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Abstract: This paper presents an overview of integrating new research outcomes into the development
of a structural health monitoring strategy for the floating cover at the Western Treatment Plant (WTP)
in Melbourne, Australia. The size of this floating cover, which covers an area of approximately
470 m × 200 m, combined with the hazardous environment and its exposure to extreme weather
conditions, only allows for monitoring techniques based on remote sensing. The floating cover
is deformed by the accumulation of sewage matter beneath it. Our research has shown that the
only reliable data for constructing a predictive model to support the structural health monitoring of
this critical asset is obtained directly from the actual floating cover at the sewage treatment plant.
Our recent research outcomes lead us towards conceptualising an advanced engineering analysis
tool designed to support the future creation of a digital twin for the floating cover at the WTP.
Foundational work demonstrates the effectiveness of an unmanned aerial vehicle (UAV)-based
photogrammetry methodology in generating a digital elevation model of the large floating cover.
A substantial set of data has been acquired through regular UAV flights, presenting opportunities
to leverage this information for a deeper understanding of the interactions between operational
conditions and the structural response of the floating cover. This paper discusses the current findings
and their implications, clarifying how these outcomes contribute to the ongoing development of an
advanced digital twin for the floating cover.

Keywords: unmanned aerial vehicle; photogrammetry; structural health monitoring; prognostics;
diagnostics; large critical structures; non-contact assessment; digital twin

1. Introduction

Large membrane-like covers perform various environmentally sensitive roles, includ-
ing (i) serving as floating covers for clean water reservoirs to mitigate evaporation and
contamination; (ii) acting as liners for landfills to prevent the leakage of hazardous chem-
icals or substances; (iii) being utilised in mining applications such as heap leaching, salt
evaporation ponds, and tailings impoundment [1]; and (iv) functioning as floating covers
for anaerobic lagoons in wastewater treatment plants. Floating covers are vital assets at
Melbourne Water’s Western Treatment Plant (WTP) in Werribee, Victoria. These covers
typically span an area of 470 m × 200 m (refer to Figure 1), and are made from high-density
polyethylene (HDPE). Known for its exceptional durability, HDPE for geomembranes has
demonstrated, through accelerated testing, a service life exceeding 300 years at 20 ◦C and
over 45 years at 40 ◦C [2,3]. As a result, well-designed HDPE geomembranes are anticipated
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to provide long-lasting performance without significant issues. These covers represent
high-value assets, with construction and installation costs of tens of millions of dollars.
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All sewage inflow remains unscreened and initially passes through the anaerobic
section of the lagoon. The floating cover plays a crucial role in environmental conservation
by capturing biogas generated during the anaerobic digestion of raw sewage. This biogas
is converted into renewable electricity, surpassing the plant’s energy consumption needs.
Thus, the floating cover emerges as a vital asset for renewable energy generation, contribut-
ing a significant role in environmental, social, and economic savings by preventing the
escape of odours and biogas into the atmosphere.

However, accurately assessing the real-life mechanical performance of HDPE poses
challenges [4]. The entry of untreated wastewater into the anaerobic lagoons leads to
the formation and accumulation of solidified matter, or scum, underneath the covers,
forming large volumes known as scumbergs. These scumbergs exert pressure against the
covers, causing deformation with a vertical-length scale of around one meter (uplift) and
several meters laterally. Hydraulic loading from the inflow of sewage can cause lateral
displacement of the scumbergs, resulting in excessive displacement and mechanical stress
on the covers, particularly in regions near the welded joints (refer also to [4]). This issue
could disrupt biogas collection channels integrated within the cover, potentially reducing
the efficiency of renewable energy collection. Therefore, managing and maintaining this
critical asset for safe and efficient functionality is crucial.

Enhancing the ability to assess integrity efficiently will improve current practices,
which rely on subjective and time-consuming visual walk-around inspections. Further-
more, the current inspection process lacks advanced warning of potential failures or clear
indications of distress in the covers. Additionally, effective integrity management and
maintenance of the floating cover’s integrity are essential for planning future cover replace-
ment programs, potentially delaying such replacement and leading to significant financial
savings for the asset operators. Recognising the importance and impact of such covers,
the research team at Monash University seized the opportunity to work with Melbourne
Water and investigate the application of recent advancements in structural health moni-
toring (SHM) technologies. The aim is to incorporate these innovations into pioneering
engineering and maintenance “products”, ensuring the safe and efficient operation of this
critical, valuable, and sizable infrastructure.

