying and resolving limitations or drawbacks of existing methods
and exploring the potential benefits of new or emerging technologies for improving accu-
racy or reducing costs. Furthermore, most of the research has been focused on specific types
of buildings or environments, highlighting the need for additional research to evaluate the
effectiveness of occupancy prediction methods in a broader range of settings. In addition,
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there may be opportunities to integrate occupancy prediction with other building automa-
tion and control systems, to optimize energy use, comfort, and safety. Therefore, there is
still much work to be done in this field, and ongoing research is necessary to advance our
knowledge and capabilities in predicting building occupancy.

The aim of this paper is, firstly, to provide an in-depth overview of the recently devel-
oped environmental monitoring technologies for indoor environments within buildings
that have been ignored in prior literature. Secondly, this paper has the purpose of exploring
the various approaches that can be used to extract valuable information for occupancy
prediction from these monitoring techniques. Thirdly, it aims to describe some challenges
and future directions in the field of occupancy prediction in indoor environments.

The conceptual framework of this review paper is depicted in Figure 1. It comprises
several principal axes: (i) the recent data collection technologies involved in monitoring
the environment that can sense the presence of occupants or their number; (ii) the most
commonly used methods to process these data, namely analytical, machine learning (ML),
deep learning (DL), and other methods; (iii) possible challenges that can be found; and
(iv) future directions that may emerge.

Figure 1. Overview of our study.

Figure 2 presents a flowchart that illustrates a typical occupancy prediction process.
It begins with data collection methods and progresses to data preprocessing to prepare
the data for algorithm implementation. After preprocessing the data, the next stage is
to implement different algorithms, and finally, the performance measurement of these
algorithms becomes possible to calculate.

• Sensors
• Radars     
• Cameras 
• Smart meters

Data Collection

• Data 
normalization

• Missing data     
• Data format 

changes for 
specific 
algorithms 

Data Preparation

• Analytical 
• Machine 

Learning     
• Deep Learning
• Other methods

Algorithm Implementation

• Accuracy
• MSE     
• F1 Score

Performance Evaluation

Figure 2. Overall flowchart of the occupancy prediction process.

The rest of the paper is structured as follows. Section 2 makes a comparison of previous
review papers on occupancy detection, estimation, and prediction. Section 3 illustrates
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the strategy we followed when for searching the work reviewed in this paper. Section 4
gives a comprehensive overview of the various technologies employed for data collection.
Section 5 briefly delves into data analysis techniques. An in-depth exploration of challenges
and future research directions is presented in Section 6. Finally, Section 7 summarizes the
conclusions of the work.

2. Previous Review Papers

In sustainable SB design, focusing on reducing energy consumption through under-
standing occupant behavior, particularly occupancy prediction, has gained prominence.
This burgeoning interest is reflected in recent scholarly reviews that underscore the pivotal
role of diverse sensor and smart object technologies. Furthermore, these reviews illuminate
the critical importance of innovative methodologies, integrating artificial intelligence and
analytical strategies to advance the field of energy-efficient building management. Table 1
provides a detailed enumeration of recent review papers that used these smart technologies
and methodologies, illustrating their respective roles and functions in the study.

In a recent study, a comprehensive literature review explored the state-of-the-art of
people counting and detection in large non-residential buildings [11]. The study critically
analyzed various occupancy monitoring methods, outlining their advantages and limi-
tations and making comparisons. However, the study did not extensively explore the
significance of recent ultra-wide band (UWB) radar-based occupancy prediction or thor-
oughly examine ML and DL techniques that play an important role in predicting occupancy
in energy-efficient SB environments.

Similarly, another review paper analyzed ventilation conditions and airborne particu-
late levels in offices by analyzing CO2 concentrations for predicting occupancy [12]. While
acknowledging the significance of carbon dioxide levels in urban office spaces, the review
consistently ignored the importance of recent technology development. It did not provide
in-depth information on sensor fusion approaches for building occupancy prediction.

Furthermore, another review paper analyzed six monitoring methods, including
different sensors and cameras, to guide selecting appropriate monitoring methods in
energy-efficient building environments [13]. The review summarized and discussed the
advantages of deterministic schedules, stochastic schedules, and machine-learning methods
for improving occupancy prediction accuracy. However, it had limitations, as it did not
consider the importance of DL in occupancy estimation and overlooked the significance of
edge-based techniques.

Additionally, another review paper provided an overview of various techniques
used to predict building occupancy information [14]. The study classified the analyzed
studies into three categories: analytical, data-driven, and knowledge-based methods. While
extensively covering different sensors and methods for estimating room occupancy, the
review failed to address privacy concerns associated with the data.

Other authors conducted a qualitative review of occupancy prediction and detection,
comparing and summarizing various solutions based on criteria like performance, cost,
and limitations [10]. However, the study did not explore the importance of DL and edge
computing techniques for detecting and estimating room occupancy. Furthermore, it did
not explain the concept of UWB and other wearable technologies that are highly effective
in occupancy estimation and detection in energy-efficient building environments.

The paper in [15] effectively highlighted the role of IoT technology and hybrid ML
algorithms in enhancing the accuracy of building occupancy predictions, which is crucial
for energy optimization and sustainability. However, it could have benefited from a deeper
analysis of the practical challenges and limitations associated with deploying IoT in real-
world settings. While comprehensive, exploring data collection methods and predictive
algorithms would be enriched by including case studies or real-world applications to
demonstrate the practical impact of these advancements.

The review paper in [16] critically examined the shift towards occupant-centric control-
based prediction in buildings, highlighting the gap between research advancements and
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their practical application. It aimed to analyze these controls’ strengths, implementation
requirements, and future research directions. While identifying key barriers like computa-
tional complexity and data challenges, the study would have benefited from suggesting
specific solutions to enhance the real-world adoption of such technologies.

The article in [3] highlighted the significance of occupancy forecasting in buildings to
enhance energy efficiency and occupant comfort. The study explored IoT-based monitoring
methods for detecting user presence, examining DL and ML algorithms for building
occupancy prediction. It aimed to provide a comprehensive overview of current research
and future directions in occupancy forecasting, underscoring its potential to save energy,
improve security, and ensure safety in building environments. Although the work is
effective, the number of articles included in the review is limited.

Despite these limitations, several other reviews have also conducted surveys related to
occupancy prediction to maximize energy efficiency, increase comfort levels, and optimize
resource use [17–21]. However, these reviews also have deficiencies, such as insufficient
detail on censoring techniques, inadequate coverage of recent sensor approaches, and a
need for improvement in portraying conventional methods for estimating and detecting
room occupancy.

Considering the limitations highlighted above, this paper aimed to investigate various
up-to-date sensing techniques; their data collection methods, advantages, and limitations;
and when to employ them for data collection to achieve energy-efficient building envi-
ronments. Moreover, after collecting data from sensors, selecting a suitable approach for
detecting and predicting occupancy can also be challenging, due to various factors such as
the type of data collected, the required accuracy level, the available computing resources,
and the desired outcome. Considering this, the current review delves into various contem-
porary methods for predicting occupancy, including deterministic and stochastic schedules,
ML, and DL algorithms. Furthermore, we elucidate the benefits and drawbacks of these
approaches. The decision about which technique to use should be based on assessing the
gathered data and each method’s unique advantages. Moreover, this review also investi-
gates challenges and possible research directions for future studies aiming to enhance the
energy efficiency of SBs through the use of occupancy predictions.
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Table 1. Summary of the recent literature review papers.

References

Monitoring Techniques
Mathematical

Occupancy Models
ML

Occupancy Models
DL

Occupancy Models
Transfer
Learning

Federated
Learning

Challenges
UWB

Technology
Mobility
Sensors

Non-Mobility
Sensors

Cameras Electric
Meters

Deterministic Schedule
Method

Stochastic Schedule
Method

SVM
Regression

Method
KNN CNN RNN LSTM

[11], 2021 ✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓

[12], 2022 ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓

[13], 2021 ✕ ✓ ✓ ✓ ✕ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✓

[14], 2020 ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✓

[10], 2018 ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✓

[17], 2021 ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✓

[18], 2020 ✕ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✓

[19], 2022 ✕ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✓

[20], 2022 ✕ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✓ ✕ ✓

[21], 2022 ✕ ✕ ✕ ✕ ✓ ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕

[3], 2023 ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[22], 2023 ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✓

[15], 2024 ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✓

[16], 2024 ✕ ✓ ✓ ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✓ ✓ ✓
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3. Search Strategy

In order to find the works for our survey paper, we investigated the following digi-
tal libraries: Google Scholar, Scopus, ScienceDirect, Elsevier, IEEE Xplorer, and Springer
databases. Our search focused on topics related to occupancy detection, occupancy predic-
tion, occupancy estimation, and energy-efficient buildings. Based on our search strategy, we
chose the following keywords: “occupancy detection”, “occupancy prediction”, “occupancy
forecasting”, and “Smart Buildings”. Our most recent search for articles was conducted in
March 2024. Here are the inclusion criteria that we used to select the publications.

• We included articles and book chapters published in English from 2004 to 2024.

Then, we also identified two exclusion criteria that were used to eliminate publications
not relevant to this work.

• we excluded articles that were based solely on the personal opinions of individ-
ual experts;

• we excluded conference posters, abstracts, short articles, and unpublished works.

Full-text articles were assessed to meet the following eligibility criteria:

• research articles;
• articles entirely written in English;
• occupancy detection;
• occupancy estimation;
• occupancy prediction;
• occupancy sensing techniques/methods;
• energy-efficient buildings;
• smart buildings.

We initially looked for articles in the libraries mentioned before based on the identified
keywords, and, after applying the search strategy and the eligibility criteria above, we
identified and included 97 relevant and valuable articles for this review paper.

4. Data Collection Methods

This section comprehensively explains the latest technologies applicable to occupancy
prediction in SBs, encompassing UWB radar technology, mobility sensors, non-mobility
sensors, sensor combinations, cameras, and smart meters. Furthermore, each subsection of
these technologies includes an in-depth examination of their respective advantages and
limitations, meticulously presented within dedicated tables for comprehensive analysis.
Figure 3 showcases the set of data collection techniques employed to monitor environmental
conditions for occupancy prediction within buildings.

Data Collection

SensorsRadars Cameras Smart meters

UWB radar technology CO2 sensor, PIR sensor
Bluetooth low energy (BLE),
Light sensor, Wifi,
Sound sensor,
Sensor combination

Camera –
Image acquisition

Electric meter

Figure 3. Set of data collection techniques used for monitoring occupancy environment.
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4.1. UWB Radar Technology

UWB radar is an advanced sensing technology that utilizes short-duration electromag-
netic pulses to detect and measure objects within its range [23]. When applied to occupancy
prediction, UWB radar becomes a valuable tool for estimating and detecting the presence
and movement of occupants in buildings. By emitting UWB pulses and analyzing the
resulting reflected signals or echoes, the radar system can gather information about the
distance, position, and movement of objects, including people. Examples of UWB radar
devices used for occupancy detection, estimation, and prediction are shown in Figure 4. Dif-
ferent data analysis techniques extract relevant data, and occupancy prediction algorithms
are employed to determine the occupants’ presence, location, and quantity. UWB radar
provides high accuracy and robustness, enabling it to detect occupants even in stationary
or partially obstructed conditions. Additionally, UWB radar is non-intrusive and operates
at low power, making it well suited for deployment in various building environments.
Leveraging UWB radar technology in occupancy prediction systems facilitates optimized
building management, enhanced energy efficiency, improved security measures, and a
personalized occupant experience. A summary of the recent literature using this technology
for occupancy prediction is shown in Table 2.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

XeThru X4 radar Arduino UWB radar SLMX4 Novelda radar  

Figure 4. Some example devices of UWB radar used for occupancy detection, estimation, and prediction.

UWB technology has gained significant attention in predicting occupancy in SBs [24].
The authors of [25] explored the possibility of using cost-effective and dependable tech-
nologies for estimating and predicting the number of people in SBs. The research analyzed
human body presence patterns through WiFi, UWB, and light signals. It put forth an
effective and straightforward approach for utilizing these patterns to count people as
they enter through a doorway. This technique can count up to four individuals walking
through the door simultaneously, even in densely populated environments. Similarly, in
another study [23], the authors presented a technique for counting individuals who pass
through a doorway, which involves utilizing impulse radio ultra-wide band (IR-UWB)
radars. The proposed system consists of two IR-UWB radars positioned horizontally apart
to create a delay effect when an individual walks by. This effect enables the system to detect
the direction of movement and subsequently determine the number of individuals in a
room. The system’s accuracy was verified by conducting several tests, which demonstrated
an accuracy rate of approximately 90%, thereby confirming the system’s effectiveness.
Additionally, another study [26] presented a method for detecting and predicting room
occupancy using UWB radar based on principal component analysis (PCA). The proposed
solution was tested with up to two individuals within the radar’s detection range. The
algorithm was able to determine room occupancy with a 100% accuracy rate. Lastly, the
research paper in [27] examined the potential of UWB Doppler radars for detecting occu-
pants along with recognizing activities of daily living (ADLs) in smart homes. The study
discovered that with a basic setup and conventional feature engineering, a small group of
UWB radars could accurately identify ADLs in a practical home environment. The random
forest algorithm achieved an accuracy of 80% with an F1-Score of 79% and a Kappa of 77%.
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These findings demonstrate that radars have promising potential as a research area for
smart home applications.

