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Abstract: To robustly and adaptively reconstruct displacement, we propose the amplitude modula-

tion integral reconstruction method (AM-IRM) for displacement sensing in a self-mixing interfer-

ometry (SMI) system. By algebraically multiplying the SMI signal with a high-frequency sinusoidal 

carrier, the frequency spectrum of the signal is shifted to that of the carrier. This operation over-

comes the issue of frequency blurring in low-frequency signals associated with continuous wavelet 

transform (CWT), enabling the precise extraction of the Doppler frequency of the SMI signal. Fur-

thermore, the synchrosqueezing wavelet transform (SSWT) is utilized to enhance the frequency res-

olution of the Doppler signal. Our experimental results demonstrate that the proposed method 

achieves a displacement reconstruction accuracy of 21.1 nm (0.89%). Additionally, our simulations 

demonstrated that this method can accurately reconstruct target displacement under the conditions 

of time-varying optical feedback intensity or a signal-to-noise ratio (SNR) of 0 dB, with a maximum 

root mean square (RMS) error of 22.2 nm. These results highlight its applicability in real-world en-

vironments. This method eliminates the need to manually determine the window length for time–

frequency conversion, calculate the parameters of the SMI system, or add additional optical devices, 

making it easy to implement. 
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1. Introduction 

In industrial manufacturing and biomedicine, there is a growing demand for non-

contact, high-precision measurement methods. Recently, self-mixing interferometry 

(SMI), an optical interferometric measurement technique, has gained a significant amount 

of attention due to its extremely compact optical structure, self-alignment capability, and 

measurement accuracy comparable to traditional heterodyne interferometry [1]. SMI oc-

curs when a laser beam is reflected back into the laser cavity by an external reflector, caus-

ing interference within the cavity. To date, SMI has been widely applied to measure vari-

ous parameters, including velocity [2–4], displacement [5–8], angles [9,10], thickness 

[11,12], and absolute distance [13–16], as well as in biomedicine applications [17,18] and 

laser parameter assessments [19–22]. 

In the field of displacement measurement, various displacement reconstruction 

methods are employed to extract displacement signals. Among them, the fringe-counting 

method is renowned for its simplicity and ease of use [23]. However, this simple method 

has a resolution limitation of half the wavelength (λ/2). Measurement accuracy can be 

further enhanced through techniques such as multiple reflections [24] and even the power 

algorithm [25]. To further enhance the measurement accuracy, the phase unwrapping 

method (PUM) was introduced [26–28]. The PUM calculates the optical feedback phase 

Citation: Huang, Y.; Lai, W.; Chen, 

E. Displacement Sensing for Laser 

Self-Mixing Interferometry by  

Amplitude Modulation and Integral 

Reconstruction. Sensors 2024, 24, 

3785. https://doi.org/10.3390/ 

s24123785 

Academic Editor: Lei Huang 

Received: 22 May 2024 

Revised: 7 June 2024 

Accepted: 9 June 2024 

Published: 11 June 2024 

 

Copyright: © 2024 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Sensors 2024, 24, 3785 2 of 16 
 

 

by solving the inverse cosine of the power of the SMI signal, achieving a resolution of up 

to λ/40. However, this method requires the additional estimation of the motion direction. 

To eliminate the need for this direction estimation, researchers proposed the orthogonal 

phase unwrapping method (OPUM). The OPUM uses external optical devices [29–32] or 

additional modulation circuits [33] to generate a pair of orthogonal SMI signals. This 

method leverages the discontinuity of the tangent function and the orthogonal unwrap-

ping method to calculate the optical feedback phase without requiring direction estima-

tions. Both the PUM and OPUM require the calculation of the optical feedback strength 

factor C and the linewidth broadening factor α in the phase transcendental equation be-

fore computing the optical phase corresponding to the displacement. This process is time-

consuming and complicated. Moreover, in actual measurements, the optical feedback 

strength factor is usually time-varying, making accurate parameter measurement chal-

lenging. To avoid the complexities and inaccuracies of parameter estimations, researchers 

have proposed a displacement reconstruction algorithm based on the time–frequency 

spectrum [34,35]. This algorithm segments the signal into overlapping, short time seg-

ments of equal length and calculates the Doppler frequency in each segment using an FFT 

to obtain the Doppler frequency over time. The velocity is then calculated using the Dop-