Remote sensing technology has become indispensable in today’s world, offering a safe
and efficient means to collect crucial data, thus providing invaluable insight that informs
decision-making across various disciplines [5–11]. An exemplar of this is the recent COVID-
19 pandemic, underscoring the need for remote sensing for inspections or monitoring. For
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instance, a case study [12] used imaging techniques mounted on a robotic platform to
monitor the patient’s temperature and respiratory rate. This non-contact measurement
approach significantly reduces the risk to clinicians and prevents disease transmission.
Mounting of sensors on UAVs offers an attractive alternative. Indeed, UAV-based structural
health assessment strategies are widely reported, especially for inspecting and monitoring
large structures or facilities. Several real-life case studies of these works include those
reported in [6–11,13]. Furthermore, the study by Tsaimou et al. [14] resembles the work
presented in this paper. The acquisition and manipulation of digital elevation models
(DEMs) and mapping regions of distress were integral to their new condition assessment of
port infrastructure. They used a UAV-enabled strategy to inspect the concrete surfaces and
rubble mound structures. The ability to cover a large area is a testament to the efficiency
of this technique. One significant advantage of a UAV-enabled inspection strategy is the
ability to access hard-to-reach areas within structures and incorporate various remote
sensing devices onboard [7]. Combining thermal images with optical images from UAVs
significantly improves this remote sensing capability’s ability to detect features that one
would miss when using only optical techniques. The most striking aspect of UAV-based
methodologies is that these techniques integrate with analytical response models, which
greatly enhance the capabilities of structural health assessment [10]. The UAV served
as a remote sensing device to acquire data that were incorporated into a finite element
(FE)-based damage model for damage assessment.

For Melbourne Water’s floating covers, only remote sensing-based monitoring tech-
niques are suitable for the cover’s large size, the potentially explosive and hazardous
environment due to biogas, and exposure to extreme weather conditions. Additionally, the
science behind the formation and development of scumbergs from raw sewage beneath
the cover remains an ongoing area of research. In addition, the scale of the formation of
this matter and the hydrodynamics of the continual sewage flow into the lagoon defy con-
ventional laboratory-based analysis tools for predicting scumberg formation. Our research
has shown that the most reliable data for constructing a predictive model to support the
structural health monitoring of this critical asset come directly from the actual floating
cover at the sewage treatment plant. This paper presents a real-life case study of using
UAV-based remote sensing capability for the SHM of this large floating cover.

In this industry-collaborative project, recent case studies [10,11,14] have demonstrated
the efficacies of UAV-based remote sensing capability. This paper presents the research
team’s innovative use of UAVs, equipped with optical cameras and GPS tracking, to moni-
tor floating covers at the WTP. This UAV-enabled remote sensing capability was used to
acquire data on the deformation of the floating cover due to the accumulation of matter
beneath it. These data were instrumental in developing a time-progressing model that
describes the accumulation process in ways that the current chemical knowledge cannot
predict. We aim to harness UAV technology as a means for remote data collection, serving
as primary inputs into analytics for meticulous processing and analyses to yield essential
parameters to monitor the responses of the asset for management and maintenance. In
the case study presented in this paper, data acquired by the UAV were analysed with a
series of algorithms to provide insights into the covers’ behaviour under various opera-
tional conditions. This data acquisition and processing method enables economical, safe,
and effective terrain mapping and integrity assessments, which are pivotal for evaluating
structural integrity through non-contact methods. The effectiveness of this approach is
highlighted by regular UAV surveys that generate DEMs at various times and produce
comprehensive datasets. These datasets have been instrumental in improving the man-
agement and maintenance of the covers, including monitoring the formation of scum and
scumbergs beneath them. Furthermore, this paper explores the potential for developing
advanced diagnostic and prognostic tools to optimise this vital asset’s upkeep. Inspired
by practices and the conceptual framework used in the aerospace industry, the aim is to
establish an exemplary case study for developing a digital twin, ultimately revolutionising
the approach to managing and maintaining floating covers.
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2. Research Methodology

