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Abstract: The increase in Cervical Spondylosis cases and the expansion of the affected demographic
to younger patients have escalated the demand for X-ray screening. Challenges include variability
in imaging technology, differences in equipment specifications, and the diverse experience levels
of clinicians, which collectively hinder diagnostic accuracy. In response, a deep learning approach
utilizing a ResNet-34 convolutional neural network has been developed. This model, trained on a
comprehensive dataset of 1235 cervical spine X-ray images representing a wide range of projection
angles, aims to mitigate these issues by providing a robust tool for diagnosis. Validation of the model
was performed on an independent set of 136 X-ray images, also varied in projection angles, to ensure
its efficacy across diverse clinical scenarios. The model achieved a classification accuracy of 89.7%,
significantly outperforming the traditional manual diagnostic approach, which has an accuracy of
68.3%. This advancement demonstrates the viability of deep learning models to not only complement
but enhance the diagnostic capabilities of clinicians in identifying Cervical Spondylosis , offering a
promising avenue for improving diagnostic accuracy and efficiency in clinical settings.
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1. Introduction

Cervical Spondylosis (CS) is a chronic degenerative condition of the cervical spine,
manifesting through various clinical symptoms such as neck pain, stiffness, radiating pain,
headaches, and the potential onset of neurological dysfunction [1]. Significantly, neck pain
was identified as the fourth leading cause of disability-adjusted life years (DALYs) in 2015,
highlighting the global impact of CS [2]. Epidemiologically, the prevalence of CS varies
by age, with rates of 12.4% in individuals aged 18-29, escalating to 100% in those over
70 years, indicating a widespread and age-related increase in incidence. Early stages of CS
might not disrupt daily life significantly, but as the condition progresses, symptoms worsen,
leading to increased treatment complexity and healthcare costs, thereby underscoring the
importance of early detection [3].

The diagnostic process for CS primarily employs imaging modalities such as Com-
puted Tomography (CT), Magnetic Resonance Imaging (MRI), and X-ray [4], with X-ray
screening being the preferred method due to its accessibility, low radiation exposure, and
cost-effectiveness [5]. Despite its advantages, X-ray diagnosis of CS is hindered by its lower
accuracy and the reliance on the subjective judgment and experience of the interpreting
physician [6]. This situation calls for improved diagnostic methodologies to overcome these
limitations [7].

Recent advancements in artificial intelligence (Al), particularly in machine learning
(ML) and deep learning (DL), have made significant strides in medical diagnostics, in-
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cluding the field of computer-aided diagnosis (CAD) [8-10]. These technologies have
demonstrated exceptional utility in enhancing X-ray-based CS classification, through their
ability to autonomously identify and analyze CS-relevant features within X-ray images.
The strengths of ML and DL lie in their capacity to manage and analyze large datasets,
thereby improving the performance and generalizability of diagnostic algorithms. By
minimizing the influence of human subjectivity and fatigue, these technologies ensure
higher diagnostic precision and consistency. DL models, in particular, offer rapid analysis
capabilities, essential in urgent care settings, and evolve over time through continuous
training, further refining their accuracy. Consequently, ML and DL represent invaluable
tools for healthcare professionals, providing critical support in achieving more accurate
diagnoses and treatment decisions.

This research employs a ResNet-34 convolutional neural network (CNN) model to
evaluate the presence of CS in patients, utilizing cervical spine X-ray imaging features.
Notably, this study distinguishes itself by being the first to leverage multi-angle, multi-
label data, enhancing the model’s accuracy significantly. The results confirm that the
proposed deep learning neural network model achieves a diagnostic accuracy rate that
is 21.4% higher than conventional manual diagnostic approaches [11], thereby offering
a substantial improvement in the accuracy of CS diagnosis and potentially reducing the
clinical workload.

In this work, our main contributions can be summarized as the following:

¢ Improved Patient Outcomes: The enhanced accuracy of the ResNet-34 CNN model,
which is 21.4% higher than manual methods, means that it can more accurately
diagnose conditions from cervical spine X-ray images. This leads to more accurate
treatments being prescribed, improving patient outcomes.