pler frequency formula, and finally, the displacement is obtained by integration with a 

precision of λ/29. The major drawback of this method is that the window length of time 

segments must be manually adjusted for different measurement objects, preventing the 

implementation of automatic measurements. To address this issue, another time–fre-

quency transformation method, the continuous wavelet transform (CWT), has been pro-

posed. The CWT can adaptively adjust the window length according to the frequency var-

iation in the signal, potentially resolving the problem of manual adjustment. However, 

the CWT suffers from frequency blurring at low frequencies, which prevents it from ac-

curately resolving the low-frequency components of the signal, leading to reconstruction 

failures. 

To address this shortcoming of the CWT in SMI signal extraction and to achieve more 

accurate displacement reconstruction, this paper innovatively proposes an amplitude 

modulation integration reconstruction method (AM-IRM). Specifically, a high-frequency 

sinusoidal carrier is algebraically multiplied with the SMI signal to shift its frequency to 

that of the high-frequency carrier. The synchrosqueezing wavelet transform is then ap-

plied for the time–frequency transformation, allowing for the precise extraction of the 

complete Doppler frequency of the signal. The target displacement is reconstructed using 

the Doppler velocity integration reconstruction method. This paper is divided into the 

following sections: (1) An introduction to the principle of the AM-IRM; (2) A simulation 

analysis of the impact of different carrier frequencies, time-varying C values, and high 

levels of noise interference on reconstruction accuracy; and (3) The verification of the al-

gorithm’s feasibility through experiments involving harmonic motion and non-coopera-

tive target vibration reconstruction. 

2. Materials and Methods 

2.1. The Theory of Laser SMI 

The structure based on three-mirror Fabry–Pérot (F-P) cavity model is shown in Fig-

ure 1. In the diagram, 1M  and 2M  represent the two end mirrors of the laser resonator 

cavity with reflectivity coefficients 1r  and 2r , respectively. The length of the laser reso-

nator cavity is denoted as DL , and 3M  represents the surface of an external target object 

with a reflectivity coefficient 3r . The space between the output end of the laser and the 

surface of the target object forms the external cavity, with a length denoted by L . 
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Figure 1. Structure diagram of three-mirror F-P cavity model of laser SMI. 

Assuming the light wave is emitted from the left end and propagates toward the 

right, the initial light wave intensity is given by 0( )j t
Ee

 + , where E  represents the initial 

amplitude of the light wave,    represents the angular frequency of photons, and 0  

represents the initial phase of the system. After emission, the light wave splits into two 

beams. One beam propagates within the resonant cavity, while the other beam transmits 

through the end facet 2M  of the laser and travels back and forth in the external cavity. 

Eventually, the two beams return to the resonant cavity and superimpose at the point 1M

. When the system reaches a stable output state, the superimposed light wave should be 

the same as the initially emitted light wave, thus satisfying the following condition: 

2 2 2

( ) ( )2

1 2 1 2 3(1 | | )
D D

D D

nL nL L
j j

g L g Lj t j t j tc cEe r r e e Ee r r r e e Ee
 

   

+
− −

− −
= + −  (1) 

where 2 /DnL c  represents the phase delay generated by the laser when propagating 

one round trip in the inner cavity, (2 +2 ) /DnL L c  represents the phase delay generated 

by the laser when propagating one round trip in the outer cavity, c represents the speed 

of light in vacuum, g represents the gain of the laser medium,    represents the in-

tracavity losses of the laser, and 
2

2 3 2(1 ) /r r r = −  represents the feedback coupling coef-

ficient when light is reflected from an external target object back to the resonator cavity. 

Setting 2 /F L c =  and 2 /
DL DnL c = , the steady-state condition of the system in the 

presence of external feedback light is as follows: 

( + sin ) ( ) cos

1 21=
FLD D F

j g L
r r e e

     − − +  (2) 

From Equation (2), the laser gain in the presence of external feedback can be derived 

as follows: 

1 2

1 1
[ln( ) cos ]F

D

g
L r r

  = + −  (3) 

In this case, under the influence of external light feedback, the change in laser gain 

can be expressed as follows: 

costh F

D

g g g
L


 = − = −  (4) 

where thg  denotes the threshold gain of the laser. It can be observed that the change in 

laser gain primarily depends on the phase change associated with one round trip of the 

laser in the external cavity. By combining this change in threshold gain, the phase change 

of the system can be expressed as follows: 