This paper aims to assemble the research outcomes from our focused studies to deliver
a UAV-enabled remote-sensing case study on the SHM of a large floating cover. The
nature of the problem addressed in this paper and the cover’s size preclude using small
laboratory-scale experiments to develop monitoring strategies. The research team was
required to conduct full-scale field data collection over several months to validate the
floating cover’s DEM. These DEMs were then used to provide a variety of parameters to
predict (a) the depth of matter (i.e., scum) accumulated under the floating cover, (b) the
hardness of the scum formed under the cover, and (c) the gross movement of the cover, and
(d) to estimate the strain on the cover. Wherever possible, these derived quantities were
correlated with manual field data collected by the operators at the WTP. The work by [15]
is an excellent example of the integration of “smart sensors” into smart grids (i.e., a form
of smart structure), providing incisive insights on how smart sensors not only define the
system’s intelligence but also emphasise the significance of interoperability among them.

The ability to determine the depth and hardness of the matter accumulated has direct
operational implications for cover maintenance. These two parameters affect the cover’s
ability to perform as a biogas harvester. Furthermore, determining the gross movement of
the cover provides essential information to the operator of the WTP regarding the impact
of operational decisions on the cover’s response and its structural integrity.

The results presented below demonstrate the effectiveness of this UAV-enabled remote
sensing capability in delivering functional parameters for managing the floating cover.
Any activity to remove the scum material formed beneath the floating cover would cost
several millions of dollars in actual capital works, loss of electrical power generation from
the inability to harness the biogas, and the release of the ozone-damaging gas into the
environment. Therefore, integrating the research outcomes from a series of individual
projects into SHM capability demonstrates the translation of research outcomes into a
real-life case study. Furthermore, this integration supports the proposed use of these
outcomes towards a knowledge-driven maintenance and management strategy for this
critical infrastructure.

There is significant interest in digital twin technology in both industry and academia [16–19],
as well as in the water industry [17,20,21]. Digital twins can facilitate a transition towards proactive
management. In this management style, various processes and assets are strategically operated and
maintained to preemptively address disturbances and other potential issues, thereby preventing
significant detrimental effects on performance [21]. A case study [19] on a digital twin developed
for the Singapore PUB Changi Water Reclamation Plant not only provided a 5-day hourly
forecast and enabled operations in a safe environment under extreme conditions (i.e., emergency
shutdowns, high flows, and equipment failure) but also enabled a more proactive operational
mode through the use of information provided by the digital twin. Nevertheless, numerous
studies indicate the necessity and importance of a framework and well-defined architecture
tailored to the specific system for transitioning towards digital twins [16–18].

In SHM, integrating digital twins offers a powerful tool for predictive maintenance
and is increasingly integrated into modern engineering practices [22–24]. Essentially, SHM
systems provide the necessary data that feed into the digital twin, allowing for the real-time
monitoring and assessment of structural integrity. The combination of SHM and digital
twins enhances predictive maintenance capabilities by enabling decision-makers to visu-
alise the impact of potential decisions and implement proactive strategies for maintenance
and repair. This synergy not only improves the safety and longevity of structures but also
optimises operational efficiency and reduces unnecessary expenditure by allowing for the
precise timing of maintenance and repairs before significant damage occurs [22].

Buderath’s gap analysis work for the Aerospace Industry Steering Committee on
Structural Health Monitoring, SAE International (AIR), expounded on the various stages of
development of SHM in aerospace asset monitoring and assessment. Table 1 shows the
interpretation and translation of these concepts to the floating cover. This translation will
involve gap analysis to improve the end-to-end process in data collection and processing,
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asset state characterisation, and structural and performance assessment. We seek to use
Buderath’s work to frame the progression and development of our SHM methodology for
the floating cover at the Western Treatment Plant.

Table 1. Relevance of SHM concepts to the floating cover.

