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Abstract: Over the coming years, the advancement of driverless transport systems for people and
goods that are designed to be used on fixed routes will revolutionize the transportation system. There-
fore, for a safe transportation system, detecting and recognizing traffic signals based on computer
vision has become increasingly important. Deep learning approaches, particularly convolutional
neural networks, have shown exceptional performance in various computer vision applications. The
goal of this research is to precisely detect and recognize traffic signs that are present on the streets
using computer vision and deep learning techniques. Previous work has focused on symbol-based
traffic signals, where popular single-task learning models have been trained and tested. Therefore,
several comparisons have been conducted to select accurate single-task learning models. For further
improvement, these models are employed in a multi-task learning approach. Indeed, multi-task
learning algorithms are built by sharing the convolutional layer parameters between the different
tasks. Hence, for the multi-task learning approach, different experiments have been carried out
using pre-trained architectures like, for instance, InceptionResNetV2 and DenseNet201. A range of
traffic signs and traffic lights are employed to validate the designed model. An accuracy of 99.07% is
achieved when the entire network has been trained. To further enhance the accuracy of the model for
traffic signs obtained from the street, a region of interest module is added to the multi-task learning
module to accurately extract the traffic signs available in the image. To check the effectiveness of
the adopted methodology, the designed model has been successfully tested in real-time on a few
Riyadh highways.

Keywords: multi-task learning; deep learning; traffic signs; YOLOv7; self-driving vehicles; decision-
making

1. Introduction

As part of the development of autonomous transportation systems, particularly driv-
ing assistance systems, several manufacturers and laboratories have oriented their work
towards the exploitation of visual information due to its vital role in the detection of roads,
vehicles, pedestrians, and traffic signs. Using a camera as an onboard sensor has the
problem of external light intensity, further complicated as traffic signs are usually located
in a small portion of the acquired image in an outdoor environment with variable weather,
which increases the complexity of detection. Therefore, serious accidents may happen
when drivers miss traffic signs due to a complex detection environment [1]. Therefore,
it is imperative to overcome these barriers and accurately detect traffic signs in difficult
situations. As a result, this improvement will reduce road accidents and road congestion.

Traffic sign (TS) recognition is the main issue for a driver assistance system as it has
a dual role in warning and guiding the driver. However, detection and recognition of
such signs is indeed challenging as their appearances are not consistent between countries.
To overcome such challenges, existing methods could be modified with proper feature
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extraction and classifiers created from scratch to handle all sign categories. However, this
solution would be a time-consuming task.

Recent advances in deep learning have shown promising results in the detection and
recognition of general objects. Using a deep neural network model to extract the effective
features from a road image is more effective than the conventional traffic sign recognition
(TSR) algorithms. Such a neural network model simulates the structure of the human brain
during the processing of information, which has the potential to improve the robustness and
generalization of the algorithms [2,3]. In deep-learning models, millions of data instances
are usually needed to learn accurate parameters. However, such requirements for high-size
datasets cannot always be satisfied in practical applications. In such circumstances, multi-
task learning (MTL) has proved to be an efficient recipe for exploiting useful information
from other learning tasks that are related to the same problem, therefore alleviating this data
sparsity problem. In an MTL model, machine learning paradigms are trained jointly with
data acquired from multiple tasks, applying shared representations. Such representations
boost the prediction performance and can probably improve the active learning speed.
Furthermore, they help to lessen the recognized deficiencies of deep learning, namely
the large-scale data requirements and computations [4]. In the domain of autonomous
transportation systems, automated recognition of traffic signs has emerged to be a fertile
research problem. Such systems have to be fast and efficient enough to detect traffic signs
in real-time contexts and identify these signs precisely.

This paper is mainly focused on applying deep learning models with multi-task learn-
ing (MTL) to enhance the performance of autonomous navigation systems by increasing
the recognition rate of traffic signs without country restrictions. To this end, an adequate
dataset has been chosen (the most popular traffic signs). Indeed, traffic signs on the road
are often blurry with low illuminance, which increases the complexity of the detection and
classification of the autonomous driving system. To this end, the methodology followed to
achieve the goal consisted of numerous steps, which are summarized below.

