
 

 
 

 

 
Sensors 2024, 24, 3724. https://doi.org/10.3390/s24123724 www.mdpi.com/journal/sensors 

Article 

Full-Scale Aggregated MobileUNet: An Improved U-Net  

Architecture for SAR Oil Spill Detection 

Yi-Ting Chen 1, Lena Chang 2,3,* and Jung-Hua Wang 1,4 

1 Department of Electrical Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan; 

20953003@mail.ntou.edu.tw (Y.-T.C.); jhwang@mail.ntou.edu.tw (J.-H.W.) 
2 Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, 

Keelung 202301, Taiwan 
3 The Intelligent Maritime Research Center (IMRC), National Taiwan Ocean University,  

Keelung 202301, Taiwan 
4 Department of Electrical Engineering, AI Research Center, National Taiwan Ocean University,  

Keelung 202301, Taiwan 

* Correspondence: lenachang@mail.ntou.edu.tw; Tel.: +886-02-2462-2192 (ext. 7206) 

Abstract: Oil spills are a major threat to marine and coastal environments. Their unique radar 

backscatter intensity can be captured by synthetic aperture radar (SAR), resulting in dark regions in 

the images. However, many marine phenomena can lead to erroneous detections of oil spills. In 

addition, SAR images of the ocean include multiple targets, such as sea surface, land, ships, and oil 

spills and their look-alikes. The training of a multi-category classifier will encounter significant chal-

lenges due to the inherent class imbalance. Addressing this issue requires extracting target features 

more effectively. In this study, a lightweight U-Net-based model, Full-Scale Aggregated Mo-

bileUNet (FA-MobileUNet), was proposed to improve the detection performance for oil spills using 

SAR images. First, a lightweight MobileNetv3 model was used as the backbone of the U-Net encoder 

for feature extraction. Next, atrous spatial pyramid pooling (ASPP) and a convolutional block atten-

tion module (CBAM) were used to improve the capacity of the network to extract multi-scale fea-

tures and to increase the speed of module calculation. Finally, full-scale features from the encoder 

were aggregated to enhance the network’s competence in extracting features. The proposed modi-

fied network enhanced the extraction and integration of features at different scales to improve the 

accuracy of detecting diverse marine targets. The experimental results showed that the mean intersection 

over union (mIoU) of the proposed model reached more than 80% for the detection of five types of marine 

targets including sea surface, land, ships, and oil spills and their look-alikes. In addition, the IoU of the 

proposed model reached 75.85 and 72.67% for oil spill and look-alike detection, which was 18.94% and 

25.55% higher than that of the original U-Net model, respectively. Compared with other segmentation 

models, the proposed network can more accurately classify the black regions in SAR images into oil spills 

and their look-alikes. Furthermore, the detection performance and computational efficiency of the pro-

posed model were also validated against other semantic segmentation models. 
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1. Introduction 

Oil spills pose a significant threat to the environment, affecting bodies of water, land, 

and the air [1]. Oil spill incidents, often caused by accidents involving oil tankers, ships, 

and pipelines, release crude oil, gasoline, fuel, and oil by-products into water bodies, 

thereby polluting water and harming aquatic life. Oil spills have increased due to inten-

sive oil exploration and transportation, which are driven by global demand. The environ-

mental and socio-economic impacts are severe, causing water pollution, shoreline degra-

dation, and economic losses in fishing and marine industries [2]. 
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In the past, conventional on-site monitoring played a significant role in oil spill de-

tection. However, this monitoring carried various risks to those conducting it, including 

direct contact with oil and exposure to other site hazards [3]. Subsequently, ocean surveil-

lance systems consisting of aircraft and coastguard forces were introduced. While these 

systems proved effective, the high cost associated with mapping extensive areas hindered 

their widespread adoption [4]. Synthetic Aperture Radar (SAR) mounted on aircraft or 

satellites plays a crucial role in detecting oceanic oil spills by emitting electromagnetic 

pulses and capturing reflected echoes. Therefore, SAR images are now the favored data 

source for oil spill detection owing to their high resolution, all-day observation, robust 

penetration ability, and extensive spatial coverage capabilities. In SAR images, oil on the 

sea surface can be considered a dark area because of the suppression of capillary waves 

and a reduction in radar backscatter. This results in the depiction of oil spills as black 

spots, contrasting with the brighter regions of uncontaminated sea areas [5,6]. However, 

challenges persist, including misclassification of dark spots and the presence of look-

alikes such as low wind areas and algae blooms [7–9]. Despite the widespread use of SAR, 

there is a need for enhanced detection accuracy and minimized response time to address 

the global issue of oil spills. This study highlights the importance of early detection, mon-

itoring, and timely intervention using SAR technology to mitigate the environmental dis-

asters caused by oil spills and protect marine ecosystems. 

In recent years, many studies have attempted to detect oil spills using SAR data. Typ-

ically, detection methods are classified into two categories, where the input SAR image is 

annotated as oil spills or look-alikes. Solberg et al. [5] proposed an automated detection 

algorithm with a three-phase process to identify oil spills and look-alikes, including prior 

knowledge, Gaussian density, and rule-based density corrections. Chang et al. [10] pro-

posed a region-based SAR oil spill detection method. First, the segmentation method was 

used to extract the oil spill in SAR images, and an oil spill model was established. Finally, 

the generalized likelihood ratio test method was used to derive a closed-form solution for 

oil spill detection using this model. Karathanassi et al. [11] proposed an object-oriented 

approach and employed adaptive local contrast and brightness thresholds for image seg-

mentation to identify dark formations. Two empirical formulas for oil spill classification 

based on brightness were established, considering the characteristics of dark areas and 

marine environments. Fuzzy classification methods were then applied to differentiate 

look-alikes. Konik et al. [12] proposed an efficient decision tree forest to evaluate im-

portant features that distinguish oil spills from look-alikes. Keramitsoglou et al. [13] in-

troduced an automated system using artificial intelligence fuzzy logic to detect potential 

oil spills using SAR images. The system analyzes SAR images to identify dark patterns 

with characteristic shapes that indicate an oil spill. The output provides users with rele-

vant information for decision-making through images and tables. Karantzalos et al. [14] 

proposed an approach involving a pre-processing step with advanced image simplifica-

tion, followed by geometric level set segmentation to detect potential oil slicks. Finally, a 

classification is performed to separate look-alikes, resulting in the extraction of oil spills. 

Fiscella et al. [15] presented a probabilistic approach to distinguish oil spills from look-

alikes based on the statistics of previously measured characteristics. Espedal et al. [16] 

improved the oil spill recognition system by incorporating historical wind data and esti-

mating the duration of time since the spill occurred. 