Category of Health and
Integrity Assessment Capabilities Relevance to Floating Cover

Simple Diagnostic
Cover deformation; presence

of defects as a function of
time; leakage detection

Advanced Diagnostic + prognostic

What are the implications of
these measurands on
Integrity of the cover

Performance of the cover
(methane harnessing and

sewage processing)
Maintenance actions

Complex

Diagnostic + prognostic +
bidirectional communication

(e.g., recalibration and
reconfiguration)

Assessing the impact of
maintenance actions on
State of deformation of

floating cover
Performance of floating cover

Calibration of the factor of
safety in the cover

Configuring the maintenance
plans

Complex+

Diagnostic + prognostic +
bidirectional communication +

maintenance planning
Definition of “maintenance

credit”

Development of a digital twin
capable of health and

prognostic monitoring of this
key asset

Definition of maintenance-free
concept for the floating cover

The research methodology for transitioning through the various stages of development
of the SHM methodology for the floating cover is illustrated in Figure 2. The UAV serves as
the primary sensor for this monitoring procedure, delivering the DEM of the floating cover,
which is the fundamental outcome of “simple” SHM. The digital information contained
within the DEM was curated to provide parameters supporting our “advanced” SHM,
enabling the monitoring and assessment of the floating cover’s response to changing opera-
tional input conditions. Here, we will be able to diagnose the extent of scum accumulation
and also track its progression under consistent conditions (i.e., prognostics). The work
presented in this paper then describes our pathway towards a “complex” and “complex+”
SHM methodology, incorporating the potential of a digital twin for the floating cover.
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3. Datasets Acquired from the UAV-Enabled Photogrammetry

Data collection, processing, enhanced diagnostics, and prognostics are the funda-
mental engineering functions that define structural health assessment capability. The
UAV-enabled photogrammetry methodology acquires datasets to characterise the floating
cover response, i.e., changes in elevation and volume [25–28], which has provided further
insights for scheduling its maintenance.
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The summary below provides an overview of our WTP work’s UAV-based data
collection capability. It also outlines a series of data processing conducted to provide an
understanding of this asset’s response to operating conditions over time. These works are
essential building blocks towards diagnostic and prognostic capability. It is also important
to note that this development process is industry agnostic, with the floating cover at WTP
being an excellent case study.

This capability currently generates advisories to assist with the management and
maintenance of the asset. Due to the voluminous data, a significant amount of preprocessing
(i.e., resampling, reducing dimensionality, etc.) needs to be performed to ensure the data
are of “high quality,” such that meaningful data are retained and the others are redundant,
hence removed for more expedited analysis, reporting, and modelling. This work also
underscores the need to develop helpful analysis tools to translate the large datasets to
derive appropriate engineering quantities to understand the response of the floating cover.
These tools will be the foundation of the engineering “products” for the floating cover
management and maintenance team’s consumption for generating advisories, maintenance
planning, and future life extensions.

Digital Elevation Model

The UAV-enabled photogrammetry assessment technique was used to produce the
floating cover’s DEM. These DEMs show the uplift of the HDPE cover due to the accu-
mulation of scumbergs [25–28]. The work presented in [28] highlighted the transition of
the exploratory tool to engineering practice. Figure 3a–f show the time progression of the
vertical displacement of the floating cover created from the optical images acquired by the
UAV over the floating cover at the WTP. The digital representation of the floating cover
helps determine how the floating cover is being deformed and strained by the accumulation
of scumbergs beneath it. On their own, these DEMs provide a visual perspective of the
response of the floating cover. Furthermore, a 3D-printed solid model of this floating cover
would provide a tangible and detailed representation, making it easier for engineers to
visualise its impact.
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The DEMs show the cover deformation caused by the accumulation of scumbergs
and the entrapment of biogas. The DEM analyses show the different length scales of the
cover deformation caused by scumberg accumulation and biogas entrapment. Figure 4
shows the cover’s vertical displacement along Lines 1 and 2 (see Figure 3a), as described
by Wong et al. [29]. The displacement along Line 1 showed an overall uplift of the cover.
This displacement profile did not conform to the presence of the ballast installed along
this location. However, the displacement profile along Line 2 appears constrained by the
installed ballast. The entrapment of biogas in this region, where scumberg accumulation is
insignificant, resulted in deformation with a length scale consistent with the ballast spacing.
The corresponding length scale of the displacement profile due to scumberg accumulation
is larger, as it lifts the ballast and the membrane together.
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The DEM is the fundamental set of data from the UAV-enabled sensing methodology.
These datasets provided the operators at the WTP with a basic set of results that allowed
for them to appreciate the response of the floating cover with time. These DEMs provided
pertinent diagnostic information that serves as a simple SHM tool.