UWB radar technology allows for precise and accurate occupancy predictions within
buildings. This technology has the capability to accurately identify and monitor individuals,
especially in intricate indoor settings where conventional sensors may encounter difficulties
due to barriers or disruptions. UWB radar systems have the ability to accurately record
intricate movement patterns and distinguish between numerous sorts of movements,
including walking, sitting, and standing [27]. The high level of precision achieved allows
for efficient utilization of building spaces, promotes energy economy by optimizing heating
and cooling systems according to occupancy, and enhances overall building management
and security. However, the higher cost of UWB radar technology compared to other
sensing technologies limits its use for occupancy prediction in buildings. Deploying UWB
radar systems across a building involves substantial expenditure on hardware, installation,
and maintenance. In certain locations with dense barriers or reflective surfaces, UWB
radar systems may encounter difficulties in reliably detecting inhabitants due to signal
reflections and interference. In addition, the extensive tracking capabilities of UWB radar
technology may give rise to privacy problems, necessitating a thorough evaluation of
privacy precautions and adherence to rules, such as data protection laws.

Table 2. Summary of the papers in which the UWB radar technology was used.

UWB
radar

technology

References Aim of the Paper Used Methods Advantages Limitations

[23] Counting people N/A
High precision,
non-intrusive,
multi-person

detection, real-time
monitoring, robust
to environmental

factors, low power
consumption, easy

installation,
versatile option for

occupancy

Limited range,
expensive,
complex to
understand,

signals can be
interrupted

[25]
Estimating and

predicting people
in SBs

hierarchical
algorithm

[26]
Detecting and

predicting room
occupancy

PCA based
algorithm

[27] Activity
recognition

KNN, Random
Forest,

Classification and
Regression Tree

4.2. CO2 Sensor

The concentration of carbon dioxide in the air can be measured by a CO2 sensor, which
can also be utilized to detect room occupancy. As people exhale CO2, the concentration of
carbon dioxide in a room increases with the number of individuals present. Consequently,
by analyzing the CO2 levels in the air, a CO2 sensor can be employed to estimate occupants
and their numbers in a building/room. Examples of CO2 sensor devices used for occupancy
detection, estimation, and prediction are shown in Figure 5. A summary of the recent
literature using CO2 sensors is shown in Table 3.

Several papers explored the use of CO2 concentrations to estimate room occupancy
in SBs. In the research paper in [28], the authors explored methods for predicting room
occupancy using a dynamic neural network model that relied on carbon dioxide levels
in a room where the number of occupants varied irregularly. The model was trained
and tested using a time-delay neural network and found to have a high level of accuracy.
Another study [29] developed a systematic approach for managing the HVAC system in a
classroom on a university campus, which relied on monitoring the concentration of CO2 in
the surrounding air. To accurately predict CO2 levels, the researchers evaluated six state-of-
the-art ML algorithms and customized them for this specific purpose. Their multilayered
perceptron network demonstrated superior performance among the tested algorithms, due
to its remarkable capacity for learning nonlinear relationships in the CO2 data. A simple
method for detecting occupant numbers was proposed by Szczurek et al. using statistical
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pattern matching [30]. Their analysis was based on CO2 concentration statistics, such as
a correlation coefficient and autocorrelation function, to determine occupancy levels in a
half-hour window. Using this method, one can estimate mean occupancy levels over a
long period, e.g., half an hour, which is a long time in real-time system control. Explicit
modeling of CO2 concentrations based on occupant numbers is difficult and inaccurate,
due to the complex nature of indoor CO2 concentrations. One can directly model the
relationship between inputs and outputs using data-driven approaches like ML algorithms.
In their study, Zuraimi et al. [31] compared dynamic physical models with ML methods
such as support vector machines (SVMs), prediction error minimizations, and artificial
neural networks (ANN) for estimating building occupancy based on the concentration of
CO2. Experiments in a room with 200 people showed that the ANN and SVM approach
performed best. Rahman and Han, in [32], investigated neural networks and compared
them to a Markov chain Monte Carlo (MCMC) algorithm for estimating occupancy using
CO2 levels. Under certain conditions, both models produced satisfactory results. Based on
data collected from a different room, Ebadat et al. developed a gray-box model to simulate
CO2 dynamics in a new room [33]. The regularized deconvolution model in [34] was
employed to estimate a new room’s occupancy in the building. According to Alam et al.
in [35], ANNs are a useful tool for occupancy estimation using CO2 data. Various occupancy
profiles and airflow schemes were simulated to optimize their occupancy estimation system.
The results of this study can be used as guidelines for estimating occupancy using ANNs
with CO2 concentrations. In the study in [36], the CNN-XGBoost DL method was proposed
to predict occupancy based on indoor climate data, and its performance was compared
with supervised and unsupervised ML algorithms and artificial neural networks.

 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Waspmote Gases PRO Sensor Board  MG 811 gas sensor 

Figure 5. Some example devices of CO2 sensors used for occupancy detection, estimation,
and prediction.

An advantage of utilizing CO2 sensors for occupancy prediction in buildings is that it
not only helps to give information about whether the room or buildings are occupied or not,
but it also gives information about how many people are inside a room [8]. As people live
in enclosed areas, they release CO2 through respiration, causing an increase in atmospheric
CO2 levels. Sensors that measure CO2 levels can detect people’s presence in a room or
building. This technique is especially valuable in environments where conventional motion
detectors may not be feasible or efficient, such as spaces with restricted activity or where
people may stay still for long periods, such as meeting rooms, educational facilities, or
recreational areas. Additionally, CO2 sensors are very affordable and straightforward to
install, which makes them a cost-efficient option for detecting and managing occupancy in
buildings. CO2 sensors used for occupancy prediction in buildings have a drawback, in that
they cannot offer real-time monitoring or that the response to the number of people is very
slow. Furthermore, other factors, such as high ventilation rates or widespread CO2 emis-
sions from sources unrelated to occupancy, may greatly influence CO2 levels, making CO2
sensors inappropriate for certain locations. In addition, CO2 sensors necessitate frequent
calibration and maintenance to guarantee precise measurements, and their efficiency may
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decline over time if not adequately upheld. Therefore, CO2 sensors should be employed
in conjunction with supplementary sensors or technologies to achieve comprehensive
occupancy prediction and management in buildings.

Table 3. Summary of the papers in which CO2 sensors are used.

CO2

sensor

References Aim of the Paper Used Methods Advantages Limitations

[28] Predicting room occupancy dynamic neural network

Not-intrusive, cost

effective, ability to

estimate many occupants,

longer lifespan,

direct relationship with

occupancy, can improve

indoor air quality by

favoring ventilation,

Time delay,

can produce

false positive

if there is

something

else in room

(e.g., pets)

[29] Managing the HVAC system in classroom ML algorithms

[30] Detecting occupants number statistical pattern matching

[31] Estimating building occupancy SVM, ANN

[32] Estimating occupancy MCMC, and neural networks

[33] Multi room occupancy estimating grey box model

[35] Occupancy estimating ANN

[36] Occupancy predicting CNN-XGBoost

4.3. Passive Infrared Sensor

A passive infrared sensor (PIR) is a sensor that can identify human body heat within
its field of view by detecting changes in infrared radiation emitted by objects within its
range. Example PIR sensors used for occupancy detection, estimation, and prediction are
shown in Figure 6. SBs can use PIR sensors to estimate room occupancy [37]. Placing
PIR sensors in different locations within a room or a building allows detecting changes
in the motion of people present or when people enter or leave an area. A central control
system receives sensor data to infer occupancy patterns. To increase accuracy and reduce
false positives, this system can be combined with other types of sensors, such as CO2 or
light sensors.

 
 
 
 
 
 
 
 
 

 
       

            
            
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Heiman motion sensor  PIR motion sensor  

Figure 6. Some example devices of PIR sensors used for occupancy detection, estimation, and prediction.

PIR sensors are gaining popularity for estimating room occupancy in SB environments.
A list of recent papers that used PIR sensors is given in Table 4. An occupancy detection
system using PIR sensors was proposed by Dodier et al. in [38]. They deployed three
PIR sensors in their system to detect occupant presence. After that, Bayesian probability
theory was applied to determine whether a zone has any occupants. Duarte et al. used PIR
sensors to monitor long-term changes in occupancy levels between different rooms [39].
As a result, the authors analyzed the occupancy patterns detected by the detector and
compared them with standard occupancy diversities as specified in [40]. This resulted in
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significant differences between the real occupancy patterns and the standard occupancy
diversities commonly used in energy simulation tools. In the article in [41], Liu et al.
presented a sensor-based occupancy detection system. Occupancy was detected using a
hidden Markov model (HMM) with expectation maximization.

Various studies have used PIR sensor activity directly as evidence of occupant presence
in building occupancy models [42,43]. In one study, Wahl et al. developed a PIR-based
occupancy counting system that tracks the movement directions of occupants [44]. To
estimate occupancy with the movement directions of occupants, two simple methods based
on directions and a probabilistic method based on distance were proposed. Using a PIR
sensor, researchers estimated the number of people in a room [45]. In a first step, they
used an infinite HMM model to extract the motion patterns of occupants from raw sensory
data. Statistical regression models were used to estimate occupancy based on the extracted
patterns. The authors of the study in [46] proposed a new method that utilizes a single PIR
sensor for detecting human presence, which yielded promising results. The study suggests
this approach could be used to monitor and track at-risk patients in indoor settings.

Table 4. Summary of the papers in which PIR sensors were used.

PIR

sensor

References Aim of the Paper Used Methods Advantages Limitations

[38] Occupancy detection Bayesian probability theory

Not-intrusive, low

cost, high accuracy,

real time occupancy

detection, can be

easily installed

Lack of

identification,

not suitable for

static object,

limited coverage

area

[39] Monitor long term changes in occupancy Stochastic model

[41] Occupancy detection HMM

[44] Tracks occupants’ movement directions probabilistic method

[45] Estimate number of people
HMM and Statistical

regression models

[37] Estimate room occupancy regression controller

An important advantage of PIR sensors is their capacity to identify the presence of
humans by analyzing body heat and movement [46]. Warm objects, like humans, emit
variations in infrared radiation that PIR sensors detect as they move within their detection
range. PIR sensors are very efficient in detecting occupancy in indoor areas, due to their
ability to rapidly and reliably detect movement without requiring physical contact with
inhabitants. PIR sensors are cost-effective, energy-efficient, and simple to install, which
contributes to their widespread use in occupancy detection systems across different build-
ing settings. Due to their limited detection range and broad field of view, PIR sensors
have some limitations in forecasting occupancy in buildings. PIR sensors generally have a
limited detection angle and range, which can result in blind spots or undetected occupancy.
Furthermore, environmental factors such as temperature fluctuations, ventilation, or the
presence of pets or other moving objects can easily trigger PIR sensors, resulting in false
positives. This can result in imprecise occupancy forecasts and potentially wasteful utiliza-
tion of building resources if systems are activated needlessly. In addition, PIR sensors may
not be appropriate for detecting individuals who are not moving or engaging in modest
activities, such as typing or reading, which can impact the precision of occupancy forecasts
in specific situations. To improve the accuracy and reliability of occupancy prediction, it is
advisable to combine PIR sensors with other sensing technologies, even though they are
useful for detecting occupancy in buildings.
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4.4. Sensor Combination

Sensor combination, also called sensor fusion, is a technique used to improve the
overall performance and dependability of detecting occupancy in SBs. It can combine
data from different types of sensors like PIR, CO2, light, and sound sensors to gather
comprehensive information about a room or building, allowing for better detection of
occupancy patterns [47]. Sensor fusion combines the data collected from each sensor into a
unified system that applies algorithms and ML methods to analyze the data and identify
patterns, enabling the system to make more accurate decisions about room occupancy. A
summary of the recent literature that has used sensor fusion is shown in Table 5.

The study in [48] utilized different machine-learning algorithms to examine how
combining data from multiple sensors can enhance the quality of the information. It is
widely recognized that accurate occupancy estimation can be valuable in a variety of
situations and applications. An occupancy detection system based on an environmental
sensor system composed of CO2, light, temperature, and humidity was used in the approach
proposed by Candanedo and Feldheim [49]. Detection was achieved using three algorithms:
linear discriminant analysis (LDA), classification and regression trees (CART), and random
forest (RF). The researchers concluded that satisfactory occupancy detection results can
be achieved with the right selection of features and algorithms. Based on the assumption
that the ground truth occupancy is unavailable, Candanedo et al. evaluated an HMM
occupancy algorithm using the same sensors [50]. In this study, different combinations of
features were used to test the HMM. They reported that the best detection performance
came from HMMs with CO2 features. Ertugrul proposed a recurrent extreme learning
machine (ELM) approach that utilized the same sensors as in [49] to detect occupancy based
on the temporal dynamics of environmental time series data. In [51], Kraipeerapun and
Amornsamankul developed modified stacking schemes with a dual output neural network
to determine occupancy using environmental sensors measuring CO2, light, temperature,
and humidity. Two stages are involved in the proposed approach. The first stage consists
of the training of multiple neural networks and the concatenation of their outputs into the
second stage, which is called the concatenation stage. In the second stage, two different
occupancy detection techniques were discussed.