1. Recognition of synthetic traffic signs: select the most accurate deep neural network
architectures from the single-task learning processes.

2. Use these CNN models in MTL (soft and hard parameter sharing structures) with
different structures of learning (fine-tuning approach or training the entire network).

3. In the real world, the TSR needs to locate the traffic sign on a picture taken from the
street. YOLOv7 was chosen and added to the architecture with the highest accuracy
(MTL-SS).

4. Add a decision maker that explains the predicted traffic sign, which will be mapped
to the action to be taken by the agent.

Therefore, the key contributions of this paper can be highlighted as follows:
A new deep learning model based on a convolutional neural network (CNN) com-

bined with a YOLOv7 module is developed based on multi-task learning to improve the
recognition rate for the traffic signs acquired by an autonomous system from the street.

2. Related Work

In the context of self-driving vehicles, various studies have been reported in the
literature to investigate traffic sign detection and recognition problems using different
approaches. In this section, works related to TSR based on image processing and machine
learning are first addressed. After, the MTL architectures related to TSR are discussed.

2.1. Traditional Methods Based on Computer Vision and Machine Learning

Before the development of deep neural networks, traffic sign recognition focused on
approaches based on several feature extraction methods combined with machine learning
algorithms for classification purposes. The authors in [5] provided a critical review of traffic
sign detections using computer vision segmentation and feature extraction. Although the
authors in [6] presented a fairly thorough comparison of different segmentation approaches,
this work covered only the use of segmentation. A dynamic pixel aggregation technique
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using the hue, saturation, and value (HSV) color space was proposed by the authors
in [7]. The authors in [8] proposed a system that performs segmentation of chromatic and
achromatic scene elements combined with a machine learning algorithm (SVM) and sign-
shape classification using Fourier descriptors. The authors in [9] proposed to extract a red
bitmap from the acquired image to detect the circular shape of traffic signs. Experimental
results show that the method is efficient even in bad lighting conditions. However, this
method is efficient only for circle-shaped traffic signs. The histogram of oriented gradients
(HOG) is considered the most widely used feature extraction. The authors in [10] suggested
a model based on traffic sign extraction built on a color probability model and a color HOG.
The classification is performed using a CNN classifier. The random forest classification
algorithm has been also used in [11], while in [12], the authors used shape and pictogram
classification using support vector machines.

In recent years, the performance of traffic sign recognition has been increased by
the introduction of deep machine learning algorithms. A comprehensive review of the
methods using traditional machine learning and based on deep learning was provided
in [13]. The authors in [14] implemented a detector by adopting the faster R-convolutional
neural network (R-CNN) framework combined with the MobileNet architecture. The goal
of the research achieved in [15] was a lightweight CNN to permit easy implementation, and
the improved network LeNet-5 model was chosen for the classification of road signs. The
authors in [16] raised the shortcoming of TSR methods based on using an end-to-end CNN.
So, they proposed a finely crafted feature based on the color-histogram-based features and
HOG features. The dimension of the extracted features is reduced by PCA, which reduces
the running time of traffic sign recognition significantly.

2.2. Traffic Sign Recognition Based on Multi-Task Learning Approaches

Deep neural networks have been used for traffic sign recognition and have obtained
promising results. However, most of the previous work is confined to one specific task of
recognition, which restricts the achievement of high performance due to many parameters
(like, for instance, a reduced dataset size). Therefore, the objective of multi-task learning [4]
is to increase the generalization performance of all tasks, achieved individually, by utilizing
valuable information available in numerous related tasks. To this end, the authors in [17]
proposed a fast and accurate multi-task learning-based architecture for joint segmentation
of drivable areas, lane lines, and classification of the scene. On the other hand, the authors
in [18] applied a multi-output DNN model for simultaneously learning multi-task traffic
classifications. The model is combined with a one-shot learning process. A new data-driven
system to recognize all categories of traffic signs was proposed in [19]. The system includes
both symbol-based and text-based signs captured from video sequences. The module
contains three sub-systems. Detection occurs using traffic sign regions of interest. Then, a
multi-task convolutional neural network is trained with a large amount of data for accurate
classification and recognition. The third sub-system includes a post-processing module to
make a recognition decision.