SAR sensors are capable of monitoring large areas and can, therefore, include addi-

tional contextual information, such as ships, coastal structures, platforms, and land. This 

contextual information is semantically significant in the classification process. For exam-

ple, a dark spot with a linear formation near a ship indicates an oil spill from the ship 

rather than a look-alike. Moreover, detailed information about nearby coastal areas or 

ships is crucial for early warning systems and decision-making modules to mitigate the 

overall risk. Consequently, a segmentation approach is necessary to accurately identify 

multi-class instances in SAR images. Furthermore, oil spills across the sea surface are dy-

namic and evolving phenomena influenced by factors like wind speed and sea currents, 
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resulting in oil slicks of various shapes and sizes to account for these variations and elim-

inate the need for handcrafted features. These techniques can evaluate geometric charac-

teristics such as shape and size. Considering these factors, along with the presence of 

multi-class instances, semantic segmentation models become a robust alternative capable 

of extracting rich informative content from SAR images. Therefore, the development of an 

automated oil detection model capable of classifying these elements can enhance the over-

all detection performance. Implementing a neural network for the early detection of oil 

spills, whether in specific regions or on a broader scale, could provide timely alerts to 

relevant authorities, expediting responses to such disasters. Therefore, this study utilized 

deep learning to extract features from SAR images. These models contribute to decision-

making processes through semantic segmentation, particularly in classifying oil spills. 

In the past few years, the utilization of convolutional neural networks (CNNs) has 

surpassed the performance of exclusively relying on traditional methods in various tasks 

and applications, even for the remote sensing data [17]. Deep convolutional neural net-

works, particularly in the case of fully convolutional networks (FCNs), demonstrate su-

perior performance in extracting semantic image features for detection purposes [18]. In 

response to the difficulty of overlooking global context information in the FCN method, 

Zhao et al. [19] introduced the Pyramid Scene Parsing Network (PSPN), a multi-scale net-

work crafted to enhance the effective capture of a scene’s global contextual representation. 

Moreover, popular image segmentation models based on the encoder–decoder structures, 

such as U-Net [20] and DeepLab series [21,22], have been utilized for oil spill segmenta-

tion. Basit et al. [23] used EfficientNetb0 as the encoder backbone of U-Net for multi-class 

classification, including oil spills, look-alikes, land, sea surface, and ships. Fan et al. [24] 

proposed a feature merge network (FMNet) based on the combination of threshold seg-

mentation algorithms and U-Net to extract the global features of oil spills using SAR im-

ages. Rousso et al. [25] used a SAR image filtering technique to emphasize the physical 

characteristics of oil spills. Subsequently, the detection performance was improved in U-

Net and DeepLabv3+ architectures. Shaban et al. [26] introduced a two-stage deep learn-

ing framework designed for oil spill detection, particularly focusing on a highly unbal-

anced dataset. In the first stage, a novel 23-layer CNN classifies patches by considering 

the percentage of pixels associated with an oil spill. The second stage employs a five-stage 

U-Net structure for semantic segmentation. Mahmoud et al. [27] introduced a novel deep 

learning model for the automated detection of oil spills using the Dual Attention Model 

(DAM). The U-Net segmentation network was improved by integrating DAM, allowing 

the selective highlighting of local and global characteristics in SAR images. DAM consists 

of two components, namely the Channel Attention Map and the Position Attention Map, 

which were integrated into the decoder part of the U-Net. Li et al. [28] proposed a dual-

stream U-Net (DS-UNet) for SAR oil spill detection. The proposed model consisted of two 

parts: one focused on inter-scale alignment for the extraction of global information, and 

one focused on feature extraction of edges to capture local information. Moreover, Ma et 

al. [29] used the Sentinel-1 dual-polarimetric data for oil spill detection and incorporated 

amplitude and phase information. In addition, the Cloude polarimetric decomposition 

parameters were integrated into the proposed model to enhance feature extraction. The 

experimental results showed that the proposed modified DeepLabv3+ model with Res-

Net101 as the backbone can improve detection performance. 

The U-Net model with a simple and effective encoder–decoder architecture and skip 

connections method make it a powerful tool in semantic segmentation models, especially 

when working with small datasets and requiring high-resolution outputs. The above stud-

ies [23–29] showed that the U-Net model could achieve better detection performance in 

oil spill detection within semantic segmentation models. However, the detection results 

showed that some oil spill regions were incomplete, fragmented, and misclassified as 

look-alikes, resulting in the degradation of detection performance. The correct and effec-

tive classification of black areas is crucial to improving the oil spill detection performance. 

Therefore, the study adopted the U-Net architecture and further improved the encoding 
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and decoding layers to effectively extract features of oil spills and achieve better discrim-

ination from look-alikes. In this study, an improved lightweight U-Net model, Full-Scale 

Aggregated MobileUNet (FA-MobileUNet), was introduced to improve the oil spill detec-

tion performance using SAR images. Due to the distinct characteristics of various marine 

targets, this study focused on modifying the network architecture to improve feature ex-

traction. The modified network enhanced the extraction of features and aggregated fea-

tures at different scales to improve the accuracy of detecting diverse marine targets. First, 

the U-Net encoder was replaced with MobileNetv3 as the backbone network to improve 

feature extraction while reducing the number of parameters. Next, atrous spatial pyramid 

pooling (ASPP) and a convolutional block attention module (CBAM) were utilized to improve 

the feature extraction while reducing the computational burden. These improvements en-

hanced the detection speed and prevented the loss of target information to obtain more com-

prehensive semantic features. Finally, the capacity of the network was improved by aggregat-

ing low-level and high-level features at different scales to enhance segmentation accuracy. 

The rest of the paper is structured as follows: Section 2 describes the data used in this 

study. Then, the method of the proposed model is introduced. The experimental results 

and discussions are presented in Section 3 and Section 4, respectively. Finally, conclusions 

are drawn in Section 5. 

2. Materials and Methods 

2.1. Oil Spill Dataset 

2.1.1. MKLab Dataset 

Due to the difficulty in obtaining SAR images of oil spills, the detection of oil spills 

remains a challenging issue. Moreover, the lack of a common dataset for oil spill detection 

is a major limitation that must be addressed. Previous studies [12,27–30] used different 

custom datasets that corresponded to the specific methodologies used at the time. Never-

theless, the results presented lack comparability because each deep learning-based seman-

tic segmentation approach employed a distinct dataset, preventing the establishment of a 

common basis for comparison. 

In 2019, Krestenitis et al. [31] created a common dataset for oil spill detection using SAR 

images, and it is publicly accessible on their website (https://mklab.iti.gr/results/oil-spill-de-

tection-dataset/, accessed on 24 January 2022). In brief, SAR images featuring areas of the sea 

contaminated with oil were collected from the European Space Agency (ESA) database, spe-

cifically the Copernicus Open Access Hub (https://scihub.copernicus.eu/, accessed on 24 Jan-

uary 2022). Geographical coordinates and timestamps for pollution events were provided by 

the European Maritime Safety Agency (EMSA) through the CleanSeaNet service. Conse-

quently, the identification of dark areas in the SAR images as oil spills was corroborated by 

the EMSA records, establishing robust ground truth data. The oil spills recorded span from 

September 2015 to October 2017, while the SAR images were sourced from the Sentinel-1 Eu-

ropean Satellite missions. Sentinel-1 satellites utilize a SAR system operating at C-band, offer-

ing a ground range coverage of approximately 250 km and a pixel spacing of 10 × 10 m. The 

radar image polarization is dual, with VV and VH polarizations. For the SAR oil spill dataset, 

only the raw data from the VV polarization were processed. 