¢  Efficiency in Diagnosis: The increased diagnostic accuracy reduces the reliance on
manual methods, which can be time-consuming and prone to human error. This not
only speeds up the diagnostic process but also reduces the workload of clinical staff,
allowing them to focus on other critical tasks.

e Leveraging Multi-angle, Multi-label Data: This is the first model to leverage multi-
angle, multi-label data, which provides a more comprehensive view of the patient’s
condition. This can lead to the discovery of conditions that might be missed using
traditional methods, further improving the accuracy of the diagnosis.

2. Proposed Method
2.1. Materials

This retrospective study meticulously compiled data from 595 patients treated at a
rehabilitation research center from January 2021 to November 2022, resulting in a collection
of 1371 anonymized images in line with established research protocols. The cohort consisted
of 566 males and 805 females, with an average age of 46.4 + 16.4 years, ensuring all selected
medical images met the required diagnostic standards.

2.1.1. Inclusion Criteria

For a case to be included in the study, patients had to meet the radiological diagnostic
criteria for Cervical Spondylosis (CS). These criteria encompass a range of degenerative
changes indicative of CS, including [12,13] degeneration observed in the intervertebral facet
joints and vertebral costal joints, intervertebral disc degeneration, ligament degeneration,
uncinate joint degeneration, osteoporosis, and scoliosis. Such comprehensive criteria ensure
a robust identification of positive CS cases based on radiological evidence.

2.1.2. Exclusion Criteria

The study excluded any patient showing degenerative changes in the cervical spine
that could be attributed to congenital malformations, spinal cord injuries, tuberculosis,
tumors, ankylosing spondylitis, or previous surgical interventions. Furthermore, X-ray
images that did not meet the quality criteria due to artifacts, overexposure, underexposure,
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or any factor that could affect the clarity and accuracy of cervical spine imaging diagnosis
were also excluded [14].

2.2. Experimental Design

This study strategically divided the 1371 collected image data into two sets: a test set
(136 images) and a training-validation set (1235 images), following a 9:1 ratio. Each image
was manually labeled by expert radiologists, noting the cervical spine X-ray projection
position and CS classification outcomes.

Within the training-validation dataset, 80% (988 images) was randomly selected for
the training of the ResNet-34 convolutional neural network (CNN) model [15], while
the remaining 20% (247 images) constituted the validation set, which was strictly used
for performance evaluation without influencing the training phase. The selection of the
model for final experimentation was determined by the highest F1-score achieved on this
validation set (Figure 1).

The performance of the ResNet-34 CNN model in accurately classifying cervical
spine X-ray projection positions and diagnosing CS was evaluated using the test set.
Detailed methodologies and the results of this evaluation are elaborated upon in Section 3,
accompanied by illustrative Figure 2 that maps out the process.
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Figure 1. F1 score of ResNet-34 model from validation results. The abscissa is the F1-score of each
validation from training the model, and the ordinate is the number of times the model is trained. We
saved the final CNN from the validation with the best performance within 100 epochs.

2.2.1. Data Preprocessing

To prepare the X-ray images for CS research, each image underwent anonymization
using the freely available RadiAnt DICOM Viewer 2020.2.3 software, effectively eliminating
any patient identifiers. Data augmentation prepossessing includes randomly cropping
the image to a size of 224 x 224 pixels, applying random flips, random rotations, and
normalization.

2.2.2. Data Labeling

For the purpose of image diagnosis, two expert radiologists, with eight and twenty-
five years of specialized experience, respectively, independently assessed each patient’s set
of images. These sets included anteroposterior, lateral, left oblique, and right oblique views,
presented as separate, anonymized collections. The RadiAnt DICOM Viewer 2020.2.3
software facilitated the image evaluations. In instances of divergent assessments, the two
experts engaged in discussions to reach a consensus. Cases without unanimous agreement
were subsequently excluded from the analysis.

The process began with the initial labeling of the X-ray projection positions for each
diagnostic image. Following this, CS was identified based on the distinct radiological
diagnostic features observable in different positions. The labeled imaging characteristics
for the various positions are outlined as follows:
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Anteroposterior: (a) Degenerative changes in the intervertebral facet joints and verte-
bral costal joints, presenting as marginal osteophyte development, articular cartilage sclero-
sis, cystic degeneration, and narrowing of the joint space; (b) osteoporosis; (c) scoliosis.

Lateral: (a) Intervertebral disc degeneration, presenting as intervertebral space nar-
rowing, the formation of Schmorl’s nodes, and the development of osteophytes along the
vertebral body edges; (b) ligament degeneration, presenting as ligament thickening and
calcification; (c) osteoporosis; (d) scoliosis, presenting as vertebral slippage and abnormal
cervical curvature.