3. Multi-Task Deep Learning for Synthetic Traffic Sign Recognition

Rather than single-task learning, a new model is proposed in this study based on a
multi-task learning approach. In this section, the multi-task learning approach and its
advantages as compared to single-task learning are first presented. The concept of soft
and hard parameter sharing in MTL is also discussed. Then, the proposed traffic sign
recognition system is presented and discussed.

3.1. Multi-Task Learning Approach

Multi-task learning (MTL) is an efficient approach to train models using data gath-
ered simultaneously from multiple tasks [20]. Shared representations are used to obtain
common concepts and ideas from relevant tasks and consequently enhance accuracy and
performance. They lead to faster learning as compared to a single task. Moreover, they
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help to mitigate the need for a large amount of data. In deep learning, MTL focuses on
learning representations through either hard or soft parameter sharing of hidden layers of
neural networks between all tasks [20]. Hard parameter sharing, shown in Figure 1b, is the
most often used MTL technique. It is about sharing the hidden layers across all tasks while
maintaining numerous task-specific output layers. The shared representations will help the
model to reduce overfitting and increase the data efficiency. In contrast, a model using soft
sharing has individual sets of parameters for each task, as shown in Figure 1a. Note that
this work focused on this architecture.
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Consequently, in this paper, the MTL approach is applied for a self-driving automated
system to recognize a traffic sign. The MTL model is based on deep neural network
architecture (CNN) to accurately extract the features from synthetic traffic sign frames.
The model is trained jointly using two different datasets (traffic signs and traffic lights).
Therefore, the MTL model accepts a synthetic sign image as input for both datasets and
produces object labels as output.

Note that a sample of synthetic traffic signs that are sharp and clear is shown in
Figure 2.
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To choose the best architecture, firstly, multiple models using single-task learning
were investigated and trained on the traffic signs and traffic lights datasets. Afterward, the
optimal architecture was used in the MTL approach. Subsequently, a series of steps were
performed to obtain the final output of the model and identify the type of traffic signal.
Thus, the methodology to achieve the main goal of this research paper is to develop an
accurate recognition system with an optimal decision for the agent.

3.2. Proposed Model

The overall proposed model is illustrated in Figure 3. In the first step, several prepro-
cessing techniques such as data augmentation are applied to the input images. Using the
YOLOv7 model, the region of interest areas are extracted from each image, which contain
the coordinates of the road signs. After that, an MTL-CNN model is built to classify the
signs. Finally, the optimal decision is taken to assist the driving process of the vehicle.
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Note that for the classification block, numerous experiments are carried out utilizing
the various architectures shown in Figure 1 to attain the designated aim starting from STL
to MTL (MTL-HS and MTL-SS). The steps are briefly illustrated as follows:

1. It is known that multi-task learning can benefit from transfer learning (with a pre-
trained model), where knowledge learned from one task is transferred to another
related task. To this end, the well-known architectures have been trained indepen-
dently using STL. Figure 4 shows the resultant pre-trained models that will be used in
MTL. The details of this part are given in [23].

2. For MTL-HS, a conventional hard weight-sharing approach is used, in which the task
datasets are merged and a deep neural network is used without task layers. This
architecture is named in this work as MTL-HS.

3. To create a soft-shared neural network architecture, previous pre-trained neural
network (PCNN) models are used as task-specific layers. The output of these PCNNs
is concatenated to a new CNN as a shared layer between these two tasks (see Figure 5).