After preprocessing by the authors [31], the dataset contained 1112 images with a 

resolution of 1250 × 650, which were divided into 1002 training and 110 testing images. 

The dataset contained a total of five categories, including oil spills, look-alikes, ships, land, 

and sea surface, and each category was assigned a different RGB color, as shown in Figure 

1. The RGB labels were created for the images, with cyan, red, brown, green, and black 

masks corresponding to oil spills, look-alikes, ships, land, and sea surface, respectively. 

RGB masks were mainly used for different categories to support visualization. However, 

for the deep learning training and evaluation processes, one-dimensional target labels 

were required instead of RGB values. Therefore, one-channel label masks were also pro-

vided by assigning each color category an integer value from 0 to 4, as shown in Table 1. 
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Figure 1. Samples of SAR oil spill images from the MKLab dataset. Cyan, red, brown, green, and 

black correspond to oil spills, look-alikes, ships, land, and sea surface, respectively. (a) SAR images. 

(b) RGB masks. 

Table 1. Five categories and their corresponding labels. 

Category 1D Label RGB Label 

Sea surface 0 Black 

Oil spills 1 Cyan 

Look-alikes 2 Red 

Ships 3 Brown 

Land 4 Green 

2.1.2. MKLab Dataset Augmentation 

Due to the inherent challenges in oil spill detection based on SAR imagery, the data 

were distributed differently among the categories. Typically, samples from the sea or land 

category dominate the dataset, while data on oil spills, look-alikes, and ships are often 

confined to smaller regions in the SAR images. Moreover, insufficient data can lead to 

overfitting and poor generalization of the deep learning network. Therefore, this study 

augmented the MKLab dataset by searching for marine oil spill events and obtaining Sen-

tinel-1 images from the ESA website based on the location and time of the events. Span-

ning from 2015 to 2022, 127 SAR images containing marine oil spills were collected to 

augment the dataset for the subsequent deep learning model training process. The study 

annotated the acquired SAR images according to the format in Table 1 to ensure con-

sistency with the labeled data in the MKLab dataset. 

Therefore, this study used a hierarchical image segmentation algorithm supple-

mented with manual inspection to label different categories, as shown in Figure 2. The 

first stage separated the sea surface from the land. The image was binarized through gray-

scale morphological opening and closing operations, as well as through Otsu’s threshold-

ing method. Since the average gray scale of the land backscattering was higher than that 

of the sea, the land part was expected to correspond to a white area. However, there were 

some small black regions inside; conversely, the sea part was a large black area containing 

small white regions. Then, through the morphological hole filling, the small black holes 

existing in the large white region were filled, so that the land part corresponded to the 

white region. The sea part was processed through negative conversion first, and the sea 

part was inverted into a large white region, which contained some small black regions. 

Then, the small black regions in the sea were filled with closing technology. After negative 

conversion, the sea part corresponded to the black region. This process effectively sepa-

rated the sea from the land, with the land labeled in green. The second stage involved 

segmenting the ship targets in the sea area. Targets with strong reflections in the sea are 
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suspected ship targets. Therefore, the non-ship targets were first removed through edge 

and line detection. After smoothing through morphological binary image dilation and 

erosion, edge detection was performed using the Sobel edge detection algorithm [32]. Sub-

sequently, non-ship targets arranged in a straight line were removed through straight line 

detection. Ship target identification was then conducted by comparing their characteristics 

(size, shape, and statistical), and the ship targets were labeled in brown. The last step 

served to segment the oil spills and look-alikes in the sea. Oil spills on the sea surface 

suppress waves, resulting in weaker radar backscatter and darker gray scale in images. In 

the leeward part of the sea or when the wind speed is low, darker gray scales similar to 

oil spills appear on SAR images. Therefore, the research used this feature to cut out the 

dark gray-scale area from the sea, and then compare the gray-scale contrast between this 

area and the surrounding sea area. According to the geo-location of the oil pollution inci-

dent, supplemented by manual interpretation, oil spills and look-alikes were distin-

guished and labeled in cyan and red, respectively. Finally, the different colored categories 

were converted into annotations ranging from 0 to 4. Additionally, the annotation method 

was employed to verify the ground truth data of the MKLab dataset, ensuring that the 

ground truth data of the images were correct. 

 
 

 
(a) 

 
 

 
(b) 

Figure 2. The collected SAR images corresponding to oil spill events in the Mediterranean Sea. The 

sampling dates from left to right are 25 February 2021, 5 September 2021, and 5 September 2021. 

Cyan, red, brown, green, and black correspond to oil spills, look-alikes, ships, land, and sea surface, 

respectively. (a) SAR images. (b) RGB masks. 
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2.2. The Proposed FA-MobileUNet Model 

To achieve high-performance oil spill detection, deep learning networks are used to 

extract the unique features of oil spills in SAR images. However, marine oil spill SAR im-

ages may cover multiple categories, including oil spills, look-alikes, sea surface, land, and 

ships. The distribution of the data in the MKLab dataset was highly unbalanced. There-

fore, this study introduced a semantic segmentation model to improve detection perfor-

mance with a limited training dataset. This study proposed a lightweight segmentation 

network structure called the Full-Scale Aggregated MobileUNet (FA-MobileUNet) model 

to address oil spill detection, with the purpose of improving segmentation precision and 

reducing mis-segmentation between oil spills and look-alikes. Effectively extracting the 

adjacent spatial information of the black areas in images enables deep learning models to 

be more accurate when learning the features of oil spills and look-alikes. In addition, var-

ious ocean phenomena result in diverse scales for black areas. Therefore, it is important 

to improve the model spatial and multi-scale feature extraction capabilities. 

The proposed network was designed as an end-to-end structure comprising an en-

coder–decoder architecture. First, in order to reduce the computation cost of the model 

and effectively extract feature maps, MobileNetv3 was used as the backbone architecture 

of the model. Next, ASPP and CBAM were added to allow the model to extract complex 

image details and provide multi-scale contextual information. Finally, the full-scale ag-

gregation architecture facilitated the connection of low-level spatial information and high-

level semantic features at various scales, enhancing the extraction of contextual infor-

mation. These modules could reduce the misclassification of dark areas and prevent the 

fragmentation of detection results. Therefore, the proposed model effectively distin-

guished oil spills in SAR images and improved the accuracy of oil spill detection through 

the improvement of feature extraction. The overall architecture of the proposed FA-Mo-

bileUNet model is shown in Figure 3. 

 

Figure 3. The architecture of the proposed FA-MobileUNet model. 