Left Oblique and Right Oblique: (a) Uncinate joint degeneration, presenting with
osteophyte formation and intervertebral foramen narrowing; (b) osteoporosis.

i
i

i

H Random crop Resize
H 224x224

i

1

! Pre-Process Random Flip

i

l j
i

i

I

1

i

I

1

I

i

i

i

\

Positive

Training- Validation
Imput set (90%)

Random Rotation

—
Negative

i

e

Manual labeling

Normalize

Validation set

(20%)
Auto-classification Test set Save A Training set
‘ (10%) |[* -Model ResNet-34 (80%)

Positive

Negative

Figure 2. CNN model flow chart. We categorize the input data into a test set and a training-validation
set. The data in the training-validation set undergo manual labeling, and the results are fed into the
subsequent step. Subsequently, preprocessing is applied to the training-validation set data. Following
preprocessing, the training set data are employed to train the ResNet-34 model, while the validation
set data are utilized for selecting the final model. The ultimately saved model is then evaluated for
performance using the test dataset.

2.2.3. Deep Learning Model

The CNN stands as a prominent subcategory within the realm of DL algorithms
and serves as the primary neural network architecture harnessed in the field of medical
imaging [16]. Among various CNN architectures, ResNet stands out as a cutting-edge
model for image classification, renowned for its efficacy and precision [17,18]. The adoption
of ResNet-34 in this study is underpinned by its prior training on the ImageNet dataset,
which is notably extensive and diverse, providing a solid foundation for image classification
tasks.

A key innovation of ResNet-34 is its incorporation of residual learning, namely, a
novel approach that emphasizes learning the residual or difference between the input
and output. This strategy effectively addresses the perennial issues of vanishing and
exploding gradients that often hamper the performance of traditional neural networks [19].
By fostering direct information flow across layers through cross-layer connections, ResNet-
34 ensures the preservation of input data integrity throughout the network. This attribute
not only streamlines the model’s mapping process but also diminishes training complexity.

The architectural hallmark of ResNet-34 is its assembly of residual blocks, which collec-
tively forge a deep CNN. Such depth empowers the network to capture complex high-level
features and patterns within the data, facilitating nuanced image analysis. Additionally, the
modular design of ResNet-34’s residual blocks enhances the model’s versatility, making it
apt for a wide array of computer vision tasks beyond image classification, including object
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detection and semantic segmentation. This versatility not only augments model reusability
but also supports the application of transfer learning techniques, thereby broadening the
scope of ResNet-34’s utility in diverse settings [20].

2.3. Statistical Analysis

Data analysis was conducted using SPSS 26. Measurement data were represented
as ¥ £ s or M(Pys, P75). Counting data were presented as the number of cases and
percentages (%).

Various evaluation metrics were employed to assess model performance. Accuracy
was the primary metric used for evaluation, with additional criteria including sensitivity,
precision, and Fl-score (Table 1). The reliability and significance of these metrics were
further scrutinized through x? testing, with a P > 0.01 indicating the absence of statistically
significant differences within the dataset. For the execution of statistical analyses, the
Scikit-learn library was employed, ensuring robust and reliable analysis [21].

In essence, classifiers that exhibit superior performance across the metrics of accu-
racy, sensitivity, precision, and F1-score are deemed more efficacious in the context of
performance evaluation, providing a comprehensive measure of the model’s diagnostic

capability.

Table 1. Calculation formula for evaluation indicators.

Indicators Definition and Calculation Formula
Accuracy (True Positive + True Negative) / (Population Sample)
Sensitivity True Positive / (True Positive + False Negative)
Precision True Positive / (True Positive + False Positive)
F1 Score 2 x (Precision x Sensitivity) / (Precision + Sensitivity)
3. Results

The dataset for this study comprises 1371 X-ray images, including 566 male and 805
female participants, with a mean age of (46.4 & 16.4) years. Statistical analyses to assess the
comparability of the training-validation and test sets with the overall population sample
were performed using the x? test for categorical variables and the T test for continuous
variables. These analyses covered parameters such as the number of images, gender
distribution, age, and rates of positive diagnosis. The resulting P > 0.01, indicating the
absence of statistically significant differences between the training-validation set, the test set,
and the population sample. This demonstrates the external validity of the study findings;
refer to Table 2.