The data embedded in this simple SHM tool can be curated and analysed to provide
information that allows for the WTP operators to better understand the behavior and the
response of the floating cover over a given period.

4. Gross Translational Movement of the Floating Cover

When formed, the scumberg can adhere to the underside of the HDPE cover. The con-
tinual inflow of raw sewage displaces these scumbergs, resulting in the lateral movement
of the cover and causing it to wrinkle. The inflow conditions determine these wrinkling
patterns and their progression. The data embedded in the DEMs of the floating cover can be
analysed to diagnose this response, thereby enhancing the simple SHM tool to an advanced
SHM tool, as illustrated in Figure 2. The analysis of these DEM data reveals the extent and
progression of the cover wrinkles. These results provide useful information to inform the
asset’s operator on the effects of the inflow conditions on the deformation of this critical
asset [30].

We processed the DEM displacement data to highlight the cover’s wrinkling state.
Since the wrinkles have a smaller length scale than the deformation caused by the accu-
mulation of scumbergs and the entrapment of biogas, a highpass-filtered DEM provides a
visual view of this wrinkling [28].

Figure 5a–c show the DEMs acquired from 2016 to 2020 [30]. The time T1 = the year 2016;
T2 = T1 + 3 years; T3 = T1 + 3.5 years; and T4 = T1 + 4 years. The highpass-filtered DEMs
are shown in Figure 6a–c. The progression of the membrane wrinkling is evident, and more
importantly, it provides a qualitative assessment of the cover’s response to the operational
conditions. Delivering a quantitative evaluation of the cover’s movement will require data
about the lateral displacements.
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UAV-enabled photogrammetry captures a sequence of optical images of the floating
cover, which are processed to generate an orthophoto. An opportunistic approach was
experimented with to assess the capability of utilising these outputs to determine the
floating cover’s global in-plane displacement. These in-plane displacements allow for us to
quantify the gross movement of the floating cover. Wong et al. [30] introduced a FE-based
formulation that leverages information from optical images to track the motion of known
artifacts on the floating cover. The analysis of the principal components of the in-plane
motion revealed regions of membrane stretch and wrinkle, which became dominant within
3 years.

The net movement of the floating cover at T2, T3, and T4 is presented as the movement
about its position at the time T1 (i.e., Figure 7). As the state of strain of the floating cover
is unknown during installation, estimating this global in-plane motion proves valuable
in evaluating the impact of scum development and motion on the cover. The results
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depicted in Figure 7 show the maximum principal component of relative in-plane cover
displacement predicted for the time intervals shown in Figure 7. The “blue” regions indicate
the formation of wrinkles, while the “red” regions represent areas of global membrane
stretch. This information allows for determining expected tensile loading regions and the
extent of wrinkling.
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The progression and geometry of the wrinkled region and the extent of membrane
stretch are discernible in these results, providing a comprehensive view of the cover’s
response. The gross movement of the floating cover shown in these results describes how
the floating cover responds to the inflow conditions. These data will be integrated into
our ongoing work to develop a global–local algorithm, offering local strain information for
critical regions of the floating cover.

5. Predicting the State of Hardness of Scumbergs Formed Beneath the Floating Cover

The occurrence of scum and the formation of scumbergs are observed to disrupt the
biogas channels integrated into the cover, potentially impacting the efficiency of collecting
this valuable renewable energy source. Estimating the depth, extent, and state of scumberg
formation and understanding its influence on biogas collection is crucial for assessing
the performance of this asset. Presently, human operators conduct field measurements
by walking and working on the floating cover to qualitatively assess the hardness of the
scum underneath using scum hardness levels categorisation (H—hard, MH—medium
hard, M—medium, F—fluffy or soft, scum, and W—watery). Experienced operators at the
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WTP perform this haptic assessment, which may various among different operators as it is
subjective and dependent on the individual operator.