A new occupancy estimation system was presented by Masood et al., which utilized
environmental parameters, such as CO2, temperature, humidity, and pressure, using
the ELM algorithm [52]. A feature selection algorithm based on ELM was proposed
because of ELM’s extremely fast learning speed. Experimental results showed that their
proposed ELM-based wrapper method outperformed popular filter methods. As a result,
they concluded that pressure sensors, which are rarely used for occupancy estimation,
are meaningful. Another study by Masood et al., which incorporated a filter-wrapper
hybrid feature selection method with ELM, estimated the range of occupants as zero,
low, medium, and high [32]. First, they ranked all features using a relative information
gain approach and then used an incremental search to select the best features to estimate
occupancy. The authors also presented a hybrid ELM with a hybrid feature-scaled layer
that contained a dynamic feature extraction layer to estimate occupancy using the same
environment sensors as in [53]. In a conventional static feature selection process, static
features were selected using a filter. After selecting static features, the dynamic features
were combined with the static features to form a new set of features. As a result, they
could guarantee a high accuracy, as well as a fast speed. An occupancy estimation system
based on CO2, temperature, and humidity data was presented by Szczurek et al. in [54]. A
wrapper-based method was used for feature selection; and for estimation, two K-Neareast
Neighbor (KNN) and LDA learning algorithms were used. As part of their experiments,
they investigated the estimation of occupancy based on individual sensor data and the
fusion of multiple sensor data. Based on the authors’ findings, the KNN-trained classifier
was much more effective than the LDA-trained classifier. The authors propose a two-
stage ELM method for occupancy estimation using environmental sensors of CO2 and
temperature [55]. For the first stage, local representations of raw features were obtained
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using the ELM algorithm. Afterward, a linear SVM was applied to map local representations
to occupant numbers. The study in [48] involved using various sensors in different rooms
with different occupancy levels, and ML models were employed to analyze the resulting
data. The researchers carefully considered privacy concerns and the Hawthorne effect
to ensure the data collected were realistic. The study demonstrated the importance of
utilizing different types of sensors and multiple rooms when gathering data. The study’s
results suggest that incorporating a variety of sensors can enhance the accuracy of machine-
learning models. Another paper [56] proposed a technique for using data fusion to detect
whether individuals are present or absent in a room. The technique involves collecting data
from a range of sensors, such as temperature and humidity sensors, to identify the presence
of a person. Using the principles of evidence theory, the data collected from each sensor can
be considered as evidence. This approach provides a comprehensive method for detecting
the presence of individuals in a room, showing high accuracy. Additionally, the objective of
another study [57] was to achieve practicality and cost-effectiveness in deploying a system
by utilizing a smart sensing network, embedded passive infrared (PIR)/CO2 sensors, and
environmental system modeling. The approach aimed to support sustainable building
operations, while ensuring comfortable thermal conditions and acceptable indoor air
quality. The system integration was designed to be simple and concise, making it easier
and more efficient to implement. Using these technologies and models, the study sought
to promote environmentally conscious building operations, while maintaining occupant
comfort and health.

By combining multiple sensors, occupancy prediction systems can achieve higher
accuracy [8]. Each type of sensor has unique advantages and disadvantages, and their
combination can compensate for each individual sensor’s limitations. PIR sensors excel
at detecting motion but may fail to identify stationary occupants, whereas CO2 sensors
offer indirect indications of occupancy levels. By integrating these sensors, it becomes
possible to enhance the accuracy and dependability of occupancy predictions through the
comparison and analysis of data obtained from various sources. Combining sensors ensures
redundancy in detecting occupancy. In the event of a sensor failure or false data production
caused by environmental conditions or technological problems, the remaining sensors
within the system can still contribute to the estimation of occupancy. This duplication
improves the occupancy forecasting system’s dependability and reduces the likelihood
of incorrect alerts or missed detections. The distinct qualities and problems present in
various building contexts can influence occupancy prediction. Occupancy prediction
systems can enhance performance in different places, such as large offices, conference
rooms, restrooms, and hallways, by utilizing several sensors to adapt to varying conditions.
The versatility of the system guarantees that occupancy prediction remains successful in
varied circumstances, hence maximizing its utility. Incorporating several sensors into an
integrated occupancy prediction system increases the complexity of the system design,
installation, calibration, and maintenance. Each type of sensor incurs specific costs for its
hardware, installation, and maintenance, which collectively contribute to the total cost of
the system. Efficiently combining many sensor types into a single occupancy prediction
system necessitates meticulous strategizing and synchronization. Ensuring compatibility
among numerous sensors, establishing uniform data formats, and coordinating sensor
readings can be difficult, particularly when working with diverse sensor networks from
several manufacturers or with distinct communication protocols. These integration hurdles
may impede the smooth functioning of the occupancy prediction system and necessitate
continuous maintenance and troubleshooting endeavors to resolve compatibility issues or
data anomalies.
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Table 5. Summary of the papers in which sensor fusion was used.

Sensor Fusion

References Aim of the Paper Used Methods Advantages Limitations

[47] Occupancy prediction using DL DL networks

Non-intrusive,

enhanced accuracy,

helpful for energy

management,

helpful in security

monitoring,

increased robustness

Complexity of

integrating,

increase overall

cost, data analysis

time increase

[48]
How occupancy estimation can benefit

from sensor fusion
ML models

[57]
Proposed smart sensing network for

cost-effectiveness
ML models

[56] Occupants detection in a room evidence theory

[54] Occupancy estimation KNN

[49] Occupancy detection and prediction

Linear discriminant analysis,

classification and regression

tree, random forest

[50] Occupancy detection and prediction HMM

[52] Occupancy estimation ELM

[55]
Proposed ELM method for occupancy

estimation
ELM

4.5. Non-Mobility Sensors

Non-mobility sensors refer to sensors that can detect the presence of people in a room
without relying on their movement. These sensors detect changes in the surrounding
environment when someone enters or exits a room. Non-mobility sensors can be utilized in
various ways to estimate the occupancy of a room, and some examples of their applications
are listed below.

4.5.1. Bluetooth Low Energy

Bluetooth low energy (BLE) is a technology that can estimate room occupancy by
sensing the presence of Bluetooth-enabled devices, such as smartphones or wearables, in a
designated area. BLE devices emit a signal called a beacon, which can be picked up by BLE
receivers placed in the room. As soon as a BLE device comes into range of a BLE receiver,
the receiver detects the beacon signal and sends a message to a server or controller that
analyzes the data to determine if the device owner is in the room. Examples of BLE devices
used for occupancy detection, estimation, and prediction are shown in Figure 7. These data
can estimate the number of people occupying the room. A summary of the papers that
used this technology is shown in Table 6.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BLE 4.0 Bluetooth module Bluetooth beacon 

Figure 7. Some example devices of Bluetooth technologies used for occupancy detection, estimation,
and prediction.
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In particular, the authors of [58] proposed a novel methodology that employs BLE
communication technology to detect and count room occupancy using pattern recogni-
tion. Multiple regression and classification algorithms were employed, and they yielded
encouraging outcomes in various settings. The best classifier could accurately detect room
occupancy with an average accuracy of 97.97% across all datasets. Similarly, another
study [59] proposed a multi-feature KNN classification algorithm that utilizes affordable
BLE networks to extract occupancy distribution. To validate the proposed methods, an
on-site experiment was carried out in a standard office of an institutional building, which
showed very good results. Furthermore, the authors put forth a technique for detecting the
presence of individuals using low-impact sensors, including BLE sensors, to estimate room
occupancy [60]. The authors proposed an occupancy estimation system based on iBeacon
and BLE technology in [61]. Using the iBeacon protocol as a starting point, they modified it
to make occupancy detection more accurate and efficient. Based on received signal strength
indicators (RSSIs) from different iBeacons, two algorithms, KNN and decision tree (DT),
were employed to categorize occupants into different rooms. In [62], iBeacons were used
to improve the performance of occupancy estimation. Feature stability for classification
was obtained by using a smoothing algorithm. After that, the occupants were classified
into different rooms using an SVM algorithm. Similarly, Filippoupolitis et al. applied an
SVM algorithm for occupancy estimation using Bluetooth beacons [41]. The authors used
statistical features to classify occupancy, instead of raw RSSI values. They also explored the
same features in different works and three learning algorithms, namely SVM, KNN, and
logistic regression, for occupancy estimation using Bluetooth beacons [63].

Table 6. Summary of the papers in which BLE technology was used.

BLE

References Aim of the Paper Used Methods Advantages Limitations

[58] Detect and count occupancy Regression and classification
algorithms

Non-intrusive,
cost-effective as

already in phone,
produce real-time data,

easy to implement

Limited range,
may produce false
result if occupants

can carry two or more,
signal can be interrupted

by other signals

[59] Proposes a multi-feature classification
algorithms KNN classification model

[60] Occupancy detection ML, optimization, and
probabilistic approach

[61] Occupancy estimation and prediction KNN and DT

[62] Improve the performance of estimation Smoothing algorithms

[41] Occupancy estimation SVM ML model

[63] Occupancy estimation and prediction SVM, KNN, and regression

A significant advantage of BLE is its extensive adoption and compatibility with many
devices such as smartphones, wearables, and IoT sensors [58]. BLE-enabled devices have
the capability to function as proximity beacons, enabling accurate monitoring of individuals
as they navigate within a facility. This enables real-time continuous occupancy monitoring
and provides valuable insights into space use patterns. Occupancy-prediction systems
based on BLE are both cost-effective and straightforward to implement. These systems make
use of the existing infrastructure and do not necessitate substantial hardware expenditure.
Moreover, battery-powered devices benefit greatly from BLE technology’s low power
consumption. This ensures that occupancy detection applications can work reliably for
an extended period of time. While BLE technology is capable of accurately detecting the
presence of occupants who have BLE-enabled devices, such as smartphones or wearables, it
may fail to detect those who do not have such devices or opt to disable Bluetooth capabilities.
This constraint may result in insufficient occupancy data and mistakes in prediction systems,
particularly in settings with diverse user demographics or certain privacy considerations.
Moreover, BLE-based devices may encounter difficulties in precisely discerning between
several inhabitants or monitoring individuals in congested areas where many signals
overlap. Furthermore, construction materials, furniture, or other electronic devices can
cause interference or weakening of BLE signals. This can impact the reliability and precision
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of occupancy prediction. Thus, although BLE technology provides numerous advantages
for occupancy detection, its efficacy can fluctuate based on the particular application and
environmental conditions.

4.5.2. Wireless Fidelity (WiFi) Technology

WiFi is a wireless technology that enables high-speed internet and networking between
devices using radio waves. To achieve this, WiFi networks use a wireless access point to
send data through the air, without requiring physical cables to connect devices. Examples
of WiFi devices used for occupancy detection, estimation, and prediction are shown in
Figure 8.

 
  

 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WIFI chip for Arduino WIFI router 

Figure 8. Some example devices of WiFi technologies used for occupancy detection, estimation,
and prediction.

The capability for WiFi sensing or WiFi-based occupancy detection enables the estima-
tion of room occupancy within buildings. This process involves utilizing the radio waves
that WiFi access points emit to detect the presence of people within a room or building. As
people move in a room, their movement causes minor changes in the radio waves, which
the access points can detect. By analyzing these changes, algorithms can determine if any
individuals are in the room and even estimate the number of people and their locations. A
summary of the papers that used this technology is shown in Table 7.

The estimation of building occupancy with the help of WiFi techniques is gaining
popularity. The authors of [64] introduced and assessed ML-based techniques for estimating
classroom occupancy using data from a dense wireless network on a large university
campus. The authors also compared their WiFi sensing approach to that of dedicated beam
counters, achieving a satisfactory level of accuracy. Another study [65] investigated the
viability and possibility of a crowd estimation system that can anticipate both the quantity
and positioning of a crowd. This system utilized a combination of WiFi IoT technology and
ML. The researchers conducted practical experiments to evaluate the system, involving
up to ten individuals to count the crowd and two actual environments, each divided into
four sections for localization over three days. The results of the experiments were very
satisfactory. Several studies [32,66–69] investigated occupancy measurement using WiFi
technology. According to [66], the authors designed an end-to-end system that infers
occupancy without any intrusions. They determined occupancy and MAC addresses by
analyzing packets sent by access points (APs). Taking advantage of the temporal correlation
of historical data, the system measures indoor snapshot occupancy in real time on the front
end but incorporates historical data on the back end. Due to temporal correlation, their
algorithm has a long memory on devices. Errors will increase if the occupant does not bring
her mobile device into the building. A recurrent neural network (RNN) was presented in
the study in [32] to predict occupancy information stochastically using feedback RNNs.
Signals are captured through scanning WiFi connections between WiFi APs and devices
owned by occupants. A WiFi-based noninvasive occupancy sensing system was proposed
to obtain occupancy data from COTS access points and mobile devices using WiFi traffic
analysis in [68]. It achieved 98.85% accuracy in detecting occupancy in a practical office area.
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Table 7. Summary of the papers in which WiFi technology was used.