Table 2. Demographic information.

Population Training-Verification Set  Statistics P Test Set Statistics P
No. of images 1371 1235 0.002 >0.999 136 0.036 0.998

Al 565 509 / / 55 / /

B2 410 370 / / 41 / /

L3 196 176 / / 20 / /

R* 200 180 / / 20 / /
Gender Female 805(58.7%) Female 724(58.6%) 0.002 0.962  Female 81(59.6%) 0.036 0.849
Age 464+ 164 46.2 £16.0 —0.256 0.798 47.8 £20.3 0.976 0.329
Positive 57.8% 57.7% <0.001 0.985 58.1% 0.005 0.943

The test method for number of images, gender and positivity rate indicators is the )(2 test. The test method for
age indicators is the T test. ! represents the anteroposterior position of the cervical spine. 2 represents the lateral
position of the cervical spine. 3 represents the left oblique position of the cervical spine. 4 represents the right
oblique position of the cervical spine.
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3.1. Cervical Vertebra X-ray Projection Position Classification Results

Upon applying the neural network model to the test dataset, exemplary performance
metrics were observed. The weighted average (WA), based on the proportions of images in
anteroposterior (A), lateral (B), left oblique (L), and right oblique (R) positions, exhibited
average accuracy, sensitivity, precision, and Fl-score of 97.8%, 97.8%, 98.1%, and 97.8%
respectively.

Detailed analysis of the four specific imaging positions revealed optimal scores: po-
sitions A, B, and L demonstrated perfect accuracy and sensitivity (100.0%), underscoring
the model’s exceptional efficacy. Positions A, B, and R recorded the highest precision
(100.0%), and positions A and B achieved the top Fl1-score (100.0%). These indicators were
validated through x? testing, confirming their statistical reliability as depicted in Figure 3
and Table 3).

Confusion Matrix for Pose
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0 0
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0 0
2
2 30
-
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2
E
L 0 0 20 0 L 20
10
R 0 0 3 17
T T T T —-0
v 2 v <

Predicted Label

Figure 3. Confusion matrix for classification of cervical vertebrae X-ray projection position on test
dataset.

Table 3. Statistical table for classification of cervical vertebrae X-ray projection position.

Number  Accuracy Statistics P Sensitivity Statistics P Precision  Statistics P F1Score  Statistics P
A 55 100.0% 1.233 0.267 100.0% 1.233 0.267 100.0% 1.233 0.267 100.0% 1.233 0.267
B 41 100.0% 0.920 0.337 100.0% 0.920 0.337 100.0% 0.920 0.337 100.0% 0.920 0.337
L 20 100.0% 0.450 0.502 100.0% 0.450 0.502 87.0% 7.717 0.005 93.0% 0.545 0.460
R 20 85.0% 7.717 0.005 85.0% 7.717 0.005 100.0% 0.450 0.502 91.9% 3.414 0.065
o! 40 92.5% 2.631 0.105 92.5% 2.631 0.105 93.5% 2.631 0.105 92.5% 2.631 0.105
WA 2 136 97.8% / / 97.8% / / 98.1% / / 97.8% / /

A, B, L, Rand O are independently contrasted with the WA. The test method used X2 test; if P > 0.01, it indicated
no statistically significant differences in the data. ! represents the set of right and left oblique positions of the
cervical spine. 2 represents the weighted average according to the proportion of A, B, L, R.

3.2. CS Classification Results

When analyzing the test dataset with the neural network model, the performance
metrics revealed are as follows: the weighted average (WA) results yield an average
accuracy of 89.7%, sensitivity of 92.4%, precision of 91.1%, and F1-score of 91.2%.

Further dissection of the Cervical Spondylosis (CS) classification outcomes across
four distinct imaging positions indicates exceptional performance in the right oblique (R)
position, with perfect scores of 100.0% in accuracy, sensitivity, precision, and Fl-score. The
lateral (B) position also recorded a precision rate of 100.0%. These performance metrics
were subjected to x? testing, affirming that the CS classification accuracy across different
positions does not significantly deviate from the overall observed accuracy. This analysis is
visually supported in Figures 4 and 5, and Table 4.
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Figure 4. Confusion matrix for classification of CS on test dataset (P: positive, N: negative).
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Figure 5. Confusion matrix for classification of CS from different positions. (a) is from anteroposterior
positions; (b) is from lateral positions; (c) is from left oblique positions; (d) is from right oblique positions.
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Table 4. Statistical table for classification of CS.