2.2.1. U-Net 

U-Net [20], originally introduced by Ronneberger et al. in 2015, is an extension of the 

FCN structure developed for biomedical image semantic segmentation. It has gained 

widespread adoption across various applications. The architecture of the U-Net model 

consists of a five-stage contraction stage (encoder), a five-stage expansive stage (decoder), 

and a bottleneck bridge, as shown in Figure 4. The encoder part adopts an FCN-based 

architecture to capture the image’s content. In contrast, the decoder part facilitates precise 

localization by upsampling the extracted feature map while reducing its filters, creating a 
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broader but shallower representation. Each block of the encoder consists of two 3 × 3 con-

volutional layers with a Rectified Linear Unit (ReLU) activation function, followed by a 

maxpooling layer with a 2 × 2 kernel size and stride of 2. The number of channels in the 

five stages of the encoder is as follows: 64, 128, 256, 512, and 1024. The decoder consists of 

an upsampling layer followed by a 3 × 3 convolutional layer, a concatenate layer with 

features from the corresponding path of the encoder, two 3 × 3 convolutional layers and 

ReLU activation, and a maxpooling layer with a kernel size of 2 × 2 and stride of 2. Finally, 

the output from the decoder is subsequently processed through a 1 × 1 convolution em-

ploying the Sigmoid activation function to derive the probability of class prediction for 

each pixel. 

 

Figure 4. The U-Net structure proposed by Ronneberger et al. [20]. 

2.2.2. MobileNetv3 

MobileNet introduces numerous innovative concepts aimed at minimizing the num-

ber of parameters, making it more efficient for mobile devices while simultaneously 

achieving high classification accuracy. MobileNetv1 [33] was first introduced in 2017 and 

designed to optimize accuracy while considering the limited resources of on-device or 

embedded applications. MobileNetv1 successfully achieves two primary objectives: re-

ducing model size and complexity to create efficient computer vision models for mobile 

applications. The basic architecture of MobileNetv1 relies on an efficient design that uses 

depth-wise separable convolutions to build lightweight deep neural networks. Next, the 

second version of the MobileNet architecture was introduced in 2018 [34]. MobileNetv2 

incorporates new elements to optimize the architecture for tasks such as classification, 

object detection, and semantic segmentation. MobileNetv2 introduces two new features 

to the architecture: shortcut connections between the bottlenecks and linear bottlenecks 

between the layers. The fundamental concept behind MobileNetv2 is that the bottlenecks 

encode the intermediate inputs and outputs of the model, while the inner layer encapsu-

lates the model’s ability to transform from lower-level concepts, such as pixels, to higher-

level descriptors like image categories. Similar to traditional residual connections, these 

shortcuts help make training faster and improve the accuracy. The latest advancements in 

the MobileNet architecture were consolidated and documented in 2019 [35]. The key in-

novation of MobileNetv3 is the use of AutoML (Automated Machine Learning) to identify 

the optimal neural network architecture for a given problem. MobileNetv3 initially em-

ploys MnasNet, a reinforcement learning-based approach, to explore a coarse architecture 

by selecting the most suitable configuration from a set of discrete choices. Thereafter, the 

model refines the architecture using NetAdapt, an additional technique that gradually 
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trims under-utilized activation channels. A distinctive feature of MobileNetv3 is the inte-

gration of squeeze-and-excitation (SE) blocks [36] into the core architecture. These blocks 

enhance the quality of representations produced by the network by explicitly modeling 

interdependencies between channels in its convolutional features. In the context of Mo-

bileNetv3, this architecture extends MobileNetv2 by incorporating SE blocks into the 

search space, resulting in more robust architectures. Furthermore, the implementation of 

the hard-swish activation function enhances expressiveness while preserving computa-

tional efficiency, achieving a crucial balance in capturing complex data without sacrificing 

performance. 

The limited number of images in the oil spill dataset poses a challenge in training 

deep models from scratch because it can easily lead to overfitting issues. To overcome this 

challenge, the proposed model mitigates overfitting by incorporating a pre-trained back-

bone network. Tuning a pre-trained model through transfer learning is a common practice 

in machine learning and can produce superior results than training it from scratch, par-

ticularly when dealing with small datasets. Therefore, MobileNetv3 was used as the back-

bone architecture of the proposed model in this study, as shown in Figure 5. The backbone 

network was pre-trained on the ImageNet dataset, which had more than 14 million sam-

ples. This advantage made the backbone of the proposed model highly effective in extract-

ing descriptive feature maps. 

 

Figure 5. The block structure of MobileNetv3. 

2.2.3. Attention Mechanism 

The attention mechanism is a key component of many deep learning methods, and 

was designed to improve the model’s ability to focus on relevant parts of the input data. 

In the context of neural networks, attention mechanisms allow models to assign different 

levels of importance to different parts of the input image. Rather than processing the entire 

input equally, the model can selectively attend to specific regions or features that are more 

relevant to the task at hand, enabling it to capture long-range dependencies and improve 

its performance in complex tasks. 

The CBAM [37] is particularly useful for enhancing feature representation and im-

proving the model’s ability to focus on informative spatial and channel-wise features. The 

CBAM typically consists of two attention sub-modules: the channel attention module 

(CAM) and the spatial attention module (SAM), which are shown in Figure 6. The CAM 

module focuses on capturing inter-channel dependencies by computing a channel-wise 

attention map, allowing the model to emphasize important channels and suppress less 

relevant ones. The SAM module captures intra-channel dependencies and computes a 

spatial attention map, which helps the model focus on specific spatial locations within 

each channel, highlighting important regions. Therefore, the combination of channel and 

spatial attention allows the CBAM to adaptively recalibrate the feature maps at different 

levels of abstraction, enabling the model to capture more informative and discriminative 

features. This capability is particularly valuable when dealing with SAR oil images where 

categories vary in size, shape, and context. Therefore, the output feature maps from the 

encoder of the proposed model were enhanced through the CBAM. 
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Figure 6. The structure of the CBAM. 

2.2.4. Atrous Spatial Pyramid Pooling (ASPP) 

The ASPP module was first proposed in the semantic segmentation network 

DeepLabv2 [21]. ASPP serves as a pivotal feature extraction module in the domain of 

CNNs, playing a crucial role in semantic segmentation tasks. The goal is to integrate 

global contextual information across multiple scales within an image, all while avoiding 

downsampling of input feature maps. The core of ASPP is the concept of atrous convolu-

tions, also known as dilated convolutions. This unique property introduces gaps between 

filter weights, enabling the model to capture features from broader spatial information 

without compromising on the resolution of the input feature map. This design decision 

allows the network to capture context information at different scales, with lower dilation 

rates catering to finer details and higher rates addressing more global contextual features. 

An integral component of ASPP is the inclusion of an image-level feature obtained 

through global average pooling. This feature summarizes the entire feature map, provid-

ing the model with a holistic understanding of the image content. This diversity of fea-

tures processed at different scales and with varying levels of context information enriches 

the overall feature representation, making ASPP particularly effective in multi-category 

semantic segmentation tasks. Therefore, in the proposed model, the bottleneck bridge be-

tween the encoder and decoder utilized the ASPP module to improve the detection per-

formance. The structure of the ASPP module is shown in Figure 7. The dilation rates of 

ASPP were selected as 1, 3, 6, and 9 in this study, respectively. 