2
2 ( ) (sin cos )D

th F F

nL
v v

c
      = − + +  (5) 

where 𝑣 and 𝑣𝑡ℎ denote optical phase with and without optical feedback, respectively, 

and   represents the linewidth broadening factor of the system. Considering that the 
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system reaches a stable output state, the phase of the system will no longer change; that 

is, =0 . Define the external light feedback intensity C as follows: 

21L

D

C


 


= +  (6) 

where 2 /L L c =   and 2 /D DnL c =   represent the time for the laser to propagate one 

round trip in the external cavity ( 2 3M M− ) and in the resonant cavity ( 1 2M M− ), respec-

tively. By solving the equation =0 , the emitted frequency of the laser can be obtained 

as follows: 

sin(2 arctan )
2

th L

L

C
   


= − +  (7) 

Therefore, the phase equation for the SMI effect can be obtained as follows: 

0 sin( arctan )F FC   = − +  (8) 

where F  and 0  represent the output phase of the system with and without optical 

feedback, respectively. Under weak feedback conditions, 0F  . 

0

4 ( )L t



=  (9) 

Combined with Equation (9), the instantaneous frequency of the SMI signal can be 

deduced as follows: 

01 2

2
inst

d v
f

dt



 
= =  (10) 

As seen in Equation (10), the frequency of SMI signal is essentially Doppler fre-

quency. 

In a typical Fabry–Perot cavity model, the output optical power of the system is pro-

portional to the carrier density, which is in turn proportional to the gain above the thresh-

old for lasing. Consequently, the output optical power is essentially proportional to the 

gain above the threshold. Based on this relationship, the power equation for an SMI sys-

tem can be derived as follows: 

0 0 0(1 )= [1 ( cos )] (1 cos )F F

D

P P k g P k P m
L


 = +  + − = +  (11) 

where k  represents a constant determined solely by the intrinsic properties of the laser, 

0P  represents the laser output power when there is no optical feedback in the system, and 

the parameter m  is the modulation coefficient of the system, which represents the visi-

bility of the SMI signal fringes. The value of m  is varies based on factors such as the 

strength of the optical feedback, the distance between the laser and the external target, 

and the reflectivity of the target surface. A higher m  value indicates more pronounced 

SMI fringes, thereby potentially enhancing sensitivity and resolution of SMI applications. 

2.2. Amplitude Modulation Combined with SSWT for Displacement Measurement 

The basis of the SSWT is the CWT, and the CWT can be expressed as follows: 

1
( , ) ( ) ( )

t b
W a b P t dt

aa




−

−
=   (12) 

where a  is the scale factor, which is inversely proportional to the frequency, and b  is 

the translation factor, which is time dependent. ( )t   is the wavelet basis function. 

( , )W a b  reveals how similar the signal is to the wavelet basis function at ( , )a b . 
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Figure 2a shows the SMI signal corresponding to a displacement with an amplitude 

of 2 µm and a frequency of 100 Hz. By performing CWT on this signal, we construct Figure 

2b. To observe the frequency values in the low-frequency region more clearly, the vertical 

axis is transformed to a logarithmic scale, resulting in Figure 2c. From Figure 2c, it is evi-

dent that in the time–frequency spectrum, the signal with a frequency below 1.4 kHz be-

comes blurred, causing the main frequency in the low-frequency region to be over-

whelmed. When the instantaneous velocity of the motion is relatively slow, the main fre-

quency of the generated Doppler signal becomes very small. This low-frequency signal 

becomes challenging to detect in the time–frequency spectrum obtained through CWT, 

ultimately failing to detect the velocity of the object. To address the frequency resolution 

issue of CWT in the low-frequency region, we employ a high-frequency sinusoidal carrier 

signal 
shiftf  to multiply the SMI signal, resulting in an amplitude-modulated SMI (AM-

SMI) signal, as shown in Figure 3a. This operation shifts the spectrum of the SMI signal to 

the carrier frequency region, as shown in Figure 3b, where the carrier frequency is 6 kHz. 