Observations suggest that the harder scum is more buoyant than softer ones. The
buoyancies of scum led to the deformation of the floating cover that the DEMs characterise.
The haptics assessment of the state of scum that has been accumulated under the cover
resembles the shape of the DEMs. A machine-learning capability is developed to convert
the DEMs into regions of different scum state. The haptics assessment served as validating
data for this work, as described by Wong et al. [31].

Figure 8a shows the DEM of the scanned cover at the lagoon, which represents the
height of the cover above the water surface level. The constructed DEM reveals that the
covers in the vicinity of the sewage inlet are significantly elevated, especially along the
middle section, attributed to the accumulation of hard scum at the water surface level.
Figure 8b presents a grid indicating the qualitative hardness of the scum, haptically deter-
mined by an operator while traversing the entire cover. We subject the DEMs to clustering
analysis, a common unsupervised machine-learning technique, due to insufficient labelled
data to train, thereby allowing the ML to determine the patterns within the dataset. This
analysis identifies hidden patterns or groupings in datasets without labelled responses.
Image segmentation applies k-means clustering to partition the data into ‘k’ distinct clusters
based on the distance to the centroid of a cluster. A 7 k-means clustering is applied to
cluster the five different levels of scum hardness based on the elevation of the cover and to
identify the biogas pocket and flotation. Figure 8c shows the results from this clustering
analysis. Nevertheless, the cluster regions aligned with the haptic assessment, suggesting a
significant correlation with elevation.
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Using the elevation of the cover above water level, the cluster coloured in red aligns
well with the ‘H’ region, as indicated in Figure 8b. Additionally, the clusters for both ‘MH’
and ‘M’ regions can be easily identified, along with the biogas pockets. This clustering
method encountered challenges distinguishing the border between the ‘F’ and ‘W’ regions
because we only used the vertical displacement as the input. This difficulty can be attributed
to a subtle difference in elevation between the ‘F’ and ‘W’ regions. Nevertheless, the
DEM image segmentation method adequately outlines the area of the ‘M,’ ‘MH,’ and
‘H’ regions beneath the cover. This DEM-enabled prediction methodology relates the
elevation with the state of scum hardness. It does not require a person to walk over the
entire floating cover and is a safer inspection method than the current walk-around haptics
inspection practice.

6. Predicting the Depth of Scumberg Formed Beneath the Floating Cover

In the work presented in [31], the total depth of the scum is measured at discrete access
ports within the cover, necessitating personnel to traverse the cover for access. Using a long
and rigid rod, they gradually insert it into the access ports. The depth is recorded when
personnel perceive a change in “feel” during insertion. The depth where the transition from
hard or semi-hard scum to liquid sewage occurs is assessed using haptics. It is understood
that, with an experienced operator at the WTP, this haptics technique can determine the
depth of the scum with a tolerance of 0.1 m. However, this method is very subjective and
currently the only method of estimating scum depth. The level of risk associated with this
measurement technique is also evident, as it requires a person to be physically present on
the cover. Our attempts to develop a machine learning capability to convert the DEMs into
regions of different scum states led us to work on predicting the depth of the scum formed
under the floating cover from its vertical displacement, as reported in Wong et al. [31].

Figure 9 illustrates the correlation of the DEM at each access port with the correspond-
ing total scum depth. A best-fit line in Figure 9b exhibits a 0.78 “goodness of fit”. For
scum depth prediction, it is assumed that the elevation of the cover above the water level
maintains a linear relationship with the scum depth. Figure 9a presents a contour plot
of the predicted scum depth. A cross-sectional view of the expected scum depth is com-
pared with the averaged scum depth obtained from physical measurements in Figure 9b,
which indicates good agreement between the predicted and actual scum depth (averaged).
Deducing the scum depth from the DEM will provide a continuous measurement over
the entire cover, as opposed to the current measurement taken at discrete locations on the
cover. It will also remove the risk associated with needing a person to physically walk on
the cover to conduct these manual measurements. This DEM method of estimating the
scum depth also removes the qualitative nature of the haptics associated with the current
manual measurement. It must be noted that the work considered only the elevation of the
floating cover, and other external factors, i.e., water level, environmental changes, etc., may
influence and hence explain the deviation from this relationship. Nevertheless, we expect
that the availability of more scum depth datasets will enhance this predictive model and
estimate uncertainties arising from both intrinsic data and the model itself.
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7. Strain Determination