WiFi
Technology

References Aim of the Paper Used Methods Advantages Limitations

[65]
Occupancy

estimation and
prediction

ML

Non-intrusive,
cost-effective,

easy to implement,
real-time monitoring

Limited range,
may produce false

result, signal
can be interrupted

by other signals

[64]
Estimating
classroom
occupancy

ML

[32] Occupancy
prediction RNN models

[66] Occupancy
detection N/A

[68]
Proposed

occupancy sensing
system

DL

WiFi technology provides numerous benefits for predicting occupancy in build-
ings [70]. An important benefit is the extensive accessibility and pre-existing infrastructure
in the majority of today’s buildings. WiFi connection points are already equipped in
indoor spaces, ensuring extensive coverage throughout the entire structure. Occupancy
prediction systems utilize WiFi signals to detect and monitor the presence of individuals
by leveraging their smartphones, tablets, or other WiFi-enabled devices. This method
obviates the necessity for deploying supplementary hardware, thereby diminishing im-
plementation expenses and streamlining installation. Furthermore, occupancy prediction
systems that rely on WiFi can utilize sophisticated signal processing methods to analyze
the strength of WiFi signals. This enables accurate determination of the exact location
of individuals inside the building. This allows precise and immediate monitoring of oc-
cupancy, offering a vital understanding of how space is being used. This helps building
managers efficiently allocate resources and enhances energy conservation. A drawback
of using WiFi for occupancy prediction in buildings is its dependence on user devices
and the privacy considerations that come with this. WiFi-based systems utilize signal
monitoring of smartphones or other WiFi-enabled devices to track inhabitants, which may
have privacy problems. Issues about data collection, monitoring, and consent may occur,
especially in situations where individuals are unaware or have not specifically agreed to
be observed. Furthermore, WiFi-based occupancy prediction systems may face difficulties
in precisely detecting occupancy levels in regions with sparse device concentrations or
when individuals do not possess WiFi-enabled devices. This constraint might result in
insufficient occupancy data and mistakes in forecasting algorithms, especially in settings
with varied user demographics or privacy-conscious residents. Moreover, construction
materials, furniture, or other electronic devices can disrupt or weaken WiFi signals, thereby
affecting the dependability and precision of occupancy forecasting. Hence, although WiFi
technology has numerous advantages for occupancy detection, its efficacy can fluctuate
depending on the particular use case, environmental variables, and privacy concerns.

4.5.3. Sound Sensor

A sound sensor is a non-mobility sensor that detects sound waves and translates them
into electrical signals. It uses a microphone or comparable device to capture sound waves in
the surrounding environment. A sound sensor can be employed to measure the sound level
in a space for a certain duration to estimate the occupancy of a room. When individuals are
present in the room, they produce sounds through activities such as talking, moving, or
interacting with objects. These activities raise the overall sound level in the room, which
the sound sensor can detect. Examples of sound sensors used for occupancy detection,
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estimation, and prediction are shown in Figure 9. By studying the sound level over time,
algorithms can be applied to identify patterns and decide whether the room is occupied. A
summary of the publications in this field is highlighted in Table 8.
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Figure 9. Some example devices of sound sensors used for occupancy detection, estimation, and prediction.

Different authors have produced impressive publications using this type of sensor.
The authors in [71] examined the potential applications of a standard electrodynamics
loudspeaker. These include real-time monitoring of room occupancy to detect the presence
of individuals in the workplace, identification of perimeter changes (such as the opening of
a door or window) to alert security of potential intruders, and tracking of thermal anomalies
to signal unusual temperature variations. Similarly, the paper in [72] developed an effective
method for determining and predicting the number of people in a room. To achieve this,
the researchers utilized various low-cost sensors, including CO2, temperature, illumination,
sound, motion, and ML models. In addition, they utilized PCA to assess the effectiveness
of a dataset with fewer dimensions. The ultimate goal was to accurately estimate room
occupancy using multiple types of sensors and data analysis techniques. A wireless-
sensor meeting room management system, iSense, measured decibel levels using capacitors
(microphones) [73]. As a result, iSense could detect the status of a conference/meeting. In
addition, sound sensors can be linked with other sensors like ambient sensors to estimate
occupancy in buildings [74].

Table 8. Summary of the papers in which sound sensor technology was used.

Sound
Sensor

References Aim of the Paper Used Methods Advantages Limitations

[72] Occupancy prediction
ML

algorithm Non-intrusive,
cost-effective,

no need physical
contact, real-

time monitoring

Limited range,
noise can reduce

the quality,
contain privacy

issues

[71] Occupancy detection
Electrodynamic

loudspeaker

[74] Occupancy estimation Sound technology

[73] Occupancy detection iSense Technology

An important advantage of sound sensors is their capacity to identify occupancy
using audio signals, such as human voices or noise caused by movements [75]. Sound
sensors are capable of detecting the presence of individuals in environments where other
sensing technologies, like motion sensors, would not work well or be suitable, such as
in places with low activity. Sound sensors are well-suited for predicting occupancy in
locations such as libraries, study rooms, or private offices. Moreover, sound sensors are
very affordable and simple to set up, making them a cost-efficient option for occupancy
detection systems. Sound sensors can offer real-time occupancy monitoring and provide
valuable information on space utilization by analyzing sound patterns and intensity levels.
This allows building managers to optimize resource allocation and improve user comfort
and safety. A basic limitation of sound sensors for occupancy estimation in buildings is
their vulnerability to external noise and interference. Sound sensors may unintentionally
identify sounds that are not linked to occupancy, such as HVAC systems, outdoor noise, or
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industrial operations. This can result in false positives or inaccurate forecasts of occupancy.
This can lead to inconsistent occupancy data and may necessitate the use of supplementary
signal processing or filtering methods to differentiate between pertinent and extraneous
sounds. In addition, sound sensors may encounter difficulties in detecting occupancy
in locations characterized by high levels of background noise or acoustically complex
surroundings, such as open-plan offices or spaces with surfaces that cause sound to bounce
back and echo. In addition, the use of sound sensors may give rise to privacy problems,
since inhabitants may feel uneasy about the possibility of their conversations or activities
being monitored. Environmental constraints, interference issues, and privacy concerns
can constrain the efficacy of sound sensors, despite their distinct benefits for occupancy
prediction. Thus, meticulous implementation and calibration are necessary to guarantee
dependable performance.

4.5.4. Camera—Optical Sensor

Optical sensors, typically called cameras, can also be used to detect and monitor human
presence in a particular area. Examples of camera devices used for occupancy detection,
estimation, and prediction are shown in Figure 10. This method employs computer vision
algorithms to analyze video footage and recognize human shapes in the captured frames.
By tracking changes in the quantity and position of people within the space, the system can
estimate the number of individuals present at any given moment. Camera-based occupancy
estimation is known for its high level of accuracy and can also supply supplementary data,
such as the whereabouts and motion patterns of individuals in a room. A summary of the
papers that used the camera is highlighted in Table 9.

The study in [76] introduced a vision-based technique that employed DL-based algo-
rithms for head detection to estimate the number of individuals in sizable indoor spaces,
utilizing multiple cameras. The approach was evaluated in a classroom setting with nu-
merous obstructions, and it demonstrated a remarkable capacity for predicting the number
of individuals in the room compared to actual measurements. Similarly, the authors put
forward a new indoor occupancy estimation approach consisting of a three-level fusion
framework. The study used the scene-knowledge fusion counting method to determine the
number of individuals in a room [77]. Additionally, a line-based fusion counting method
employed two cameras at the entrance and inside a room to detect the movement of indi-
viduals and determine the number of occupants based on the number of passing events.
Using a multi-camera system, Fleuret et al. presented a method to calculate the number
of indoor occupants based on the locations of all individuals [78]. Liu et al. presented a
vision-based occupancy estimation system that uses cameras at entrances and in rooms
to estimate occupancy. In addition to static vision algorithms, motion-based algorithms
were employed to detect indoor occupancy. Using a dynamic Bayesian network approach,
a final occupancy estimation was calculated by combining the estimation results of the
entrance and the room. A more advanced version of that work is available in [79]. The
authors proposed building occupancy estimation with cameras as a cascade framework.
A pre-classifier was used to filter out non-head regions as a first step. Next, the head
windows were classified using a convolution neural network (CNN). In the final step,
a clustering algorithm fused consecutive frames to detect heads more effectively. The
proposed approach achieved a high estimation accuracy of 95.3%. With a camera at the
entrance of a room, Petersen et al. developed an occupancy estimation system that counted
occupants entering and leaving a room [80]. Using cameras at each zone portal, Tomastik et
al. could determine how occupants moved between zones of a building [81]. Additionally,
they developed a non-linear stochastic state-space model for estimating occupancy during
emergency egress based on occupant movements.

A significant advantage of cameras is their capacity to offer visual verification of
occupancy, enabling accurate identification and monitoring of individuals within a given
area [82]. Cameras can effectively ascertain the existence and movements of individuals
by recording pictures or video footage, enabling real-time monitoring of occupancy and
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offering valuable information on patterns of space utilization. Computer vision algorithms
can be used to analyze this visual data, enabling the detection and counting of occupants,
differentiation between various activities or postures (such as sitting, standing, or walking),
and even the identification of specific individuals if required. Moreover, the integration of
cameras with other sensing technologies enhances the accuracy and reliability of occupancy
prediction systems, providing additional data for comprehensive occupancy monitoring.
Privacy concerns and ethical reasons are significant constraints on using cameras for occu-
pancy prediction in buildings. Cameras capture visual data, including photos of individuals
and their actions, potentially triggering privacy concerns and objections from the subjects.
Privacy concerns regarding the collection, retention, and use of personal information may
arise, leading to opposition or legislative limitations on camera-based occupancy prediction
systems. Moreover, the existence of surveillance cameras might influence the behavior and
sense of privacy among individuals, thereby affecting their level of comfort and productiv-
ity in the area [11,18,83]. In addition, camera-based systems require sufficient illumination
and unobstructed perspectives to operate optimally, restricting their suitability in low-light
settings or regions with limited visibility. Furthermore, camera systems might incur sub-
stantial charges for installation and maintenance, encompassing costs for hardware, data
storage, and system integration. They may face difficulties in reliably detecting occupancy
in places with intricate layouts, obstructions, or frequent variations in lighting conditions,
which can affect the dependability and precision of forecasts. Hence, although cameras
provide potent capacities for forecasting occupancy, their integration must take into account
privacy considerations, economic ramifications, and technical constraints, to guarantee
ethical and efficient utilization in building settings.

Table 9. Summary of the papers in which cameras were used.

Camera

References Aim of the Paper Used Methods Advantages Limitations

[78] Calculate number of occupants Stochastic model

Offer high
accuracy, can

count occupants,
real-time

monitoring

Expensive,
privacy issues,

not easy to
install

[77] Occupants estimation Dynamic Bayesian
Fusion mechanism

[76] Occupants detection and estimation DL
architectures

[84] Occupancy measurement Dynamic Bayesian
network-based method

[80] Occupancy estimation Hierarchical algorithm

[79] Occupancy estimation and prediction CNN

[81] Monitoring occupants movement Non-linear stochastic
state-space model
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Figure 10. Some example devices of cameras technologies used for occupancy detection, estimation,
and prediction.

4.5.5. Electric Meter

Electric meter-based room occupancy estimation refers to the use of changes in electric-
ity consumption to estimate and predict occupants in a building. This approach operates
on the assumption that people use electrical appliances while present in a room, and their
activity results in changes in power consumption patterns. Examples of electric meter tech-
nologies used for occupancy detection, estimation, and prediction are shown in Figure 11.
The electric meter data are collected and analyzed using algorithms that differentiate be-
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tween normal electricity consumption patterns and those associated with human presence.
A summary of the papers that used this technology for data collection is shown in Table 10.

 
 
 
 
 
           
 
 

IoT-based smart energy meter Commercial smart energy meter 

Figure 11. Some example devices of smart energy meters used for occupancy detection, estimation,
and prediction.

According to the study found in [85], there is a noticeable correlation between occu-
pancy and the amount of electricity consumed in various areas of a building, including
office space, corridors, and meeting rooms. The authors of [86] proposed a system to predict
room occupancy using only data from smart meters to predict whether a room is occupied.
Datasets included appliance state, appliance energy, and house-level occupancy. To deter-
mine the accuracy of occupancy detection, they used the F-measure. using Adaboost and
random forest classifiers, and a 90% accuracy was achieved. Using off-the-shelf electricity
meters, 35 features of the electric load curve were extracted for the study in [87]. The
researchers found that PCA and SVMs were the most accurate ML methods, at between
83 and 94%. Over 18 months, the authors of [88] studied more than 5000 households to
determine if they were occupied. Several ML techniques were used to achieve an accuracy
of 90.1% in predicting current and future occupancy information. The authors of [89]
proposed a novel concept of a standby state based on occupant presence or absence to
reduce energy consumption. A KNN method was used in the classification process, with
an accuracy of 94% based on the F-measure. Using mutual information, researchers re-
duced the sparsity of datasets in their study [90]. An overall 83.37% occupancy detection
F-measure was achieved using random forest classifiers, and an 82.79% occupancy detec-
tion F-measure was achieved using DT classifiers. To enhance precision, we need a more
complete picture of the weather, local events, and neighborhood [88].

Electric meters can indirectly estimate the occupancy levels within a building by
observing electricity usage trends [87]. Occupancy often corresponds to energy usage, since
inhabitants make use of electrical devices, lighting, and HVAC systems. Electric meters
can offer valuable insights into occupancy trends and patterns by analyzing fluctuations
in electricity demand. This information allows building managers to optimize resource
allocation, improve energy efficiency, and identify potential cost-saving options. In addition,
electric-meter-based occupancy prediction systems necessitate minimum supplementary
hardware or equipment, as they utilize the preexisting metering infrastructure that is
already available in the majority of buildings. Electric-meter-based systems are both
cost-effective and easy to implement, particularly when retrofitting existing buildings or
scaling across large building portfolios. Although variations in energy use might offer
valuable information about general occupancy patterns, electricity meters may not provide
immediate or detailed data regarding specific occupancy trends or individual movements
within the building. Dynamic environments with frequent occupancy fluctuations or
temporary activities can significantly impede the precision and responsiveness of occupancy
prediction systems. Furthermore, buildings with mixed-use or multifunctional spaces may
pose challenges for electric meter-based occupancy prediction algorithms, as the electricity
consumption may not accurately reflect the presence of people. In addition, the collection
and analysis of energy consumption data may give rise to privacy problems, requiring
careful consideration of data protection and security measures. Therefore, while electric-
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meter-based occupancy prediction offers a non-intrusive and cost-effective approach to
occupancy monitoring, we should carefully assess its limitations in terms of detail and
precision, taking into account specific building settings and applications.