4. A region of interest (ROI) module is added based on the CNN architecture to ex-
tract the location of the traffic signs and the synthetic traffic lights from the street
view images.
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3.3. Region of Interest (ROI) Module

YOLOv7 (You Only Look Once version 7) is the latest official YOLO version which
was released in July 2022 [24]. It is a fast and accurate real-time object detector that
outperforms many object detectors such as YOLOR, YOLOX, ScaledYOLOv4, YOLOv5,
DETR, Deformable DETR, DINO-5scale-R50, and ViT-Adapter-B in terms of speed and
accuracy. It is used in many real-time applications such as self-driving cars, robotics, video
analytics, and multi-object tracking. The author in [25] describes the structure of YOLOv7;
it contains mainly the following parts: an input module, a backbone feature extraction
network, feature pyramid networks, and a YOLO head classifier. This module was trained
on the LISA-GTSLDB dataset from scratch to detect both traffic lights and traffic signs
in real-time and extract the ROIs from the road image. The ROI module returns the X-
coordinate of the top-left corner, the Y-coordinate of the top-left corner, the X-coordinate of
the bottom-right corner, and the Y-coordinate of the bottom-right corner of the traffic sign
bounding box, which defines the ROI of the image. As shown in Figure 6, the image is fed
into the ROI module as an input, and the ROI module extracts the regions of interest from
the image.
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3.4. Decision-Making Module

The decision-making method is added to take the optimal decisions for each class. The
decision can be viewed as the action to be taken by the agent. In this work, a Pandas data
frame is used to correlate each sign with its decision. Essentially, it contains four columns:
the ID of each class, the definition image, the label name, and the decision of each sign in
the LISA-GTSLDB dataset. Such a data frame is used after extracting the ROIs from the
image and making the prediction by MTL-CNNs. In this case, the correct decision will be
made based on the class ID. For every prediction, there is a specific decision that is applied
from the data frame. The data frame takes the output from the MTL model and makes a
suitable decision for the self-driving car agent.

Figure 7 shows the different blocks of the entire system. A full example of the process
is illustrated in Figure 8. The ROI module extracts a synthetic traffic light as a region of
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interest, and the MTL model classifies it as a green traffic light; therefore, the final decision
for the car is to go.
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4. Experimental Results and Discussion

This section presents the results of the conducted experiments. First, the employed
datasets in this study are briefly introduced. Then, the experimental results, particularly in
the city of Riyadh, are presented. Scripts, based on Google Colab with Python 3.10, were
created for training and testing stages. These scripts have been carried out on the 12th Gen
Intel® Core ™ i7-127000-2.10 GHz (Intel, Santa Clara, CA, USA) with NVIDIA GTX 1600 Ti
(NVIDIA, Santa Clara, CA, USA).

4.1. Datasets

Three different datasets that are taken from the urban environment were employed
to perform the experiments, composed of the German traffic sign recognition benchmark
(GTSRB) [21], the German traffic sign detection benchmark (GTSDB) [22], and the LISA
traffic light (LISATL) dataset [26]. These datasets were selected to carry out the experimental
work. The datasets are unbalanced; therefore, data augmentation such as rotation, zooming,
and cropping was performed using the augmenter package in Python to equalize the
histograms of the datasets and improve the generalization capability before training the
model [27].

GTSRB Dataset [21]: This dataset contains more than 50,000 images of traffic signs
under 43 different classes with imbalanced class frequencies. In this study, the data is
divided into 31,368 samples for training, 7841 samples for validation, and 12,630 samples
for testing purposes.

GTSDB Dataset [22]: The GTSDB dataset is mainly used for image detection and
image-based driver assistance applications. Each image in the dataset contains zero to six
traffic signs. It is a successor to the GTSRB dataset. Like GTSRB, GTSDB contains more
than 50.000 images with 43 different classes.

LISA Dataset [26]: This dataset contains more than 85.000 images of traffic lights under
seven different classes (Go, Stop, Warning, Go forward, Go left, Warning left, Stop left) with
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imbalanced class frequencies. In this study, the data is also divided into 41,462 samples for
training, 10,364 samples for validation, and 36,534 samples for testing purposes. Note that
only three of the classes (Go, Stop, and Warning) were used for training and testing.

In the work presented in [23], the three datasets were used for single-task learning, as
mentioned previously, to determine the best architecture to be used in MTL. In this work,
these datasets were integrated as follows for multi-task learning:

LISA-GTSRB Dataset: It is worth mentioning that the GTSDB dataset does not contain
any traffic light classes. Therefore, traffic light annotations have been added to the GTSDB
by merging it with the LISA dataset. Thus, the final dataset is referred to as the LISA-
GTSDB dataset.