 

Figure 7. The structure of the ASPP module. 

2.2.5. Full-Scale Aggregation 

Low-level detail feature maps capture spatial information, emphasizing the target 

boundaries, whereas high-level semantic feature maps express positional information, 
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indicating the locations of targets. However, these meaningful features may gradually dis-

appear when progressively upsampling and downsampling. The Full-Scale Aggregation 

(FA) network module represents a significant advancement in the field of computer vision, 

particularly in semantic segmentation. Its purpose is to effectively extract multi-scale con-

textual semantic information within CNNs. Therefore, the FA module can capture contex-

tual features at various scales from the U-Net encoder and aggregate the output features 

of the encoder from different levels with the U-Net decoder, as shown in Figure 8. In the 

present study, the encoder output feature maps enhanced through the CBAM were sam-

pled to the same scale as the decoder by the upsampling/maxpooling layer followed by a 

3 × 3 convolutional layer with 64 filters. Subsequently, feature fusion was performed 

through the concatenate operation. Therefore, the FA combined feature maps from differ-

ent levels of the encoder, which can capture coarse-grained semantics and fine-grained 

details at full scale. 

 

Figure 8. Full-scale aggregation example of stage 4 (44 × 44) of the decoder layer in Figure 3. 

2.3. Evaluation Metric 

In the evaluation process, the Intersection over Union (IoU) and F1-score was utilized 

to evaluate the performance of the semantic segmentation network. IoU is defined as the 

ratio of the area of overlap between the predicted region and the ground truth region to 

the area of union between these two regions. The F1-score is a comprehensive indicator 

that combines precision and recall to evaluate the performance of different semantic seg-

mentation models. The formulas are as follows: 

IoU =
𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∩ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∪ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
=

TP

TP + FP + FN
 (1) 

Precision =
TP

TP + FP
 (2) 

Recall =
TP

TP + FN
 (3) 

F1 − score = 2 ×
Precision × Recall

Precision + Recall
 (4) 

where TP (true positive) represents the model correctly identifying and classifying posi-

tive examples; FP (false positive) represents the model incorrectly identifying an example 

as belonging to the positive class; FN (false negative) represents the model failing to iden-

tify an example that belongs to the positive class. In the experiments, IoU was measured 
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for each category in the dataset, and the mean IoU (mIoU) was computed as the average 

values of IoU across all categories. 

3. Results 

3.1. Experimental Settings 

The study conducted a series of experiments on the MKLab dataset and compared 

the detection performance with other segmentation models to verify the efficiency of the 

proposed model in this section. The experiments were performed on a PC equipped with 

a 12th Gen Intel Core i7-12700KF CPU with 16 GB of memory, 12 GB memory of NVIDIA 

RTX3080, and using CUDA 12.1 with cuDNN v8.8.0. The operating system was Windows 

10 with a 64-bit processor. In addition, Tensorflow-gpu (version 2.10.1) and Keras (version 

2.10.1) were used. In this study, the proposed FA-MobileUNet model was modified based 

on the open-source U-Net [38] architecture. 

The training set of the original MKLab dataset was augmented with the 127 collected 

SAR images to improve the generalization ability and efficiency of the deep learning 

model. Therefore, two datasets were used for the detection performance comparison, in-

cluding the original MKLab dataset and the augmented MKLab dataset, which consisted 

of 1112 and 1239 images, respectively. In the training step, the number of epochs and the 

batch size were set as 600 and 8, respectively. The input image size was set as 352 × 352. 

The learning rate of the model was set as 5 × 10−5. In addition, the Adam [39] optimization 

method and categorical cross-entropy function were selected to train the models. As 

shown in Figure 9, the proposed FA-MobileUNet model using the augmented MKLab 

dataset achieved an accuracy of 0.9901, with a loss of 0.0016. 

  
(a) (b) 

Figure 9. The training process of the proposed FA-MobileUNet model using augmented MKLab 

dataset. (a) Loss. (b) Accuracy. 

3.2. Ablation Experiments 

Through the ablation experiments in this section, the modules of the proposed FA-

MobileUNet model were evaluated on the augmented MKLab dataset and compared with 

the baseline U-Net model. The following experiments were conducted on all possible com-

binations of the CBAM, ASPP, and FA modules to observe their respective efficiencies in 

enhancing the detection performance, as shown in Table 2. 

First, by separately integrating the CBAM, ASPP, and FA modules into the original 

U-Net model, the mIoU can be increased by 2.88%, 4.39%, and 6.95%, respectively, com-

pared with the original U-Net model. When comparing the three modules individually, 

the ASPP and FA modules effectively captured feature maps at different scales, thereby 

improving the detection performance. In particular, for U-Net with the FA module, a sig-

nificant improvement in mIoU was achieved with just a 1% increase in the number of 
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parameters. Next, the experiments compared paired combinations of modules. Moreover, 

combining the CBAM and ASPP modules achieved a mIoU of 78.42%, which was 0.72% 

lower than that of only using the FA module. However, combining the FA module with 

the other two modules achieved a mIoU of over 80%. Finally, the original U-Net combined 

with all three modules reached the highest detection performance with an mIoU of 

82.37%. Compared with the original U-Net model, the number of parameters increased 

by approximately 30% and the mIoU improved by approximately 10%. The experiment 

results validated the performance improvement when using the proposed modules. 

Table 2. Detection performance of U-Net model with all possible combinations of CBAM, ASPP, 

and FA. 

Baseline CBAM ASPP FA Parameters (M) mIoU (%) 

    31.03 72.19 

    31.12 75.07 

    39.49 76.58 

    31.40 79.14 

    39.58 78.42 

    31.49 80.15 

    39.86 80.81 

    40.42 82.37 

3.3. Accuracy Assessment Based on Different Backbone Models 

To verify the lightweight pre-trained backbone models, the encoder of the original 

U-Net was replaced with different CNN backbone architectures to evaluate the detection 

performance using the augmented MKLab dataset, including VGG16 [40], VGG19 [40], 

ResNet50 [41], DenseNet121 [42], EfficientNetB0 [43], Inceptionv3 [44], MobileNetv2 [34], 

and MobileNetv3 [35], as shown in Table 3. The original U-Net model had 31.03 M param-

eters and reached an mIoU of 72.19%. Replacing the backbone network with VGG16 and 