Table 10. Summary of the papers in which electric meters were used.

Electric
meter

References Aim of the Paper Used Methods Advantages Limitations

[85] Occupancy level monitoring Statistical analysis

Non-intrusive,
cost-effective,
provide real-

time data

Can produce false
results due to
weather, need
knowledge for
data analysis

[86] Room occupancy prediction Classification algorithm

[87] Household occupancy monitoring SVM, and PCA

[89] Occupancy detection and prediction
Standby state based

approach

[90] Occupancy detection KNN

[88] Occupancy detection DT classification

5. Data Analysis Approach

In this section, we will explain some of the main methods used in the literature to
assess and forecast occupancy in buildings. In particular, in the following subsections, we
will analyze analytical and ML-based methods, with a particular focus on DL algorithms.
We will also explore other methods that have been used in the literature to complement the
already presented ones, such as transfer learning (TL) and federated learning (FL). A top-
to-down flowchart of the considered data analysis approaches is illustrated in Figure 12.

Figure 12. A top-down flowchart of the considered data analysis approaches.

5.1. Analytical Methods

Analytical methods refer to a systematic approach to analyzing data and extracting
meaningful features to predict future occupancy patterns. These methods involve using
mathematical models and statistical techniques to understand and forecast how occupancy
status in a building might change over time. They can be broadly categorized into various
types, each with its own set of techniques and applications:

5.1.1. Deterministic Schedule Method

The deterministic schedule method is used to predict room occupancy by developing
a predetermined plan of when individuals are expected to be present in a room. These type
of schedule methods have many advantages that can be used in vehicles and buildings [91].
This approach is generally used in scenarios where the room’s occupancy is known in
advance, such as a classroom or a conference room. The schedule is based on various
factors, such as the time of the day, the day of the week, and the planned events or activities
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in the room. By adhering to the schedule, it is possible to approximate the room’s occupancy
at any given moment in the future. A summary of the recent papers that used this approach
is shown in Table 11.

The study in [92] proposed a new population-based approach (PopAp), inspired by
agent-based transportation models, to model occupant estimation. Comparing PopAp
with traditional deterministic and stochastic methods, the study findings revealed notable
differences in maximum occupant numbers and hourly energy demands, especially in
educational buildings. These results underscore the importance of detailed occupant mod-
eling for accurate energy system planning, particularly at the hourly scale, to effectively
predict peak demand and size technologies. Another study in [93] formulated a series of
occupant profiles using a deterministic method that factored in variables such as employ-
ment status, income level, household size, and age. These profiles delineated the durations
occupants typically spend at home during weekdays and weekends. The dataset was
subsequently classified into seven distinct profiles based on similarities, aiming to discern
the predominant factors influencing residential building occupancy rates.

The deterministic schedule method is easy and stable to use for occupancy prediction,
because it depends on set schedules or patterns [94]. It is very efficient with regard to
computation, as it does not depend on data. However, the results achieved for occupancy
prediction are not very accurate because of its assumptions. Moreover, it may also perform
poorly in dynamic settings and need manual modifications to account for fluctuations in
occupancy patterns or external influences.

5.1.2. Stochastic Schedule Method

The stochastic schedule method is a method used to predict occupancy that considers
probabilistic models and unpredictable events. This approach is used when it is impossible
to forecast the exact occupancy of a space ahead of time, as in the case of a public area
such as a shopping mall or airport. A probabilistic model of the events that could impact
the number of people in an area is developed to forecast the occupancy status, including
numbers of people. By using this model to simulate these events, it is possible to predict
the occupancy of a room at any point in the future. This approach is more adaptable than
the deterministic schedule method, since it accounts for uncertainties and fluctuations in
occupancy. Nevertheless, a considerable amount of data and computational power are
required to build an accurate probabilistic model. This method introduces flexibility by
incorporating randomness and variability into projections, effectively reflecting the inher-
ent uncertainty in occupancy patterns [95]. This flexibility enables more accurate forecasts
and enhanced decision-making in ever-changing settings. Nevertheless, disadvantages
to consider include the method’s complexity, heightened data requirements, and dimin-
ished interpretability in comparison to deterministic approaches. In addition, stochastic
approaches may require greater processing resources and implementation time, which
might pose difficulties in real-time applications. The following are some techniques used
in stochastic schedule methods for the prediction of room occupancy in a building:

Markov Chains

A Markov chain is a mathematical method that can illustrate the progression of a
system as it moves between a finite set of states. A Markov chain model was utilized to
forecast the probability of a room being occupied at a specific time based on its prior state
(occupied or unoccupied) [96].

Different academic and industrial applications have started to use this approach to
forecast the occupancy in SBs. In the study in [97], the authors integrated various tech-
nologies, including thermal comfort experiments, occupancy simulations, usage behavior
modeling, and building energy simulations. The study began by conducting human subject
experiments to measure the effects of thermal comfort and occupancy prediction. The
researchers used Markov chain and conditional probability models to describe room oc-
cupancy. They also employed extended comfort temperature range and user behavior
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models in a building energy simulation tool to analyze the energy-saving potential of a
personal comfort system (PCS). Their findings indicated that using PCS can considerably
enhance occupants’ thermal comfort and satisfaction in warm and cool conditions. Simi-
larly, in another study [98], the authors examined the occupancy patterns of eight families
residing in cold regions of China by collecting occupancy data from four primary rooms:
the living room, bedroom, kitchen, and bathroom. The study focused on the duration of
user occupancy and hourly mean occupancy, while also evaluating regular and random
characteristics of the data. The researchers developed an event-based occupancy model
utilizing an inhomogeneous Markov chain based on the findings. The model segmented
daily events into three categories based on their randomness and included models for each
room. Based on the presence probability in each time step, transition probabilities could be
estimated for the three states of entering, leaving, and staying.

Hidden Markov Model

HMMs are an extension of Markov chains where the system being modeled is assumed
to be a Markov process with unobserved (hidden) states. A HMM can predict the probability
of a sequence of observations, based on a hidden sequence of states that cannot be directly
observed but can be inferred from data.

Authors introduced and tested personalized and privacy-preserving collaborative-
filtering models that used sequential history to predict current and future mobile context,
using a combination of HMMs and DL [99]. These models could be used to verify or
improve the context data obtained from sensors in real time. Similarly, researchers have
developed a technique to estimate, simulate, and forecast occupant activity levels in the
short term [100]. The method employs HMMs and autoregressive hidden Markov models
(ARHMM). The only inputs required for the model are CO2 levels and the time of day.
The study also demonstrated that the proposed model could simulate activity levels and
corresponding CO2 levels. A complex environmental sensor network was implemented by
Dong et al. [101] that included a wireless sensing system for environmental conditions, a
wired carbon dioxide sensor system, and a wired indoor air quality sensor system. Wired
cameras were used to obtain real occupancy data. The result showed that living conditions
were significantly correlated with the environment. In the test, the HMM could predict room
occupancy with an average accuracy of 73%. Dong and Lam later developed a Gaussian
mixture model in [102]. A prediction accuracy of 83% was achieved for the number of
occupants. In a classical HMM, the observed variables were assumed to be independent.
During measurement of environmental parameters, such as CO2 concentration, there is
a relationship between the number of occupants and the concentration in the previous
moment. Han et al. [103] compared SVMs and hierarchical learning models. The ARHMM
performed best, with an accuracy of 80.78%

There are several advantages to using HMMs. A HMM is versatile because it incorpo-
rates different types of data sources, such as sensor readings, contextual information, and
environmental data. It is capable of adjusting to changes in room conditions over time, as
well as to variations in occupancy patterns and dynamics within a room. This method pro-
vides probabilistic occupancy estimates instead of binary results (occupied/unoccupied),
which are more informative.

In spite of the advantages of HMMs, there are some limitations as well. When dealing
with large datasets, HMMs are computationally intensive. Generally, HMMs are used
to predict short-term events, and they have lower performance when forecasting long-
term events.

Bayesian Inference

Bayesian inference is a statistical method that uses prior knowledge and observed
evidence to update beliefs about the probability of events [104]. This involves applying
Bayes’ theorem, which describes how to revise a hypothesis’ probability as new evidence
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becomes available. Rather than considering probabilities as frequency estimations, Bayesian
inference treats them as measures of uncertainty.

In the study in [105], a Bayesian inference approach with sensitivity analysis was
proposed to analyze CO2 readings in four primary schools. The goal was to identify un-
certainties and calibrate key parameters to estimate the probability of room occupancy
based on CO2 readings. The study also discussed the parameters that affect the calibration
performance, such as the student occupancy schedule, the number of students, and the
frequency of CO2 readings. The results could help schools to better utilize CO2 meters
for daily operations and interpret the readings during the COVID-19 pandemic. Similarly,
another article described an applied method for conducting knowledge inference on events
occurring in an SB environment, utilizing IoT technology [106]. The approach was im-
plemented and tested in an actual SB environment, with various events inferred during
evaluation, including room occupancy, elevator movements, and the conjunction of both
events. Moreover, to forecast the number of occupants in a building, Ebadat et al. [107]
proposed blind identification methods. The study’s authors used a Bayesian marginal like-
lihood method in conjunction with CO2 concentrations and ventilation levels to estimate
the number of people in a laboratory. In experimental validation, the proposed approach
achieved an accuracy of 82.1%. Finally, Yang et al. [108] developed occupancy models
using ambient sensors and tree-augmented naive Bayes networks for demand-controlled
HVAC systems. Binary occupancy detection algorithms, such as the NB algorithm, were
88.9–94.33% accurate, while the TAN algorithm was 95.3–98.3% accurate.

Markov Chain Monte Carlo

MCMC is an approach for computing complex probability distributions through
repeated random sampling [109]. This technique involves generating a sequence of samples
that form a Markov chain, where the current state depends solely on the previous state,
utilizing these samples to approximate the desired distribution. MCMC is versatile and
can be employed in various scenarios, such as forecasting occupancy in the future for SBs.

In their study [110], the authors presented a model to forecast energy consumption by
occupants, based on analyzing the connection between occupant conduct and equipment
energy usage. A model was created using an indoor occupancy rate and computer input
power model, and polynomial and Markov chain–Monte Carlo methods were employed
to depict the time-dependent indoor occupancy rate and computer input power in multi-
occupant office spaces. Similarly, the paper described a practical approach to extracting
knowledge about simultaneous events for automatic control in SBs [106]. The problem
of the small time interval between two correlated events was resolved using the MCMC
sampling method to optimize the sampling of time intervals. The proposed approach was
implemented in a real SB environment and evaluated by inferring several events, such as
room occupancy, elevator movement, and their conjunction. Richardson et al. illustrated
stochastic occupancy using a model proposed previously in [111]. Widen et al. [112]
developed a three-state occupancy model based on MCMC technology. To control lighting
based on power consumption, the model was extended to nine states, and six activities
involving power consumption [113]. Based on time-use data, Aerts et al. [114] identified
seven significantly different indoor patterns and developed a three-state probability model
for each indoor pattern. This model stored state transition probabilities in a matrix to reduce
complexity. A four-state indoor activity model was developed by Mckenna et al. [115]
based on Richardson et al. [111], which obtained satisfactory results.



Sensors 2024, 24, 3276 27 of 44

Table 11. Summary of the papers using analytical approaches for occupancy prediction.

References Used Methods Application Building Type Key Findings

[92] Deterministic
Scheduling

Minimize energy N/A 10–20% reduction in energy

[93] Deterministic Minimize cost, energy SB N/A
[97] Markov Chains

Model
Thermal comfort, energy con-
sumption

smart room 25–40% reduction in energy

[98] Markov Chain
Model

Thermal comfort Residential build-
ings

Not defined

[99] HMM Building/room occupancy predic-
tion

Gym Not defined

[100] HMM HVAC systems optimization School room Not defined
[101] HMM Energy consumption monitoring smart room Accuracy about 73%
[103] SVM, HMM Energy consumption reduction smart room Accuracy rate of 80.78%
[105] Bayesian Inference Air ventilation improvement School room occu-

pancy
Calibrated ventilation 95% fall
down

[106] Bayesian Network
(BN), and MCMC

IoT-enabled sSB control SB Not defined

[107] Bayesian Inference Blind identification methods
for occupancy

smart laboratory Achieved accuracy of 82.1%

[108] Bayesian Inference HVAC systems efficiency SB NB algorithm accuracy
88.9–94.33%, TAN algorithm
95.3–98.3% accurate

[110] Markov Chain-
Monte Carlo

Energy consumption forecasting Office space occu-
pancy

Not defined

[111] Markov Chain-
Monte Carlo

Energy consumption forecasting UK households Not defined

[112] Markov Chain-
Monte Carlo

Domestic lighting demand gener-
ation

Household load
forecasting

Not defined

5.2. Machine Learning Methods

As technology continues to evolve, the integration of IoT devices is becoming increas-
ingly ubiquitous in our daily activities, facilitating seamless monitoring and tracking of our
surroundings. This proliferation of IoT technology has resulted in the accumulation of vast
data resources, which hold significant potential across multiple application domains. For
instance, within building management, IoT sensors provide real-time data on variables such
as temperature, lighting, and occupancy. However, manually processing such extensive
datasets is both time-consuming and susceptible to errors. Consequently, there is a growing
reliance on ML techniques to analyze these data efficiently, furnishing building managers
with accurate insights for effective decision-making.

The following subsections introduce some ML algorithms and analyze the way they
are used for occupancy detection/forecasting in buildings. Table 12 presents an illustra-
tion of the ML algorithms used across various literature articles that will be analyzed in
the following.