Number  Accuracy  Statistics P Sensitivity Statistics P Precision  Statistics P F1Score  Statistics P

A 55 85.5% 0.695 0.405 96.8% 0.919 0.338 81.1% 3.365 0.067 88.2% 0.200 0.655

B 41 90.2% 0.010 0.920 82.6% 3.428 0.064 100.0% 3.881 0.049 90.5% 0.033 0.855

L 20 90.0% 0.002 0.968 92.3% 0.172 0.678 92.3% 0.030 0.864 92.3% 0.030 0.864

R 20 100.0% 2.262 0.133 100.0% 1.571 0.210 100.0% 1.912 0.167 100.0% 1.912 0.167

O 40 95.0% 1.048 0.306 96.2% 0.269 0.604 96.2% 0.617 0.432 96.2% 0.617 0.432
WA 136 89.7% / / 92.4% / / 91.1% / / 91.2% / /

4. Discussion

Overcoming the subjective limitations inherent in manual X-ray diagnosis of Cervical
Spondylosis (CS) and enhancing diagnostic accuracy have been consistent objectives within
the research community. It has been indicated that the accuracy of manual X-ray diagnosis
for CSis only 68.3% [11]. Conversely, the application of artificial intelligence (AI) offers
a promising avenue for the prediction and diagnosis of CS [22]. Yu [23] developed a CS
classification model using fuzzy computing theory, achieving an accuracy of 80.33%, thus
demonstrating the potential of machine learning in classifying and processing various
imaging features effectively.

This study extends these findings by integrating data from multiple cervical spine pro-
jection positions and conducting a comprehensive analysis of imaging features prevalent in
CS diagnoses. The development of an innovative CS classification model based on ResNet-
34 is reported, achieving a classification accuracy of 89.7%. The research is characterized by
several advantages: (a) the integration of data from various X-ray projection positions, and
(b) the exhaustive analysis of numerous imaging features.

4.1. Multi- X-ray Projection Position Imaging Data

Cervical spine X-ray imaging data from various positions, including anterior-posterior,
lateral, left oblique, and right oblique, were consolidated. Identifying image features
from different positions is crucial for model training, as each image feature has a primary
observation position [24]. Initially, CS X-ray projection positions are identified to ensure
the deep learning model learns the most important CS image features from these specific
positions, aiding in precise feature localization and thus enhancing CS diagnosis accuracy.

In the field of Al-based CS prediction and diagnosis, the lateral view of the cervical
spine remains a primary perspective due to the rich diagnostic information it provides and
the minimal overlap and relatively simple anatomical structures of lateral cervical spine
images, which simplify data processing [25]. Lee’s [25] study reported an accuracy of 87.1%
for CS classification in lateral positions. A classification accuracy of 90.2% for CS in lateral
positions was achieved by the model (Table 4).

Conversely, the anterior—posterior position of the cervical spine requires the classi-
fication of numerous CS imaging features, with added complexity due to the overlap of
anatomical structures such as the calcification of thyroid cartilage, the hyoid bone, and the
mandible. Limited research focuses on anterior—posterior positions of the cervical spine,
mostly on segmentation-related studies. The model achieved an accuracy of 85.5% for CS
classification in anterior-posterior positions (Table 4).

Oblique positions of the cervical spine present challenges due to overlapping anatomi-
cal structures and strict irradiation positioning requirements, leading to unstable feature
extraction. However, their advantage lies in the fewer image features involved in the model,
related primarily to hook joint degeneration and osteoporosis, simplifying data processing.
Park [26] proposed a cervical spine oblique position classification model based on ResNet50,
with an identification accuracy of 77% for foraminal stenosis. The model demonstrated an
accuracy of 95.0% for CS classification in oblique positions, showing superior performance
(Table 4).

To validate the performance consistency of the model in CS classification across
different X-ray projection positions, indicators were compared between positions. Statistical
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results showed no significant difference in various indicators of CS classification between
different positions, confirming the stable and consistent performance of the model (Table 5).