VGG19 architectures reduced the number of parameters by 5.17 M and 2.22 M, respec-

tively. However, the detection performance did not improve much, with mIoUs of 72.73% 

and 72.82%, respectively. Using the ResNet50 backbone network, the number of parame-

ters decreased to 20.67 M, and the mIoU dropped to 67.21%. In addition, replacing the 

backbone network with a DenseNet121, EfficientNetB0, Inceptionv3, MobileNetv2, or Mo-

bileNetv3 architecture reduced the number of parameters by more than 40%. Among 

them, the U-Net model with the DenseNet121 or Inceptionv3 backbone architecture had 

similar detection performance, with mIoUs of 74.77% and 75.22%, respectively. Moreover, 

the MobileNet backbone architecture can effectively reduce the number of parameters 

while maintaining high detection performance. The U-Net model with a MobileNetv3 

backbone architecture achieved a better detection performance than the U-Net model with 

an Inceptionv3 backbone architecture, reaching an mIoU of 75.98%. Furthermore, the 

number of parameters was only 10.57 M. All backbone architectures adopted in these ex-

periments were pre-trained on the ImageNet dataset. By using these efficient backbone 

networks with the pre-trained weights, the U-Net model not only trained faster but also 

had improved feature extraction. Compared with the original U-Net model, the model 

with a MobileNetv3 backbone had a reduction in the number of parameters of approxi-

mately 66% and the mIoU increased by 3.79%. The experimental results validated that the 

U-Net model with the pre-trained MobileNetv3 backbone architecture can effectively re-

duce the number of parameters and improve the detection performance. 
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Table 3. Detection performance of U-Net model with different backbone architectures. 

Model Backbone Parameters (M) mIoU (%) 

U-Net 

x 31.03 72.19 

VGG16 25.86 72.73 

VGG19 28.81 72.82 

ResNet50 20.67 67.21 

DenseNet121 16.41 74.77 

EfficientNetB0 10.83 66.57 

Inceptionv3 17.66 75.22 

MobileNetv2 11.75 73.60 

MobileNetv3 10.57 75.98 

3.4. Segmentation Network Comparison 

In this section, the authors compare the detection performance of the proposed FA-

MobileUNet model with other segmentation network architectures, including U-Net [31], 

LinkNet [31], PSPNet [31], DeepLabv2 [31], DeepLabv3+ [31], ToZero FMNet [24], the En-

semble model [25], CoAtNet-0 [45] and EfficientNetv2 [45]. Krestenitis et al. [31] used dif-

ferent semantic segmentation models and replaced the backbone network with ResNet-

101 and MobileNetv2 for testing. Fan et al. [24] combined the feature merge network 

(FMNet) and the threshold segmentation algorithm based on the U-Net model to extract 

more semantic features. Rousso et al. [25] combined the U-Net and DeepLabv3+ models 

with different filtering algorithms and conducted ensemble training to enhance the mod-

els’ generalization capabilities. Basit et al. [45] introduced a new gradient profile (GP) loss 

function and combined it with other loss functions to improve the detection performance.  

First, the detection performance of the proposed model was compared with that of 

the deep learning models in [31] using the original MKLab dataset. Table 4 summarizes 

the performance evaluation of the different semantic segmentation models in terms of 

IoU. The U-Net, LinkNet, PSPNet, and DeepLabv2 models all utilize the ResNet-101 back-

bone network. The detection results showed that the performance of U-Net and LinkNet 

improved, while the performance of PSPNet worsened slightly, and DeepLabv2 had the 

worst performance. In addition, compared with the U-Net using the ResNet-101 backbone 

network, DeepLabv3+ with a MobileNetv2 backbone network achieved a better detection 

performance, reaching an mIoU of 65.06%. However, the FA-MobileUNet achieved an 

mIoU of 78.93%, which was 13.96% and 13.87% higher than that of the U-Net and 

DeepLabv3+ models, respectively. Compared with the original U-Net model, the IoU of 

oil spills and look-alikes using the FA-MobileUNet model increased by 16.63% and 

30.60%, respectively. 

Next, the deep learning models presented in Table 4 were trained using the aug-

mented MKLab dataset and compared with the models in [24-25,45], as shown in Table 5. 

Using the augmented MKLab dataset for model training, the mIoU of the U-Net, LinkNet, 

PSPNet, DeepLabv2, and Deeplabv3 models increased by 2.43%, 1.91%, 4.53%, 7.1%, and 

2.44%, respectively. The data augmentation methods, including flipping, shifting, and ro-

tating from [24-25,45] were utilized. However, ToZero FMNet, which combines U-Net 

with FMNet and the threshold segmentation algorithm, did not achieve a better detection 

performance, with an mIoU of only 61.90%. By using the GP loss function, CoAtNet-0 and 

EfficientNetv2 achieved mIoUs greater than 70% and the detection performance of ships 

and look-alikes significantly improved compared to the U-Net model. The Ensemble 

model trained by U-Net and DeepLabv3+ reached an mIoU of 71.12%. The proposed FA-

MobileUNet model achieved the best detection performance, with an mIoU of 80.55% and 

14.9 M parameters. The proposed model used the pre-trained backbone network of Mo-

bileNetv3, which has also been proven to reduce the computational burden while still 

effectively extracting semantic features for model training. 
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Among the five marine categories, sea surface and land were effectively detected, as 

shown in Table 5. Therefore, the detection performance of oil spills and look-alikes was 

further examined in the experiment to compare the effectiveness of the networks pre-

sented in Table 5. The results are summarized in Table 6. In the experiments, the threshold 

values were set to between 0.5 and 0.7; if the IoU exceeded this value, the target detection 

results were considered correct. When the threshold was set to 0.7, the proposed model 

achieved an F1-score of 0.7692 in oil spill detection, which was 0.1127 higher than the 

DeepLabv3+ model with the second highest F1-score in Table 6. The proposed model 

achieved an F1-score of over 0.9 in oil spill and look-alike detection when the threshold 

was set to 0.6. The FA-MobileUNet model consistently achieved the highest F1-score un-

der the different threshold values. Compared with other networks, the proposed model 

could provide a higher computing efficiency and better oil spill detection performance. 

The experimental results verified the superior performance of the proposed model. 

Table 4. Detection performance evaluation of the proposed method using the original MKLab da-

taset in terms of IoU (%). 

Model Backbone Parameters Sea Surface Oil Spills Look-Alikes Ships Land mIoU 

FA-MobileUNet MobileNetv3 14.9 M 96.98 70.42 70.15 60.21 96.91 78.93 

U-Net ResNet-101 51.5 M 93.90 53.79 39.55 44.93 92.68 64.97 

LinkNet ResNet-101 47.7 M 94.99 51.53 43.24 40.23 93.97 64.79 

PSPNet ResNet-101 3.8 M 92.78 40.10 33.79 24.42 86.90 55.60 

DeepLabv2 ResNet-101 42.8 M 94.09 25.57 40.30 11.41 74.99 49.27 

DeepLabv3+ MobileNetv2 2.1 M 96.43 53.38 55.40 27.63 92.44 65.06 

Table 5. Detection performance comparison of the proposed method using the augmented MKLab 

dataset with other segmentation networks in terms of IoU (%). 