5.2.1. Support Vector Machine

An SVM is a supervised learning algorithm that can handle both linear and non-
linear relationships between features and target variables by mapping data into higher-
dimensional spaces [116]. This algorithm is particularly suitable for high-dimensional
datasets and can effectively handle non-linear relationships between features. To utilize an
SVM for room occupancy predictions, we can train a model using a dataset of past occu-
pancy data, which include various features such as time, day, temperature, lighting, and
other environmental factors. The model will learn to identify correlations and relationships
between these features and occupancy levels. After training, the SVM model can forecast
real-time occupancy levels based on environmental conditions.
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In the study in [64], the authors designed and tested various ML techniques, such
as an SVM and a mix of classification and regression algorithms, to predict classroom
occupancy. They utilized a dense wireless network to collect data from a sizeable university
campus and achieved satisfactory results. Similarly, the article in [117] focused on precise
forecasting on three distinct topics: identifying indoor occupancy, predicting occupancy
density, and determining the exact headcount, utilizing the gathered data and applying
different ML algorithms, including an SVM. The study examined how to identify the best
feature set for an indoor context by properly integrating static and dynamic contexts with
indoor air quality, resulting in satisfactory outcomes for both occupancy detection and
prediction. Akbar et al. [89] used pattern recognition to detect occupancy states without
involving intrusive methods. To illustrate the importance of selecting the right kernel
function, their study compared the performance of an SVM with three different kernel
functions (linear, polynomial, and radial basis functions). The accuracy of the results was
between 55.37% and 79.12%, based on electricity data collected in a research center. In
addition, Kleiminger et al. [87,118] investigated SVM and electricity consumption data to
estimate household occupancy. It was demonstrated in these works that the selection of
characteristics used in learning processes is important. Authors validated their models
using the public ECO dataset1 [119] and found an occupancy detection accuracy ranging
from 68 to 94 percent. According to Liu et al. [55], occupancy can be estimated using
CO2 and temperature sensors. First, preliminary detection results were obtained using
the ELM algorithm. In the second stage, a linear SVM was used to generate the final
detection results. The results indicated that this approach was 97.57 percent accurate in
detecting occupancy. By using WiFi, Zou et al. [120] estimated the number of occupants. An
evaluation of domain-invariant kernels was conducted using transfer kernel learning. In
their experiments, WiFree achieved an accuracy of 92.8 percent when counting occupancy.

For predicting room occupancy, SVMs have several advantages [121]. With their ability
to handle datasets with many features, they are ideal for modeling complex occupancy
patterns and relationships. An SVM is capable of modeling nonlinear relationships between
features, which is important for capturing the complex interactions between environmental
factors and occupancy levels. It can be combined with other ML methods, such as clustering
or regression, to improve occupancy prediction accuracy.

This technique also has limitations. SVMs may perform poorly with incomplete or
noisy data, which poses a challenge in occupancy prediction scenarios. Furthermore,
imbalanced datasets may also affect SVM performance, especially if the number of samples
varies significantly between occupied and unoccupied classes. The computational demands
of SVMs can also be time-consuming and intensive, which can pose a challenge for real-time
occupancy estimation in large datasets or feature spaces with high dimensions.

5.2.2. Regression Method

A regression algorithm is an ML method used to model the relationship between
an independent variable and a continuous variable. Based on input features, regression
analysis seeks to predict the numerical value of the target variable [122]. Many studies
have applied this technique to predict occupancy status; regression can forecast the number
of individuals in a room based on different environmental variables like temperature,
humidity, CO2, light intensity, and noise levels.

One work comprehensively evaluated five distinct ML techniques for occupancy
detection, utilizing data from five sensor streams that were highly correlated with building
occupancy [123]. A model prototype was created and subjected to training and testing to
evaluate its performance. The results showed that the model performed well in predicting
occupancy and showed satisfactory results. Similarly, in the article in [124], the authors
described the development of a linear multi-regression model to predict the cooling load
of a room in the Renewable Energy Research Laboratory at Mangosuthu University of
Technology, using radiant time series method components. The model considered several
predictors, including male and female occupants, window cooling load, and roof cooling
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load, which were identified as the most influential factors in determining the cooling load
of the room.

The regression method offers both advantages and limitations. It provides flexibility,
as it can predict occupancy using various variables like time of day, day of the week,
temperature, humidity, and occupancy in neighboring rooms. Regression models can be
effortlessly scaled to accommodate multiple floors and buildings, making it an advanta-
geous tool for building managers managing occupancy across multiple locations. However,
regression has some limitations when it comes to forecasting room occupancy. It requires a
significant amount of data to be effective, and if data are not available or of poor quality,
this may lead to inaccurate predictions. The regression method may not be applicable in
all settings, such as open-plan offices or spaces where occupancy is difficult to measure
or predict.

5.2.3. K-Nearest Neighbors (KNNs)

KNNs is a ML algorithm used to predict classifications or regressions of new data
points by finding the k closest neighbors in a feature space and using either their majority
class (for classification) or average value (for regression) [125]. It can predict whether
a room is vacant or occupied based on data collected by sensors such as motion, door,
temperature, and light sensors. To employ KNNs for occupancy prediction, a dataset of
historical sensor data is first gathered. The dataset is then split into training and testing
sets, with the training set used to train the KNN model and the testing set used to assess
its accuracy. The K value, which specifies the number of nearest neighbors to consider, is
selected based on the dataset and the desired level of accuracy. Once the KNN model has
been trained and tested, it can be applied to real-time data collected by sensors to predict
room occupancy [70].

The study in [126] involved comparing multiple methods for predicting the number
of indoor users, with and without using SB state variables. The experiment collected data
on indoor temperature and CO2, as well as device log data, in a SB. The study evaluated
the effectiveness of five ML techniques, including KNN, GP, RF, BR, and MLP. Similarly,
in another paper, the authors introduced a novel, cost-effective, and eco-friendly method
for detecting occupants in enclosed spaces using passive cognitive radio (CR) [127]. The
proposed solution utilized a reconfigurable software-defined radio system and adaptive
spectrum sensing technology. The experimental results demonstrated that the CRhodora
system could effectively and accurately detect human occupancy in indoor spaces. Addi-
tionally, Based on the research of Vela et al. [128], KNNs was selected as the most effective
occupancy estimation algorithm. Nevertheless, its use must be considered because of its
low complexity. Additionally, this algorithm has a shortcoming in terms of classification.
When the sample is unbalanced, for example, if one class has a large sample size and others
have a small sample size, this may cause confusion among the K neighbors of the sample
when a new sample is input, particularly if large-volume samples dominate.

KNNs is a simple and flexible method for predicting building occupancy [121]. Be-
cause of its ability to learn locally, KNNs is more applicable in real-world scenarios and
can adapt to changing occupancy patterns. KNNs does have limitations though. With
large datasets in particular, the computational requirements can be high. For maximum
performance, it is also essential to choose the ideal value for the hyperparameter K.
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Table 12. Summary of the papers using ML approaches for occupancy prediction.

References Used Methods Application Building Type Key Findings

[64] ML methods optimize the usage of
classroom university campus accuracy of almost 84.6%

[117] SVM sensor fusion to
enhance accuracy Smart room

99.85% for occupancy
detection, 92.9% for occupancy
estimation

[118] ML, SVM used electric meter as a
occupancy sensor household residence 80% improvement

[55] Extreme learning
machine (ELM)

energy consumption
management smart room accuracy is 97.29%

[120] WiFi based device-free
occupancy detection HVAC systems smart room

99.1% for occupancy detection,
92.8% for occupancy
estimation

[123] Regression thermal comfort SB
99.7% for occupancy detection,
99.3% for occupancy
estimation

[124] linear regression HVAC system control SB relative errors are 0.0073,
0.0016, 0.0168 and 0.0162%

[126] KNN ML HVAC system control smart room Mean Absolute Error
(MAE) = 0.036

[127] KNN ML energy consumption enclosed spaces accuracy about 97.2%

[128] SVM, HMM
HVAC system control,
lighting, security and
emergency

building occupancy accuracy rate of 97%

5.3. Deep Learning

Among ML algorithms, artificial neural networks (or simply neural networks) repre-
sent a disruptive technology that has revolutionized various fields by enabling complex
pattern recognition, nonlinear relationship modeling, and high-dimensional data analysis.
A particular subset of neural networks is represented by DL. DL uses multiple layers of
interconnected neurons to extract hierarchical features from data, to enhance its ability to
tackle complex tasks and learn intricate patterns with respect to traditional ML [129]. As
these neural networks are capable of autonomously detecting and comprehending features
from data, they are particularly beneficial for tasks that involve large amounts of data and
complex relationships. In the following subsections, we will introduce some DL algorithms
and analyze how they can be used for occupancy prediction in buildings. An overview of
DL algorithms found in various literature articles can be found in Table 13.

5.3.1. Convolutional Neural Networks

A CNN is a DL model that learns hierarchical representations of input data through
convolution and pooling operations, which allows it to capture more complex features at
multiple levels of abstraction [130].

Numerous studies in the literature have employed CNNs to predict occupancy in
buildings, and this approach is gaining popularity. One study utilized six different meta-
models [131], which included both ML and DL techniques, to predict the hourly perfor-
mance of gymnasiums based on various design parameters and varying weather conditions.
The meta-models were trained and tested using a large dataset generated by Energy Plus
simulations for four gymnasium located in other cities in China. The study evaluated
each model’s accuracy, efficiency, ease of use, robustness, and interpretability. Similarly,
another paper introduced a method called CNN-XGBoost [36] for detecting occupancy in
residential buildings with a balanced mechanical ventilation system using indoor climate
sensors. The technique used a simple deep-learning model and inexpensive sensors to
detect occupancy. Unlike previous methods that required testing in a specific room with
restrictions on the use of doors, windows, HVAC, etc., the proposed method was validated
in a single-family residential building, without imposing any such restrictions. Moreover,
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in their paper, Bao et al. [132] proposed a new method of counting people with a CNN
using IR-UWB radars with a low radiation dose. According to their study, this algorithm
performed better for scenes with a wider detection angle and a larger detection range when
obstruction or superposition occurred. According to Tang et al. [133], CNNs were used to
train occupancy sensing models, which provided good estimation accuracy. According to
Conti et al. [134] two algorithms were proposed to count people in a classroom based on
CNNs. Based on their results, they achieved very good results regarding people counting.
In the early days, many studies were focused on detecting bodies or heads, and others were
based on mapping local or global features to actual numbers. Recently, it has been proposed
that the population-counting problem cab be solved using a regression of a density image
of the population, with the number of people in the image being calculated by summing
the values. This method can handle severe crowd occlusions. The success of DL technology
has allowed researchers to use CNNs to generate more accurate population density images
than traditional methods. It has been demonstrated that CNNs can be applied to people
counting in complex scenes, with good results [135,136].

The use of CNNs for occupancy prediction in buildings has both advantages and limi-
tations [13]. CNNs are highly effective at capturing and analyzing the spatial relationships
present in data. This allows them to expertly examine spatial trends in building layouts
and occupancy distributions, resulting in more precise forecasts. CNNs provide the ability
to autonomously acquire pertinent characteristics from input data, hence diminishing the
necessity for manual feature engineering. This capability allows adjusting to various build-
ing configurations and occupancy patterns, without requiring a lot of preprocessing. CNN
models are well-suited for implementation in buildings with a high number of occupancy
sensors or IoT devices, as they can effectively handle substantial amounts of data after
training. While there is no doubt that CNNs offer several advantages, they also carry some
limitations. CNNs typically require large amounts of labeled data for training, which may
be challenging to obtain for occupancy prediction in buildings, especially in diverse envi-
ronments with varying occupancy patterns and building layouts. Training and deploying
CNN models requires significant computational resources, including high-performance
GPUs and memory.

5.3.2. Recurrent Neural Network

A RNN is a type of artificial neural network that was designed for the purpose of
efficiently processing sequential data by maintaining an internal state or memory [121].

According to Wang et al. [70], WiFi probe technology was used to intentionally examine
the requests and responses made between the access points and network devices of building
occupants. The authors suggested using a Markov-based recurrent neural network (M-
FRNN) to model and forecast presence patterns using collected data. Based on temperature
and/or likely heat source information, the authors of [137] developed an algorithm that
used support vector regression and RNN algorithms to detect occupancy behavior in
buildings. Based on a limited number of wireless packets, Billah and Campbell [138]
proposed a system for estimating area occupancy with a fast gated recurrent neural network
(FastGRNN) operating on a BLE device. This provided energy-efficient real-time analytics.

In the context of predicting occupancy in buildings, RNNs offer both advantages and
limitations [121]. An RNN provides a unique benefit in that it considers past occupancy
levels, which enables it to recognize temporal patterns and forecast future occupancy levels
more accurately. Furthermore, they are adept at learning long-term the dependency be-
tween past and future occupancy, which helps provide more accurate and reliable estimates
of room occupancy. Considering the vanishing gradient problem caused by recurrent
elements between layers, RNNs can have trouble learning long-term dependencies. As
they were designed to work with text or sequential data, they are limited in their ability to
process more intricate information, such as images or videos.
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5.3.3. Long Short-Term Memory Networks

A long short-term memory (LSTM) network is a type of RNN designed to accom-
modate long-term dependencies in sequential data and overcome the vanishing gradient
problem. An LSTM network is made up of memory cells that have self-regulating gates,
allowing them to selectively remember or forget information over time [17].