LISA-GTSDB Dataset: This merged dataset contains 46 classes. Among the 46 classes,
there are 3 classes for the first task and the remaining 43 classes for the second task. The
first task is to detect traffic lights, while the second task is to detect traffic signs. Each class
has a specific meaning and decision for the car. This process was performed by creating
a CSV file that contains the important information for linking the sign signal with an
appropriate decision.

Performance metric: In this work, the performance of different models is evaluated
using testing samples from the dataset, and the accuracy, which is the overall percentage of
correct predictions, of the overall testing samples is given by:

Accuracy(ACC) =
(TP + TN)

(TP + FP + TN + FN)
(1)

where TP stands for true positives, TN denotes true negatives, FP means false positives,
and FN stands for false negatives. The Adam optimizer is used, with a learning rate of
0.0001 and a number of epochs of 20.

4.2. MTL Hard Sharing (MTL-HS)

In this subsection, different structures were tested for task layers in MTL-HS. Five
types of pre-trained models, MobileNet, InceptionV3, DenseNet201, Xception, and Incep-
tionResNetV2, were tested as a hard-shared layer on our merged dataset. Note that the
pre-trained models reused in MTL-HS without task layers outperformed the architectures
with specific task layers. CNNs and fully connected networks (FCNs) were added to these
PCNNs for classification training purposes. Further, two types of loss functions are used:
the standard loss function and the joint weighted loss function. The weighted loss function
is given by Equation (2):

Ltotal = γLTask1 + (1− γ)LTask2 (2)

where γ ∈ [0, 1] is the weighting factor, and LTask i is the loss function of task i.
Once the models are set up, the supervised learning process is carried out using the

following steps:

1. Importing the libraries
2. Importing the dataset.
3. Preprocessing and data augmentation,
4. Split dataset into training and testing parts.
5. Merge dataset into training and testing parts (LISA-GTSRB or LISA-GTSDB).
6. Specify the optimal hyperparameters.
7. Train the model (MTL-SS or MTL-HS) and evaluate the performance during the

training process.
8. Plot the accuracy of the testing dataset.

As a result, it can be observed from Table 1 that the best pre-trained MTL-HS model
with a standard loss function is Densenet201, with accuracy equal to 98.56%, while Incep-
tionV3 achieves the best results when the gamma is equal to 0.5 (tasks are equally weighted),
and DenseNet201 is superior when the gamma equal to 0.25 or 0.75, with accuracies of
97.86% and 98.16%, respectively.
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Table 1. Test accuracy of MTL-HS on the merged dataset.

MTL-HS
Architecture

Accuracy with Categorical
Cross-Entropy Loss

Accuracy with Weighted Joint Loss

γ = 0.25 γ = 0.5 γ = 0.75

MobileNet 98.32% 97.36% 97.66% 96.45%
InceptionV3 97.65% 95.74% 97.81% 97.80%
DenseNet201 98.56% 97.86% 94.93% 98.16%

Xception 97.58% 97.67% 95.88% 97.35%
InceptionResNetV2 98.19% 96.36% 97.54% 95.15%

4.3. MTL Soft Sharing (MTL-SS)

As was mentioned previously, many experiments have been conducted to determine
the best architecture using MTL-SS. Note that only reasonable accuracies are shown in
this work. Five experiments were performed using the pre-trained architectures Incep-
tionResNetV2 and DenseNet201 since they produced the highest accuracies among other
architectures during the single-task learning [23]. These pre-trained architectures were
used at the task layer level. Table 2 describes the different changes incorporated into the
different architectures used in single-task learning. The accuracy of the conducted experi-
ments using soft sharing parameters is summarized in this table, where it can be observed
that the highest accuracies of 98.96% and 99.07% were achieved under experiments 4 and
5, respectively.

Table 2. Test accuracy of MTL-SS architectures.

Number Architecture Model Accuracy

1

Concatenated the output layers of the previous PCNNs (see Figure 1a
for the architecture), added three classification layers (dense layers)
with 1024 neurons each, and flattened the output layer with 46 neurons
(Task 1 and 2). Note that the training was performed on the
classification layers only.