Table 5. Performance comparison of deep learning models for CS classification at different projection

positions.
Compare Accuracy Sensitivity Precision F1 Score
Statistics =~ P  Statistics P Statistics P Statistics P
A-B 0.493 0.483 4.992 0.025 6.487 0.011 0.033 0.855
A-O 2.240 0.134 0.107 0.744 3.646 0.056 0.019 0.306
B-O 0.668 0.414 2.988 0.084 2.102 0.147 0.668 0.414
L-R 2.105 0.147 2.105 0.147 2.105 0.147 2.105 0.147
A-L 0.262 0.609 1.176 0.278 0.731 0.393 0.013 0.910
A-R 3.256 0.071 0.747 0.387 4.196 0.041 2372 0.124
B-L 0.001 0.976 0.535 0.465 4.239 0.040 0.001 0.976
B-R 2.088 0.148 3.875 0.050  <0.001  >0.999 2.088 0.148

A, B, L, R, and O were compared pairwise. The test method used X2 test; if P > 0.01, it indicated no statistically
significant differences in the data. Dash (-) represents the comparison between two projected positions.

4.2. Multi-Label CNN Model

Current research predominantly examines single imaging features of Cervical Spondy-
losis (CS); however, the radiological diagnosis of CS necessitates a comprehensive analysis
of multiple imaging features. This study aims to empower artificial intelligence to au-
tonomously identify CS image features and perform image diagnosis. Unlike models that
concentrate on a singular feature, this approach involves training the model with images
that display various CS imaging features in different numbers and positions. A multi-label
neural network model was adopted, designed to output the probability of each category,
thus facilitating the flexible classification of multiple labels. Additionally, the efficiency of
the algorithm and the generalization capability of the model were enhanced through the
design of loss functions tailored for optimizing multi-task learning.

While analyses based on single image features have produced satisfactory outcomes
as evidenced by studies such as Jebri’s [27] use of a machine learning-based random forest
classifier model for detecting intervertebral space narrowing and osteophyte formation,
Tamai’s [28] segmentation of cervical ligament calcification using the EfficientNet-B2 model,
Fujimori’s [29] application of the EfficientNet-B4 model to identify cervical lordosis, and
Chen’s [30] diagnosis of cervical spine scoliosis using the ResNet model. These contribu-
tions notwithstanding, CS cannot be adequately represented by single image features alone
but rather as a constellation of multiple imaging features. Therefore, a comprehensive
analysis of varied imaging features is more reflective of the clinical diagnostic requirements
for CS. Given the complexities associated with processing data characterized by multiple
imaging features, classifying multi-feature patterns remains a challenging endeavor. The
high accuracy achieved in this study is primarily attributed to the neural network model’s
extensive coverage of essential X-ray imaging features of CS, positioning this research at
the forefront of clinical relevance.

Despite the model’s exceptional performance in accuracy, sensitivity, precision, and
F1-score, opportunities for enhancement remain. Notably, this retrospective study did
not utilize standardized cervical spine imaging projection patterns. Variabilities such as
hardware differences across devices, individual disparities resulting from X-ray imaging
parameters (e.g., X-ray intensity, irradiation distance, and X-ray incidence angle), subjective
imaging diagnostic criteria, and variations in patient positions complicate data processing
(Figure 6). To mitigate overfitting associated with complex data, a novel model-processing
method was employed. Parameters were saved not after every 100 training cycles but
from the training sessions that exhibited the best performance within each set of 100 cycles.
This approach, by minimizing the overfitting’s impact on model parameters, improved the
model’s accuracy by 1.5% compared to traditional methods.
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Figure 6. Cervical vertebra X-ray projection position classification and CS classification results. Figure
(a—c) represent that the cervical spine position is correctly classified but CS is incorrectly classified.
Figure (d) represents that the cervical spine position is classified incorrectly but CS is correctly
classified. Figure (e-h) represent images with correct cervical vertebra position classification and CS
classification. (“N” indicates CS is negative; “P” indicates CS is positive; the red line indicates the
physiological curvature of the cervical spine; the red dotted arrow indicates the hyoid bone blocking
the cervical vertebrae. the yellow arrow indicates the intervertebral space; the yellow dotted arrow
indicates osteophyte formation; the blue dotted arrow indicates ligament calcification; and the blue
arrow indicates the intervertebral foramen).

4.3. Comparative Performance Analysis

Table 6 showcases a comparative analysis of implementation accuracy among vari-
ous deep convolutional neural network models. Notably, our study stands out with the
ResNet34 model, achieving remarkable accuracy across all three views: anteroposterior
(85.50%), lateral (90.20%), and oblique (95.00%). This comprehensive performance is unpar-
alleled when compared to the other studies listed, which focus solely on the lateral view.