In the literature, LSTM has been widely used for occupancy prediction. The study
in [139] introduced a method for predicting occupancy in smart homes, which relied
on environmental factors like CO2 levels, noise, and temperature, and employed a ML
method and a forecasting strategy. The proposed algorithms aimed to improve the energy
management system by optimizing the use of the electric heating system. The study
utilized an LSTM neural network. Moreover, the authors demonstrated that FL can be
utilized to improve occupancy predictions when training a specific model is not feasible.
The study highlighted how this approach can be applied to rooms where the occupancy
patterns are unknown and, therefore, a custom model cannot be trained. Using the concept
of occupancy detection without covering the whole room with sensors was proposed
by Husnain and Choe in [140]. A decision module predicted human presence patterns
using LSTM for the sensor’s off-range region. This reduced the installation costs for
occupancy detection systems. On the same tangent, Pešić et al. [141] proposed a technique
for detecting occupancy utilizing a fusion of WiFi and Bluetooth data and a set of data
analytics functions to examine occupancy data across logical and physical boundaries.
An LSTM neural network was studied for occupancy forecasting, and the same data
analytic features were used to present and predict occupancy statistics. For workdays, they
achieved 75.45% similarity on real (EDR) signals. Chang et al. in [142] used six forecasting
models to analyze the same dataset: Gaussian process regression, regression by least
squares, regression by backpropagation, regression by general regression, and regression
by LSTM. The numerical results demonstrated that LSTM networks were superior to the
other models in estimating hotel accuracy rates across three data repositories. Regarding
root mean square error (RMSE), the model achieved a value of 13.31%. According to
Elkhoukhi et al. [143], their main objective was to evaluate the accuracy of forecasting
occupant numbers using contemporary DL methods, including a RNN and LSTM. Hitimana
et al. [144] used a multivariate time series to predict occupancy patterns in regression
forecasting. An empirical evaluation showed that the designed solution effectively collected,
processed, and stored environmental data. LSTM was used to model the acquired data and
then compared to various ML techniques, showing good performance.

There are several advantages to the use of LSTM networks over other ML algo-
rithms [19]. A key advantage of LSTM is its ability to handle time series data over a long
period, which is crucial for predicting room occupancy patterns as they change over time.
Additionally, LSTM can capture the dependencies between past, present, and future occu-
pancy patterns. In addition to identifying and capturing nonlinear relationships between
various features and occupancy patterns, LSTM is able to capture multiple factors that can
influence occupancy patterns, including weather, time of the day, or day of the week.

In spite of the benefits of LSTM networks for predicting room occupancy, they also
have a few limitations. To be effective, LSTM models often require a large amount of
occupancy data and can become too complicated. In particular, it may be problematic if the
occupancy data are inadequate or incomplete. Furthermore, LSTM models are prone to
overfitting the training data, leading to poor predictions when new or unseen occupancy
patterns emerge.
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Table 13. Summary of the papers using DL approaches for occupancy prediction.

References Used Methods Application Building Type Key Findings

[131] ML and DL techniques
predict
multi-performance
vectors of gymnasiums

gymnasium occupancy
0.993, 0.982 and 0.941 for
energy, temperature, and CO2
respectively

[132] DL occupancy estimation residential buildings accuracy is 92%

[133] CNN occupancy detection
and estimation SB

accuracy of 99.53% occupancy
detection and 98.14%
estimation

[136] CNN energy consumption
management SB 6.70% energy saved

[145] RNN, LSTM control building
ventilation SB Accuracy is 95%

[70] ANN, KNN, SVM building energy
efficiency SB RMSE is 2.7 for ANN

[137] SVM and RNN HVAC system control SB produced a 0.638 average error
and 5.32% error rate

[138] fast gated recurrent
neural network

building occupancy
detection SB Not defined

[7] LSTM energy consumption in
a building smart office accuracy about 94.2%

[139] LSTM Energy management
system SB accuracy rate of 99.16%

[140] LSTM SB system smart room accuracy rate of 95.62%

[142] LSTM lighting system in a
building SB RMSE is 13.31%

[143] LSTM energy efficient
buildings SB accuracy is 70%

[144] LSTM occupancy prediction
in building SB model’s accuracy is 96%

5.4. Other Methods

In this section, we will investigate additional strategies from the literature that have
been used for occupancy prediction. In particular, we will explore TL and FL. These
new research topics offer distinct advantages and are demonstrating their potential for
improving the predictive capabilities of the models introduced in the sections above.

5.4.1. Transfer Learning

TL refers to the process of using knowledge obtained from a preexisting model trained
on large datasets in order to improve the performance of a model trained on a smaller
dataset [146]. The process involves transferring knowledge between domains or tasks. In
general, (i) TL helps save computational resources and improve efficiency when training
new DL models, since the latter can be pre-trained offline on large-scale datasets and
then improved on small datasets; (ii) a DL model is trained on an annotated dataset and
then validated on an unlabeled [147] dataset, which is a challenging and time-consuming
task considering that data labeling is time-consuming and requires expert intervention;
(iii) TL can use simulated or synthetic data rather than real-world environments to train
DL models [148]; and (iv) TL can leverage knowledge gained from previous campaigns to
improve generalization to other data [149]. The study in [150] proposed a TL approach
as a solution to common issues that arise when implementing ML in buildings, such as
adapting a model to a new building, gathering the necessary training data, and ensuring the
model’s robustness in changing conditions. The study specifically focused on the practical
application of a DL model for predicting room occupancy using indoor climate IoT sensors.

The TL technique has many advantages, as well as some limitations [151]. With TL,
pre-trained models can be easily applied to smaller target datasets, thereby improving
their accuracy and robustness. This reduces the time and expense of collecting ground
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truth data for training the model. A further advantage of TL is that it allows the use of
learned features that are common across various datasets to scale the model across different
buildings or environments. The transfer of learning may be limited in some ways. There is
the possibility that the pre-trained model used in TL is not appropriate for the particular
target dataset or environment, which results in suboptimal performance and the need
for further fine-tuning or customization. It is possible that the target dataset does not
have enough similarities to the pre-trained dataset, which will limit the effectiveness of
the transferred knowledge. It may be difficult for some organizations or individuals to
implement and fine-tune TL models, due to the requirement for significant computing
resources and expertise.

5.4.2. Federated Learning

The concept of FL involves using multiple devices to train a model, without having to
share raw data with a central server [3,152]. Methods like this are beneficial when sensitive
data, such as financial or healthcare records, cannot be shared. FL allows models to be
trained from multiple data sources, to predict the occupancy of a room without requiring
centralized data collection. The model can be used to build a global model of occupancy
levels by merging local models from each device with the data remaining on the device.
FL is very important for taking advantage of the so-called edge-cloud continuum, which
allows for simple distribution of computing loads to edge, fog, and cloud layers [153,154].

The authors of [7] proposed an approach based on FL for the estimation of room
occupancy. The paper had two main objectives. Firstly, it proposed a method for occupancy
prediction in multiple rooms of a building using FL and LSTM neural networks. Secondly,
it aimed to demonstrate how FL can assist in occupancy prediction for spaces where a
dedicated model has not been trained. The effectiveness of the proposed approach was
demonstrated through simulation experiments. Similarly, the paper in [155] focused on
joint resource allocation for human motion recognition using wireless sensing in ambient
intelligence. The authors began by examining the wireless sensing process and discovered
a threshold value for the sensing transmit power that provided satisfactory sensing of
data samples. The paper then proposed a solution to the joint resource allocation problem,
taking into account constraints such as training time, energy supply, and sensing quality
for each edge device. Finally, the paper in [156] introduced a multi-agent reinforcement
learning framework for a joint energy and carbon allowance trading mechanism in a
building community. The proposed approach included an FL technique to accelerate the
training process and protect the privacy of individual building data.

Several advantages of FL should be considered [3]. Among its key advantages is its
ability to perform distributed learning without sharing sensitive data. By allowing data
to be accessed from multiple sources without the need to centralize or transfer, FL can
also help overcome limitations related to data storage and availability. When using FL, we
can combine knowledge from multiple sources and leverage the diversity of data across
different environments. As FL allows for parallel training on multiple devices, it can be
more efficient in terms of computation and training time.

FL has the disadvantage of requiring a large number of devices to participate, to ensure
that training data are diverse and unbiased. Performance may not be satisfactory in the case
of only a few devices. Additionally, communication between the devices and the central
server can be slow or unreliable, causing training delays and decreased system efficiency.

6. Discussion, Challenges, and Future Direction

Occupancy prediction is an effective tool for mitigating energy consumption within
buildings, since they consume nearly half of all energy consumed globally. However,
occupancy prediction in buildings faces numerous challenges.

Selecting appropriate sensors from the market that can collect occupancy-relevant
environmental data is a significant challenge. Choosing the optimal sensor is a difficult
task, compounded by the fact that one sensor may not be sufficient. Therefore, identifying
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the right sensor combination is another challenge. It is also important to consider the place-
ment of sensors when detecting and predicting occupancy. Choosing the right locations
for sensors within a building is crucial for capturing accurate occupancy data. Sensor
placement errors can result in incomplete or biased data, which can lead to inaccurate
predictions. It is also important to keep in mind that the cost of sensors can be a significant
barrier to adoption. Due to the high cost of some sensors, it is essential to determine the
minimum number of sensors needed to achieve reliable predictions, while minimizing costs.
Implementing occupancy prediction systems involves balancing the need for sufficient
data coverage with cost considerations. The process of storing and processing the data
collected from these sensors also raises concerns regarding privacy. By using occupancy
sensors, we may be able to collect sensitive information about the behaviors and routines
of our building’s occupants. Thus, it is paramount to ensure the privacy and security of
these data.

Following the collection of data by sensors, the next challenge is to decide which
methodology will be most appropriate for processing the data and making informed
predictions regarding occupancy. Choosing the right processing method is crucial, since
it directly impacts the accuracy and reliability of predictions. A challenge in forecasting
occupancy levels is fine-tuning the parameters of the chosen method, which requires
precision adjustments.

In this field, another challenge pertains to selecting the optimal physical location
for data collection and algorithm execution. Several studies in the literature investigated
the efficacy of edge computing/intelligence [157,158] in decentralizing computation to
create more responsive environments and to maintain the proximity of data to their source.
Additionally, there has been a growing trend in recent years towards leveraging the device–
edge–cloud continuum [154], enabling algorithms to be executed where they are most
needed and feasible.

The following subsections will explore future research directions to improve overall
energy efficiency, occupant comfort, robust occupancy prediction, and privacy within
SB environments.

6.1. Block-Chain Based IoT SB Environments

As an emerging technology, the integration of blockchain technology with the IoT for
occupancy prediction in SBs has great potential for future development [159]. Blockchain-
based IoT occupancy prediction has the potential to improve security and privacy, integrate
with smart contracts, improve data quality and accuracy, integrate with artificial intel-
ligence and ML, and be scalable and interoperable with other SB technologies in the
future [160,161]. While it is important to recognize the significant costs associated with
blockchain technology, it is equally important to underscore its potential in creating secure
and energy-efficient buildings [162]. By harnessing blockchain’s cryptographic principles,
sensitive occupancy data can be securely stored and accessed, instilling greater trust among
stakeholders and promoting increased data sharing. This aspect is particularly noteworthy
in today’s digital landscape, where individuals prioritize the protection of their personal
data and are wary of its misuse. By ensuring the privacy and security of occupancy data,
blockchain enables the utilization of a larger and more comprehensive dataset. Conse-
quently, this enhances the accuracy of occupancy predictions and empowers more precise
energy-management strategies. In essence, the integration of blockchain technology can
not only address concerns regarding data privacy but also play a pivotal role in optimizing
energy efficiency within SBs.

6.2. Sensor Fusion and Optimal Sensor Placement

Predicting room occupancy in an SB environment involves the fusion of sensors and
the optimal placement of sensors [10,163]. The concept of sensor fusion refers to the
integration of multiple sensors that measure various aspects of the environment, such as
temperature, humidity, light, and motion, to better understand the occupancy of the room.
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The occupancy of a room can be more accurately determined by combining data from
multiple sensors.

Sensor fusion in SB environments is indeed a powerful tool for enhancing room
occupancy prediction accuracy and overall system performance. However, it is essential to
weigh this against the associated cost implications. While combining sensors can provide
comprehensive data insights, it also escalates the expenses involved in deploying and
maintaining a sensor network.

Researchers have recognized the need to strike a balance between accuracy and cost-
effectiveness in sensor deployment strategies. Some studies have focused on identifying
the minimum number of sensors required to capture essential environmental parameters,
without compromising prediction accuracy [47]. Nevertheless, even if individual sensors
are relatively inexpensive, the cumulative cost of deploying multiple sensors across a
building can still be substantial.

As such, future research endeavors could delve deeper into optimizing sensor place-
ment and selection methodologies, to minimize costs, while maximizing the efficacy of
room occupancy prediction systems. This would entail exploring innovative sensor config-
urations and leveraging advanced data analytics techniques to extract meaningful insights
from limited sensor inputs. By addressing the dual objectives of accuracy and affordability,
researchers can pave the way for more sustainable and accessible SB solutions.