The presence of scum and other loads results in the deformation (i.e., wrinkles and
folds) of the floating cover, thereby exerting strains on the membrane. Given the size of the
assets, the commercially available methods (i.e., digital image correlation) are inefficient for
determining engineering quantitative methods. Initial work integrated photogrammetry-
derived DEMs of an experimental deformed membrane using FE analysis by demonstrating
the transfer of a DEM of a deformed membrane to FE to evaluate the strain measurements;
however, only elevation information was considered to ensure convergence. Vien et al. [32]
conducted FE and statistical analyses by employing cubic smoothing to effectively denoise
the DEM and variational heteroscedastic Gaussian process regression (VHGP) to probabilis-
tically reconstruct the loss of amplitude due to the smoothing process. Although it is shown
that the predicted strain distribution has a profile similar to that of the optical fibres, signifi-
cant uncertainty still exists. These uncertainties are attributed to several factors, including
those arising from photogrammetry and preprocessing and postprocessing analyses. The
uncertainties were especially noticeable in regions of high strain variance and noise, in-
tensified by changes in the smoothing weighting parameter. In these regions, the average
maximum change in strain was reduced by 25.7% to 68.6% for wrinkle deformations due to
a three-order-of-magnitude difference in the smoothing cubic spline weighting parameter.
In addition, inaccuracies in strain measurements were suspected to arise from using UAV
photogrammetry in areas with steep slopes, where previous studies [32] have encountered
difficulties reconstructing features with sharp corners and high-gradient slopes. However,
enhancing the number of viewing angles may improve the accuracy of photogrammetry
analyses. It was also noted that the feature identification algorithm artificially induced
erroneous displacements, contributing further to the data’s unreliability and compounding
the overall uncertainty. Nonetheless, ongoing work is focused on adopting learning models
to capture robust strain for this large asset.

8. Towards a Complex+ Structural Health Monitoring Framework for Floating Cover
Diagnostics and Prognostics

The floating cover is a high-value asset whose construction and installation costs tens
of millions of dollars. This asset brings significant environmental, social, and economic
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benefits because it prevents odour and biogas from being released into the atmosphere.
In addition, the ability to collect biogas makes this floating cover an important renewable
energy-generating asset. In this respect, effective integrity management and maintenance
of the floating cover will deliver the mentioned benefits, and these intelligent strategies are
also crucial for planning future cover replacement programs.

As discussed above, our current UAV-enabled inspection methodology delivers large
datasets to create a DEM of the floating cover. These datasets are processed and analysed to
provide information for diagnosing the cover and its deformation state. The gap analysis
work proposed by Buderath is an excellent platform for a systematic and logical process to
transform our floating cover monitoring strategy towards the floating cover digital twin
outlined in Table 1. The analyses described above show that we are on our way to achieving
“Advanced” health integrity and assessment; accumulating the datasets will enable us to
strive towards the Complex and Complex+ status.

Our individual findings have contributed to the SHM research field. The integration
of these findings has led to the development of an integrated SHM methodology for the
floating cover. With the data provided by the optical images from a UAV “sensor”, five
important parameters were determined from the algorithms that quantify the performance
of the large asset. As illustrated in Figure 2, this facilitated the development of a diagnostic
and prognostic tool that exceeds the realm of research and is embraced by the practitioners
at the WTP. Whilst in its infancy, these parameters have provided the asset operator with an
understanding of the response of the floating cover to the operating conditions over time,
making them useful diagnostic tools for the asset operator. Accumulating future datasets
and their corresponding analyses will help develop and verify the prognostic capability.
These will be the foundation of a “product” for managing this crucial asset.

One significant practical implication of this concept is defining the asset “maintenance-
free” period from the outcomes derived from this work. By integrating the operational
conditions with the structural conditions/health of the asset, the floating cover digital twin
will enable us to determine the appropriate operating conditions under which the asset can
operate that will ensure structural safety before the subsequent scheduled maintenance action.