For instance, Yiiksel’s [31]work with the VGG-16 model in 2022 achieved an accuracy
of 93.90% in the lateral view, which is commendable but does not address the anteroposte-
rior and oblique views. Similarly, other studies like those by Miura [32] and Tamai [28]
using EfficientNetB4 and EfficientNetB2, respectively, show lower accuracies in the lateral
view (86.00% and 88.00%) and do not provide solutions for the other views.

Moreover, Ogawa [33] and Lee’s [25] research with CNN models in 2022 also focus
on the lateral view, with accuracies of 90.00% and 87.10% respectively, which are surpassed
by our ResNet34’s performance. Park’s [26] study using ResNet50 is the only other work
addressing a different view, the oblique but with a significantly lower accuracy of 77.00%.

Our method’s superiority is evident not only in the highest accuracy achieved in the
lateral view but also in its versatility and robustness, demonstrated by its performance
in the anteroposterior and oblique views. This indicates a significant advancement in the
field, suggesting that our ResNet34 model can be a more reliable and comprehensive tool
for image analysis in various orientations. The breadth and depth of accuracy in our study
underscore its potential as the leading methodology in deep convolutional neural network
research for image classification.
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Table 6. Implementation accuracy comparison with previous research works using deep convolu-
tional neural network.

Accuracy
Author Year Model - -
Anteroposterior Lateral Oblique

Yiksel et al. [31] 2022 VGG-16 - 93.90% -

Miura et al. [32] 2021  EfficientNetB4 - 86.00% -

Tamai et al. [28] 2022  EfficientNetB2 - 88.00% -

Ogawa etal. [33] 2022 CNN - 90.00% -

Lee et al. [25] 2022 CNN - 87.10% -
Park et al. [26] 2022 ResNet50 - - 77.00%
Our study ResNet34 85.50% 90.20% 95.00%

5. Conclusions

This study underscores the escalating prevalence of Cervical Spondylosis (CS) amidst
evolving societal dynamics and lifestyle modifications, illuminating the consequential surge
in the necessity for efficient and accurate CS diagnostic methodologies. The paramount
importance of early intervention in the management and prognosis of CS is highlighted
against the backdrop of the current limitations encountered in the diagnostic accuracy
of CS via X-ray imaging. These limitations are primarily attributed to the non-distinct
nature of X-ray imaging features and the substantial reliance on the diagnostic acumen of
medical practitioners.

The deployment of the proposed neural network model represents a significant stride
toward mitigating these challenges. Model selection is very important, and model op-
timization algorithms [34] are also the direction to improve accuracy in the future. By
harnessing advanced machine learning techniques, the model demonstrates a robust ca-
pacity to accurately identify CS from X-ray images, thus offering a critical tool to support
clinicians, particularly those at the nascent stages of their careers or those with limited diag-
nostic experience. Consequently, this model stands to substantially reduce the incidence of
diagnostic errors, such as misdiagnoses or missed diagnoses, and to alleviate the workload
burden on healthcare professionals.

Furthermore, the findings from this study lay a foundation for future research en-
deavors aimed at refining Al-driven diagnostic models, with the potential to enhance the
precision and reliability of CS detection and classification. It opens avenues for the integra-
tion of such models into clinical workflows, thereby augmenting the diagnostic process
with a level of accuracy and efficiency that aligns closely with the nuanced demands of
contemporary medical practice.

In conclusion, the development and application of the neural network model for CS
diagnosis not only advance the field of medical diagnostics but also promise significant
improvements in patient care outcomes. By addressing the challenges associated with the
current diagnostic modalities for CS, this study contributes to the broader narrative of
leveraging artificial intelligence to enrich healthcare delivery, underscored by a commitment
to accuracy, efficiency, and accessibility.
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Abbreviations

The following abbreviations are used in this paper:

CS cervical spondylosis
Al artificial intelligence
ML machine learning

DL deep learning

CNN  convolutional neural network

A the anteroposterior position of the cervical spine

B the lateral position of the cervical spine

L the left oblique position of the cervical spine

R the right oblique position of the cervical spine

(@) the set of right and left oblique positions of the cervical spine
W.

A the weighted average based on the proportions of images in A, B,L, and R positions
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