98.05%

2
Used the same architecture except that only two classification layers
with 1024 neurons were added with dropout layers to minimize
overfitting in the network.

98.06%

3
Used only the extracted features of the two PCNNs (task layers) and
added only one classification layer with 128 neurons and an output
layer with 46 neurons.

97.91%

4 Used the same architecture as in experiment 3, but with an RMSprop
optimizer to train the network. 98.96%

5
In the previous experiments, training focused only on the shared layers
and classification layers. However, in this experiment, the entire
network was trained (task layers and shared).

99.07%

4.4. Experimental Result in Riyadh

Real-time experiments were performed to demonstrate the efficacy of the developed
model. In fact, images of Riyadh’s traffic signals were captured on a camera mounted on
a car starting from the Qurtuba neighborhood and ending with Turki Al Awwal Street.
Then, the images were fed into the system. A sample of the obtained experimental results
is provided in Table 3, which highlights the effectiveness of the proposed solution. Some
experiments were also conducted in the nighttime. Although the obtained results were
satisfactory, it is worth mentioning that the results obtained during the day were more
accurate than those acquired at nighttime.
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Table 3. Experimental Result in Riyadh.

No. Image from the
Street

Output from the ROI
Module Sign Name Decision
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5. Comparison with Existing Works

In comparison with relevant studies that exist in the literature, it can be observed
that there are no studies that deal with the YOLO module, MTL, and decision-makers in
a unified framework. For fair comparison, the proposed model is only compared with
relevant works that employed MTL, as it is the main focus of this study. The comparison
results are summarized in Table 4, wherein bold is used to represent the results of the
proposed model.
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Table 4. Comparison results with the existing literature (Bold represents the proposed models).

Model Dataset Accuracy

A shape symmetry detection algorithm [28] GTSDB 93.96%

CNN [29] GTSDB
GTSRB 98.64%

R-CNN [17] BDD 78.4%

A cascaded R-CNN [30] GTSDB 98.7%

A cascaded R-CNN [30] LISA 98.9%

MTL-SS (Training entire network) LISA-GTSDB 99.07%

MTL-HS (DensNet201 as HS layer) LISA-GTSRB 98.56%

6. Conclusions

Many countries plan to introduce self-driving vehicles to increase the safety of the
transportation system and reduce road accidents. Traffic sign recognition is a major factor
in road transportation safety. This work investigated traffic sign recognition as an impor-
tant factor in self-driving vehicles. The main goal of this work is to further increase the
recognition rate of traffic signs and lights of an autonomous system using images taken
from the street with adverse weather conditions. Multi-task learning has advantages such
as faster model convergence due to shared representation, which was used to recognize
synthetic traffic signs. Since, on the road, synthetic traffic signs are difficult to locate, a
recognition module based on YOLOV7 was added to the MTL module to locate and extract
the desired traffic sign from the road images. Therefore, the multi-task approach was
chosen for its benefits in improving prediction accuracy and increased data efficiency. The
traffic sign (task 1) and traffic light (task 2) datasets were merged and used with several
architectures based on deep learning approaches. It is notable that this work started with
a single-task learning approach to choose an optimal model with high accuracy to be
used in the MTL approach. Afterward, different architectures based on MTL wre built
and experimented with evaluation using a testing dataset. Indeed, five different archi-
tectures were utilized, where the best achieved accuracy was about 98.96% (MTL-HS). In
MTL-SS, the proposed model achieved a test accuracy of 99.07% when the entire network
was trained. Based on the obtained results under the decision-making method, it also
was observed that YOLOv7-ROI accurately located traffic signals and lights from images
taken in the street. The entire developed system was effectively tested in real-time on the
roads of Riyadh. Consequently, it is highly recommended to employ multi-task learning to
effectively recognize street traffic signs, as it achieves the highest accuracy as compared
to other approaches. Future work includes evaluating the proposed system on different
datasets and analyzing its performance. Further, the drawback of the developed model
in recognition of the traffic signs is its performance at night. This issue can be resolved by
including detection algorithms for low-illumination and night scenes.
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