6.3. Unsupervised Learning

Typically, occupancy prediction methods require a set of ground truth occupancy
data, which can be difficult and costly to collect, making their use difficult in practice. In
the last few years, there has been increased interest in exploring unsupervised learning
methods as potential alternatives for detecting and predicting occupancy [164]. Data can be
learned without labeled data, making unsupervised methods suitable for situations without
ground truth data. Unsupervised methods have been explored for occupancy detection,
including clustering, anomaly detection, and neural networks [165]. As an example, the
paper in [166] introduced an unsupervised ML method based on finite mixture models.
The study used a method called scaled Dirichlet distributions, known for their flexibility
and efficiency in various applications. The proposed algorithm employed entropy-based
variational Bayesian inference to learn finite scaled Dirichlet mixture models. The results
were compared with existing methods to demonstrate the efficiency of the proposed
framework. Although unsupervised methods are not as accurate as supervised methods,
these methods are promising as a means of developing more cost-effective and practical
solutions for occupancy detection in SBs. As part of future work, it may be possible to
investigate this area for predicting occupancy in SB environments.

6.4. Activity Forecasting

There is no doubt that occupancy prediction plays a crucial role in improving the
efficiency of SBs, as it enables control of HVAC systems, lighting, and computers, to
make them more efficient. We can, however, extend the capabilities of SBs and occupancy
prediction by integrating activity recognition and forecasting, to achieve more than just
controlling the above-mentioned devices. With this advancement, multimedia devices can
be controlled in office buildings and household appliances can be controlled in homes.
Moreover, all the systems in the buildings can be tuned, not only on the forecast presence
of people, but also on their specific activities.

Numerous studies have been conducted on the topic of activity recognition within
SBs [167]. Traditional methods of activity recognition can raise privacy concerns for build-
ing occupants, especially when cameras or similar technologies are used [168]. As a result,
researchers have begun using advanced technologies such as UWB radar for the detection
of activity within buildings [27]. The adoption of UWB radar technology for activity recog-
nition in SBs shows promise for enhancing energy efficiency, occupant comfort, and privacy.
However, challenges such as generalization issues and sensitivity to changes in radar
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positioning should not be ignored. Overcoming these challenges requires developing more
adaptable ML algorithms and advancing radar hardware and signal processing techniques.
Once these hurdles have been addressed, incorporating FL could further enhance data
privacy, while optimizing building operations and occupant experiences. While this re-
search area is relatively new and not yet mature, it holds great potential for future research
directions intended at enhancing energy efficiency, occupant comfort, and privacy within
SB environments.

6.5. Occupant Localization

While both occupancy prediction and activity recognition are critical for optimizing en-
ergy efficiency within SBs, the importance of occupant localization cannot be ignored [169].
Occupancy localization allows us to track an occupant’s location inside a building. Us-
ing this information, we can deactivate appliances in areas where there are no occupants
and activate them when there are occupants nearby. There have been numerous studies
conducted that used this technique to improve the energy efficiency of buildings [170].
Nevertheless, there are gaps for further exploration, such as the control of complex sce-
narios, the scalability to the number of occupants, and the management of changes in
the environment in which localization is running [170]. Occupant localization is essential
for optimizing energy efficiency in SBs, allowing targeted control of appliances based on
occupant presence [169]. While increasing the number of sensors or radar can improve
precision, this raises cost considerations. Further exploration is needed to balance perfor-
mance and cost-effectiveness. Challenges include adapting to complex scenarios, scaling
to accommodate more occupants, and managing environmental changes. Future research
should focus on optimizing sensor placement, leveraging advanced data fusion techniques,
and exploring ML algorithms tailored for localization tasks, to enhance system performance
and scalability. Addressing these challenges will lead to more efficient and cost-effective
SB solutions.

7. Conclusions

This paper presented a review of several papers concerning occupancy prediction
within smart building environments. The study primarily focused on delineating various
monitoring technologies applicable to indoor settings, encompassing mobility sensors,
non-mobility sensors, cameras, radars, and smart meters. It highlighted that each of
these technologies carries distinct advantages and limitations, contributing to a nuanced
comprehension of their suitability for occupancy prediction scenarios.

Moreover, this paper delved into the diverse methodologies utilized for data process-
ing, encompassing analytical methods, ML algorithms, and various DL architectures. Each
technique was further divided into sub-branches, offering detailed explanations to enhance
readers’ grasp of the computational methodologies employed in occupancy prediction
models. Additionally, some other methodologies, such as federated and transfer learning,
were explored for their potential to enhance the privacy of model training data, as well as
to improve scalability and performance.

Furthermore, we discussed the challenges associated with occupancy prediction,
particularly regarding data gathering, data analysis, and the place in which algorithms
can be executed. Lastly, this paper contemplated potential future directions and proposed
approaches to overcome the aforementioned challenges.

Author Contributions: Conceptualization, I.K. and A.G.; methodology, I.K. and A.G.; validation, I.K.,
A.G., O.Z. and G.S.; investigation, I.K. and A.G.; resources, I.K., A.G., O.Z. and G.S.; data curation,
I.K.; writing—original draft preparation, I.K. and A.G.; writing—review and editing, I.K., A.G., O.Z.
and G.S.; supervision, A.G. and G.S.; funding acquisition, A.G. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was partially supported by: Project SoBigData.it, SoBigData.it received funding
from the European Union—NextGenerationEU—National Recovery and Resilience Plan (Piano



Sensors 2024, 24, 3276 38 of 44

Nazionale di Ripresa e Resilienza, PNRR)—Project: “SoBigData.it—Strengthening the Italian RI
for Social Mining and Big Data Analytics”—Prot. IR0000013—Avviso n. 3264 del 28/12/2021; the
National Research Council of Italy (CNR), “Le Scienze per le TRansizioni Industriale, Verde ed
Energetica”: Towards Sustainable Cognitive Buildings (ToSCoB) project, CUP B53C22010110001; and
European Union—NextGenerationEU—the Italian Ministry of University and Research, PRIN 2022
Project “COCOWEARS” (A framework for COntinuum COmputing WEARable Systems), grant n.
2022T2XNJE, CUP B53D23013190006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398.

[CrossRef]
2. Chwieduk, D. Towards sustainable-energy buildings. Appl. Energy 2003, 76, 211–217. [CrossRef]
3. Khan, I.; Greco, E.; Guerrieri, A.; Spezzano, G. Occupancy Prediction in Buildings: State of the Art and Future Directions. In

Device-Edge-Cloud Continuum: Paradigms, Architectures and Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 203–229.
4. Cicirelli, F.; Guerrieri, A.; Mastroianni, C.; Spezzano, G.; Vinci, A. The Internet of Things for Smart Urban Ecosystems; Springer:

Berlin/Heidelberg, Germany, 2019.
5. Al Dakheel, J.; Del Pero, C.; Aste, N.; Leonforte, F. Smart buildings features and key performance indicators: A review. Sustain.

Cities Soc. 2020, 61, 102328. [CrossRef]
6. Cicirelli, F.; Guerrieri, A.; Vinci, A.; Spezzano, G. IoT Edge Solutions for Cognitive Buildings; Springer Nature: Berlin/Heidelberg,

Germany, 2022.
7. Khan, I.; Guerrieri, A.; Spezzano, G.; Vinci, A. Occupancy Prediction in Buildings: An approach leveraging LSTM and Federated

Learning. In Proceedings of the 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive
Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), Calabria, Italy, 12–15 September 2022; pp. 1–7.

8. Khan, I.; Cicirelli, F.; Greco, E.; Guerrieri, A.; Mastroianni, C.; Scarcello, L.; Spezzano, G.; Vinci, A. Leveraging distributed AI for
multi-occupancy prediction in Cognitive Buildings. Internet Things 2024, 26, 101181. [CrossRef]

9. Khan, I.; Delicato, F.C.; Greco, E.; Guarascio, M.; Guerrieri, A.; Spezzano, G. Occupancy Prediction in Multi-Occupant IoT
Environments leveraging Federated Learning. In Proceedings of the 2023 IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber
Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Abu Dhabi, United Arab Emirates, 14–17 November
2023; pp. 36–43.

10. Chen, Z.; Jiang, C.; Xie, L. Building occupancy estimation and detection: A review. Energy Build. 2018, 169, 260–270. [CrossRef]
11. Ahmad, J.; Larijani, H.; Emmanuel, R.; Mannion, M.; Javed, A. Occupancy detection in non-residential buildings–A survey and

novel privacy preserved occupancy monitoring solution. Appl. Comput. Inform. 2021, 17, 279–295. [CrossRef]
12. Felgueiras, F.; Mourão, Z.; Moreira, A.; Gabriel, M.F. A systematic review of ventilation conditions and airborne particulate

matter levels in urban offices. Indoor Air 2022, 32, e13148. [CrossRef] [PubMed]
13. Ding, Y.; Han, S.; Tian, Z.; Yao, J.; Chen, W.; Zhang, Q. Review on occupancy detection and prediction in building simulation.

Build. Simul. 2021, 15, 333–356. [CrossRef]
14. Rueda, L.; Agbossou, K.; Cardenas, A.; Henao, N.; Kelouwani, S. A comprehensive review of approaches to building occupancy

detection. Build. Environ. 2020, 180, 106966. [CrossRef]
15. Li, T.; Liu, X.; Li, G.; Wang, X.; Ma, J.; Xu, C.; Mao, Q. A systematic review and comprehensive analysis of building occupancy

prediction. Renew. Sustain. Energy Rev. 2024, 193, 114284. [CrossRef]
16. Soleimanijavid, A.; Konstantzos, I.; Liu, X. Challenges and opportunities of occupant-centric building controls in real-world

implementation: A critical review. Energy Build. 2024, 308, 113958. [CrossRef]
17. Jin, Y.; Yan, D.; Chong, A.; Dong, B.; An, J. Building occupancy forecasting: A systematical and critical review. Energy Build. 2021,

251, 111345. [CrossRef]
18. Sun, K.; Zhao, Q.; Zou, J. A review of building occupancy measurement systems. Energy Build. 2020, 216, 109965. [CrossRef]
19. Zhang, W.; Wu, Y.; Calautit, J.K. A review on occupancy prediction through machine learning for enhancing energy efficiency, air

quality and thermal comfort in the built environment. Renew. Sustain. Energy Rev. 2022, 167, 112704. [CrossRef]
20. Mena, A.R.; Ceballos, H.G.; Alvarado-Uribe, J. Measuring indoor occupancy through environmental sensors: A systematic review

on sensor deployment. Sensors 2022, 22, 3770. [CrossRef] [PubMed]
21. Tien, P.W.; Wei, S.; Darkwa, J.; Wood, C.; Calautit, J.K. Machine learning and deep learning methods for enhancing building

energy efficiency and indoor environmental quality–A review. Energy AI 2022, 10, 100198. [CrossRef]

http://doi.org/10.1016/j.enbuild.2007.03.007
http://dx.doi.org/10.1016/S0306-2619(03)00059-X
http://dx.doi.org/10.1016/j.scs.2020.102328
http://dx.doi.org/10.1016/j.iot.2024.101181
http://dx.doi.org/10.1016/j.enbuild.2018.03.084
http://dx.doi.org/10.1016/j.aci.2018.12.001
http://dx.doi.org/10.1111/ina.13148
http://www.ncbi.nlm.nih.gov/pubmed/36437647
http://dx.doi.org/10.1007/s12273-021-0813-8
http://dx.doi.org/10.1016/j.buildenv.2020.106966
http://dx.doi.org/10.1016/j.rser.2024.114284
http://dx.doi.org/10.1016/j.enbuild.2024.113958
http://dx.doi.org/10.1016/j.enbuild.2021.111345
http://dx.doi.org/10.1016/j.enbuild.2020.109965
http://dx.doi.org/10.1016/j.rser.2022.112704
http://dx.doi.org/10.3390/s22103770
http://www.ncbi.nlm.nih.gov/pubmed/35632178
http://dx.doi.org/10.1016/j.egyai.2022.100198


Sensors 2024, 24, 3276 39 of 44

22. Qiang, G.; Tang, S.; Hao, J.; Di Sarno, L.; Wu, G.; Ren, S. Building automation systems for energy and comfort management in
green buildings: A critical review and future directions. Renew. Sustain. Energy Rev. 2023, 179, 113301. [CrossRef]

23. Hasan, K.; Pour Ebrahim, M.; Yuce, M.R. Real-Time People Counting Using IR-UWB Radar. In Proceedings of the Body Area
Networks. Smart IoT and Big Data for Intelligent Health Management: 16th EAI International Conference, BODYNETS 2021,
Virtual Event, 25–26 October 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 63–70.

24. Minoli, D.; Occhiogrosso, B. Ultrawideband (UWB) technology for smart cities IoT applications. In Proceedings of the 2018 IEEE
International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–8.

25. Mohammadmoradi, H.; Yin, S.; Gnawali, O. Room occupancy estimation through WiFi, UWB, and light sensors mounted on
doorways. In Proceedings of the 2017 International Conference on Smart Digital Environment, Rabat, Morocco, 21–23 July 2017;
pp. 27–34.

26. Baird, Z.; Gunasekara, I.; Bolic, M.; Rajan, S. Principal component analysis-based occupancy detection with ultra wideband radar.
In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Medford, MA,
USA, 6–9 August 2017; pp. 1573–1576.

27. Bouchard, K.; Maitre, J.; Bertuglia, C.; Gaboury, S. Activity recognition in smart homes using UWB radars. Procedia Comput. Sci.
2020, 170, 10–17. [CrossRef]

28. Han, H.; Jang, K.J.; Han, C.; Lee, J. Occupancy estimation based on CO2 concentration using dynamic neural network
model. In Proceedings of the 34th AIVC—3rd TightVent—2nd Cool Roofs’—1st Venticool Conference, Athens, Greece, 25–26
September 2013.

29. Taheri, S.; Razban, A. Learning-based CO2 concentration prediction: Application to indoor air quality control using demand-
controlled ventilation. Build. Environ. 2021, 205, 108164. [CrossRef]
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