Model Backbone Parameters Sea Surface Oil Spills Look-Alikes Ships Land mIoU 

FA-MobileUNet MobileNetv3 14.9 M 97.62 74.28 72.96 61.47 96.44 80.55 

U-Net ResNet-101 51.5 M 95.47 57.01 44.82 46.62 93.08 67.40 

LinkNet ResNet-101 47.7 M 94.82 52.95 47.52 45.11 93.12 66.70 

PSPNet ResNet-101 3.8 M 93.03 45.65 40.62 30.25 91.12 60.13 

DeepLabv2 ResNet-101 42.8 M 95.02 43.12 46.23 15.12 82.34 56.37 

DeepLabv3+ MobileNetv2 2.1 M 96.57 56.34 57.06 32.92 94.18 67.41 

ToZero FMNet x 36.0 M 94.53 49.95 41.40 25.44 87.11 61.90 

CoAtNet-0 x 29.4 M 95.40 50.22 58.85 69.09 94.49 73.61 

EfficientNetv2 B1 16.7 M 95.19 56.42 62.23 72.80 96.59 76.65 

Ensemble Model x x 96.78 56.10 58.88 47.28 96.59 71.12 

Table 6. Detection performance comparison of the proposed method using the augmented MKLab 

dataset with other segmentation networks in terms of F1-score. 

 
IoU > 0.7 IoU > 0.6 IoU > 0.5 

Oil Spills Look-Alikes Oil Spills Look-Alikes Oil Spills Look-Alikes 

FA-MobileUNet 0.7692 0.8542 0.9268 0.9524 0.9708 0.9815 

U-Net 0.5574 0.5750 0.7429 0.7191 0.8790 0.8485 

LinkNet 0.4833 0.6000 0.6715 0.7826 0.8105 0.9333 

PSPNet 0.3019 0.4878 0.5124 0.6222 0.6667 0.7216 

DeepLabv2 0.2593 0.5412 0.3652 0.6809 0.5426 0.7347 

DeepLabv3+ 0.6565 0.6250 0.8571 0.8172 0.9398 0.9524 
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3.5. Oil Spill Detection Result Verification 

Finally, the segmentation results of some visual samples are depicted in Figures 10–

12, which were used to qualitatively evaluate the oil spill detection performance of the 

proposed model. The oil spill images sampled from the testing data were detected by the 

original U-Net, LinkNet, PSPNet, DeepLabv2, DeepLabv3+, and proposed FA-Mo-

bileUNet models. The black, cyan, red, brown, and green colors represent the sea surface, 

oil spills, look-alikes, ships, and land, respectively. As shown in Figure 10, all models cor-

rectly detected oil spills. The U-Net, LinkNet, and PSPNet models misclassified the look-

alikes as oil spills. The DeepLabv2 model only detected look-alikes in two regions, while 

the DeepLabv3+ model had incomplete detection of one look-alike region. However, the 

FA-MobileUNet model accurately detected all look-alike regions. According to the ground 

truth data presented in Figure 11b, the oil spills overlapped with the look-alikes. The 

DeepLabv2 model failed to detect the oil spill regions. Moreover, only the FA-MobileUNet 

model detected all the oil spill regions, while other models failed to detect some oil spills 

in overlapping areas. As shown in Figure 12a, there were five ships in the SAR image, one 

of which was located inside the port. All models effectively detected ships outside the port 

area. However, for the ship inside the port, the U-Net and DeepLabv3+ models incorrectly 

classified the ship into the land category, because the ship was close to the breakwater, as 

shown in the yellow circled area in Figure 12c,g. While the LinkNet model correctly iden-

tified the ship, it incorrectly identified part of the breakwater as the ship category. More-

over, the PSPNet and DeepLabv2 models not only misclassified the ship but also failed to 

detect the breakwater. As shown in Figure 12h, the FA-MobileUNet model correctly de-

tected all ships in the image. The experimental results showed that the FA-MobileUNet 

model had an improved multi-scale and multi-target detection performance, resulting in 

more accurate segmentation results compared to the other segmentation networks. 

  
(a)  (b)  

  
(c)  (d)  

  
(e)  (f)  
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(g)  (h)  

Figure 10. The segmentation results of the 55th image in the MKLab dataset: (a) original SAR image, (b) 

the corresponding ground truth data, and results from (c) U-Net model, (d) LinkNet model, (e) PSPNet 

model, (f) DeepLabv2 model, (g) DeepLabv3+ model, (h) FA-MobileUNet model. Black, cyan, red, 

brown, and green represent the sea surface, oil spills, look-alikes, ships, and land, respectively. 

  
(a)  (b)  

  
(c)  (d)  

   
(e)  (f)  

  
(g) + (h)  

Figure 11. The segmentation results of 71st image in the MKLab dataset: (a) original SAR image, (b) the 

corresponding ground truth data, and results from (c) U-Net model, (d) LinkNet model, (e) PSPNet 

model, (f) DeepLabv2 model, (g) DeepLabv3+ model, (h) FA-MobileUNet model. Black, cyan, red, 

brown, and green represent the sea surface, oil spills, look-alikes, ships, and land, respectively. 
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(a)  (b)  

  
(c)  (d)  

   
(e)  (f)  

  
(g) + (h)  

Figure 12. The segmentation results of 106th image in the MKLab dataset: (a) original SAR image, 

(b) the corresponding ground truth data, and results from (c) U-Net model, (d) LinkNet model, (e) 

PSPNet model, (f) DeepLabv2 model, (g) DeepLabv3+ model, (h) FA-MobileUNet model. Black, , 

red, brown, and green represent the sea surface, look-alikes, ships, and land, respectively. 

  
(a) 

  
(b) 
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(c) 

  
(d) 

  
(e) 

  
(f) 

Figure 13. The segmentation results of U-Net model with different modules: (a) original SAR image, 

(b) the corresponding ground truth data, and results from (c) U-Net model, (d) U-Net model with 

CBAM, (e) U-Net model with ASPP module, (f) U-Net with FA module. Black, cyan, red and brown-

represent the sea surface, oil spills, look-alikes and ships, respectively. 

4. Discussion 

4.1. Oil Spill Detection Performance Analysis 

Oil spills and look-alikes are somewhat competitive because dark areas identified as 

oil spills could be misclassified as look-alikes and vice versa. This phenomenon compli-

cates the distinction between oil spills and look-alikes, as shown in Section 3.4. The detec-

tion models [31] provided a relatively high performance for the oil spills, but had a poor 

detection performance for look-alikes. While the models [25,45] improved the overall de-

tection performance, the oil spill detection performance was not improved compared to 

the original U-Net model. Therefore, this study analyzed the improvement in oil spill de-

tection performance of the three modules, including CBAM, ASPP, and FA, as shown in 

Table 7. These modules increased the IoU of oil spills by more than 7%. By effectively 

aggregating high-level semantic features and low-level spatial information, the detection 

performance of look-alikes with diverse scales in the images can be improved. Therefore, 

the U-Net model with the FA module achieved a better look-alike detection performance, 

reaching an IoU of over 70%. These modules helped to correctly classify dark areas as oil 

spills or look-alikes. The segmentation results of the U-Net model with different module 

combinations are shown in Figure 13. The detection results of the original U-Net model 
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misclassified the dark areas, as shown in Figure 13c. The U-Net model with the CBAM 

enhanced the spatial information and helped reduce the misclassification of dark areas. 