Harnessing the biogas generated during the anaerobic reaction is one of the critical
functions of the floating cover. Work is underway to acquire and understand the volume
of the gas harness during a yearly cycle, as well as the operating conditions, including
sewage inflows and maintenance actions performed [33,34]. This work describes a rapid
training strategy that can predict biogas production more accurately when historical data
include significant outliers. A trained model with fewer input variables via the feature
selection technique based on the correlation coefficient yielded good performance given
enough dataset training. The overall best performance model comprises the reduced input
variables and data processed with z-score standardisation. This initial study provides a
helpful guide for implementing machine learning techniques to develop more innovative
structures and management towards Industry 4.0 concepts.

Integrating diagnostic capability with biogas production enables the asset operator to
appreciate the effects of the floating cover’s structural conditions on the asset’s performance
in biogas delivery during its service lifetime. These will be the critical functions of the
floating cover digital twin. The objective is to facilitate safe biogas production while
considering the floating cover’s structural integrity given a set of operating conditions.
This capability will enable this asset to deliver financial benefits from biogas production.
A predictive model will maximise biogas production by optimising the frequency of
maintenance and downtime while ensuring asset integrity.

Consequently, it will reduce the risk and frequency of failures, thereby decreasing
repair needs and effectively cutting costs with the new prognostic capabilities. As a result,
this approach is expected to save the asset operator millions of dollars. This efficient
integrity assessment “product” will assist and improve maintenance practices by providing
data-based warnings of possible failures or clear indications of distress in the covers. It
also promotes safety by reducing or eliminating the need for the visual walk-around
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inspection. This intelligent diagnostic and prognostic “product” will be helpful in life-
extension decision-making with the potential of delaying its replacement. This model
will enable the operator to consider changing the operating conditions for a set period
to achieve safe biogas delivery and schedule the necessary maintenance action. In this
respect, this “product” can potentially be used to optimise maintenance scheduling and
reduce/eliminate unplanned maintenance/shutdowns. It will also help maintain target
biogas production levels whilst ensuring asset integrity, therefore managing the asset risk
profile. These will lead to an intrinsic cost reduction in the asset. The work by [15] provides
a comprehensive overview of the required communication between the sensor–algorithm–
floating cover, which is crucial for this “product.” This knowledge will also provide insight
into this asset’s response to operational conditions and serve as guidelines for future
cover design.

The immediate impact of this work is showcasing the transformation of the current
manual maintenance and inspection of large assets operating in hazardous environments.
In addition to using this new SHM capability, leading to a knowledge-driven maintenance
and management strategy for this critical infrastructure, this remote assessment strategy
will significantly enhance safety in this critical asset by allowing for human operators to
remain safe from this hazardous environment.

9. Conclusions

This paper presents an overview of integrating new research outcomes into developing
a structural health monitoring strategy for a large floating cover at the WTP in Melbourne,
Australia. The size of this floating cover, which covers an area of approximately 470 m × 200 m;
the hazardous environment; and its exposure to extreme weather conditions only allow for mon-
itoring techniques based on remote sensing. This paper presents the assembly of the research
outcomes from our focused studies to deliver a UAV-enabled remote sensing case study on the
structural health monitoring of a large floating cover. This work demonstrates the derivation of
five essential parameters determined from the algorithms that quantify the performance of the
large asset. It also shows how these capabilities have facilitated the development of a diagnostic
and prognostic tool that has exceeded the realm of research and is embraced by the practitioners
at the Western Treatment Plant. Whilst in its infancy, these have provided the asset operator with
an understanding of the response of the floating cover to the operating conditions over time,
which is a useful diagnostic tool for the asset operator. One significant practical implication of
this concept is defining the asset “maintenance-free” period from the outcomes derived from
this work. By integrating the operational conditions with the structural conditions/health of
the asset, this work paves the way for the future development of the floating cover digital twin,
which will enable us to determine the appropriate operating conditions under which the asset
can operate, ensuring structural safety before the subsequent scheduled maintenance action.
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