The U-Net model combined with the ASPP module could detect targets with different 

scales. Finally, the U-Net model with the FA module effectively aggregated multi-scale 

contextual information, thereby achieving a better detection performance. Therefore, the 

U-Net model combined with different modules can improve the feature extraction of spa-

tial information and semantic features of the network, which reduced the fragmentation 

and misclassification of dark areas. 

Table 7. Performance comparison of the different modules in terms of IoU (%). 

Model Modules Oil Spills Look-Alikes Ships 

U-Net 

× 59.14 54.78 55.31 

+CBAM 66.85 58.42 57.64 

+ASPP 68.48 62.24 57.61 

+FA 69.92 73.02 59.68 

4.2. Revised Labeled Data for Ships 

The source of the oil spill dataset used in the study was the Sentinel-1 data, with a 

swath that is 250 km wide and a pixel spacing of 10 m × 10 m. SAR sensors with such 

specifications can cover a wide area of interest while capturing relatively small-sized ship 

targets. As shown in Table 5, the deep learning methods of [24,25,31,45] had poor detection 

performance for ships. The experimental results showed that the proposed model can ef-

fectively extract features of ships, with an mIoU of over 60%. Moreover, the proposed FA-

MobileUNet model demonstrated effective detection of ships, successfully distinguishing 

ships close to land, as shown in Figure 12. This study made full use of features extracted 

from the encoding layer at different scales and aggregated them into the decoding layer 

to effectively improve the overall detection performance of the oil spill dataset. 

Furthermore, the experimental results in Tables 4 and 5 show that the detection per-

formance for ships was the worst among the five categories. Therefore, this study identi-

fied the reason by checking the ground truth data of the MKLab dataset. Although the 

data were collected based on oil spill events, some errors in the manual annotations were 

found. In the MKLab dataset, some annotated categories in the images are wrong or some 

ground truth data corresponding to SAR images are incorrect. For instance, the brown 

color representing ships was incorrectly annotated as the green color representing land, 

as shown in A1 of Figure 14. The image and its corresponding labeling data are completely 

incorrect, as shown in A2 of Figure 14. Moreover, the poor ship detection performance 

may be due to the fact that many ships in the training images were not annotated, result-

ing in the inability to effectively detect the ships in the testing data. Therefore, this study 

re-examined the augmented MKLab dataset and corrected the ground truth data for a 

total of 83 images with incorrect or missing annotations; some of these samples are shown 

in Figure 15. 

The experiment compared the detection performance of the deep learning models 

using the augmented and revised MKLab datasets, as shown in Table 8. The U-Net, 

LinkNet, PSPNet, DeepLabv2, DeepLabv3+, and FA-MobileUNet models were utilized to 

evaluate the revised MKLab dataset. Compared with the results using the augmented 

MKLab dataset, the ship detection performance of the models trained by the revised 

MKLab dataset improved, and the IoU increased by 8.77%, 12.15%, 25.86%, 26.15%, 

15.94%, and 14.72% for the U-Net, LinkNet, PSPNet, DeepLabv2, DeepLabv3+, and FA-

MobileUNet models, respectively. With the exception of the ship category, only a slight 

difference in the detection performance was observed because the revised MKLab dataset 

primarily labeled the missing annotation of ships in the dataset. By correcting these ground 

truth data, the ship category can be more effectively learned by the deep learning network. 
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The experimental results validated that the proposed method outperforms the semantic seg-

mentation models proposed in other studies in terms of detection performance. 

A
1 

  

A
2 

  
 (a) (b) 

Figure 14. The incorrect ground truth data in the dataset. A1 and A2 are the 111th and 275th training 

images, respectively. Black, cyan, red, brown, and green represent the sea surface, oil spills, look-

alikes, ships, and land, respectively. (a) SAR image. (b) Ground truth data. 

B
1 

   

B
2 

   
 (a) (b) (c) 

Figure 15. Example of the revised ground truth data in the dataset. B1 and B2 are the 140th and 

157th training images, respectively. Black, cyan, red, brown, and green represent the sea surface, oil 

spills, look-alikes, ships, and land, respectively. (a) SAR image. (b) Original ground truth data. (c) 

Revised ground truth data. 

Table 8. Performance comparison of the augmented and revised MKLab datasets in terms of IoU (%). 

Model MKLab Dataset Sea Surface Oil Spills Look-Alikes Ships Land mIoU 

FA-MobileUNet 
Augmented  97.62 74.28 72.96 61.47 96.44 80.55 

Revised  97.54 75.85 72.67 76.19 96.48 83.74 

U-Net 
Augmented 95.47 57.01 44.82 46.62 93.08 67.40 

Revised  95.54 56.91 47.12 55.39 94.24 69.84 

LinkNet 
Augmented  94.82 52.95 47.52 45.11 93.12 66.70 

Revised  94.77 53.06 46.87 57.26 93.81 69.15 

PSPNet 
Augmented 93.03 45.65 40.62 30.25 91.12 60.13 

Revised  93.25 45.67 40.24 56.11 92.03 65.46 

DeepLabv2 
Augmented  95.02 43.12 46.23 15.12 82.34 56.37 

Revised  94.28 44.31 45.94 41.27 82.65 61.69 

DeepLabv3+ 
Augmented 96.57 56.34 57.06 32.92 94.18 67.41 

Revised  96.28 56.22 56.12 48.86 94.82 70.46 
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5. Conclusions 

This study proposed an oil spill detection method based on the U-Net model using 

SAR data. The proposed FA-MobileUNet model utilizes the lightweight pre-trained Mo-

bileNetv3 network as the backbone. Additionally, the CBAM and ASPP modules are em-

ployed to efficiently extract the semantic features. Finally, the multi-scale feature maps 

from the encoding layer are aggregated to the decoding layer, allowing the deep learning 

model to effectively learn the features of each category. The performance of the proposed 

method was evaluated through experiments on the MKLab dataset. In addition, SAR im-

ages of oil spill events from 2015 to 2022 were collected to augment the training data of 

the MKLab dataset. The oil spill detection performance was assessed using IoU. The ex-

perimental results demonstrated that the proposed FA-MobileUNet model outperforms 

other models in terms of computation efficiency and detection performance. The proposed 

model achieved an mIoU of over 80%, with only 48% of the parameters of the original U-

Net model. The experiments also validated that the proposed model can better distinguish 

between look-alikes and oil spills. Moreover, the detection performance for ships was 

greatly improved by aggregating multi-scale features. The study also identified the rea-

sons for the poor detection performance of ships in other deep learning algorithms using 

the MKLab dataset. Adjusting incorrect and missing annotations in the dataset allowed 

the deep learning model to be trained properly for each category. In conclusion, the pro-

posed model achieved a high detection performance and computational efficiency on the 

oil spill dataset. 
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