It can be observed that in the time–frequency spectrum, the signal energy above the carrier 

frequency leaks toward higher frequencies, causing the signal energy to be dispersed [36], 

which is not conducive to the extraction of the main frequency ridge. To suppress the 

spectral leakage problem of CWT and enhance the spectral resolution, SSWT is introduced 

to compress the frequency values within the time–frequency grid of the signal, which 

makes the frequency values of the signal more concentrated and improves the frequency 

resolution at the same time. 

 

Figure 2. Time−frequency diagram of SMI signal from CWT: (a) SMI signal, (b) time−frequency 

spectrum, and (c) the logarithmic spectrum of (b). 
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Figure 3. Effect of amplitude modulation on signal CWT transformation: (a) AM−SMI signal, (b) the 

corresponding CWT time−frequency representation of (a). 

In the synchronous squeeze period, energy is transferred from the time-scale plane 

( , )a b  to the time–frequency plane ( ( , ), )a b b . The synchronous squeeze value ( , )lT b  

of the wavelet transform can be obtained by compressing the values of the interval

 / 2, / 2l l   − +   around any central frequency l  as shown below: 

3/2

( )
( , ) ( , )      ( ) { , ( , ) 0}l i

A b
T b W a b a da A b a W a b −= =   (13) 

In the time–frequency diagram ( , )lT b , the frequency with the largest energy is 

called the time–frequency ridge, which is expressed through Equation (14) and shown in 

the red line of Figure 4b as follows: 

max 2 *max( ( , ))lf T b =  (14) 

 

Figure 4. The extraction of time−frequency ridge: (a) SSWT time−frequency representation without 

amplitude modulation, (b) SSWT time−frequency representation of the AM−SMI signal, (c) Ex-

tracted time−frequency ridge and direction information. 
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Meanwhile, max D shiftf f f= + , where Df  is the Doppler frequency corresponding to 

the target motion. Compared to Figure 3b, the energy of the time–frequency ridge (the red 

line in Figure 4b) of the signal is more concentrated, and the frequency resolution is im-

proved. As shown in Figure 4b, the low-frequency component of the SMI signal is shifted 

to the carrier frequency, which can be clearly distinguished as indicated by the Y-axis label 

in the legend. Then, the absolute value of the Doppler velocity is obtained by subtracting 

the carrier frequency shiftf  from the time–frequency ridge, as described in Equation (15) 

and shown by the blue line in Figure 4c, which is referred to as frequency down-conver-

sion. The time–frequency spectrum from SSWT is shown without amplitude modulation 

in Figure 4a. It is evident that the DC component replaces the Doppler signal as the time–

frequency ridge, which contributes to the Doppler signal extraction failure. 

maxD shiftf f f= −  (15) 

Furthermore, the direction of velocity is calculated using the method described in the 

literature [37], which is shown as the red line in Figure 4c. In this figure, the high level of 

the square wave indicates a positive velocity direction, signifying that the object moves 

away from the laser. Conversely, the low level of the square wave indicates a negative 

velocity direction, indicating that the object moves toward the laser. 

Based on the motion direction information, Doppler frequency recovery and dis-

placement reconstruction are performed, as illustrated in Figure 5. The blue line in Figure 

5a represents the Doppler signal corresponding to the target motion. It can be observed 

that the frequency curve exhibits discontinuous jumps near the zero frequency, which oc-

curs because the frequency variation reaches its minimum at the zero frequency, and the 

frequency resolution of the time–frequency spectrum is insufficient at this point. 

We employ the generalized regression neural network (GRNN) mentioned in the lit-

erature [34] to fit this discontinuous variation. The fitted Doppler curve is shown as the 

red line in Figure 5a. The relationship between the Doppler frequency and velocity is as 

follows: 

2
D

v
f


=  (16) 

The target motion velocity can be obtained from the fitted Doppler frequency curve. 

Subsequently, by integrating the velocity, the displacement curve of the target can be ac-

quired, as shown by the blue line in Figure 5c, with the red line representing the reference 

displacement curve. The reconstruction error of the displacement is shown in Figure 5d, 

and the RMS error is 10.1 nm, as indicated by the red dashed line. The overall algorithm 

flow chart is illustrated in Figure 6. 
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Figure 5. Displacement reconstruction process based on time−frequency ridge line: (a) Doppler fre-

quency, (b) Doppler velocity, (c) reconstructed displacement and its reference, (d) error curve. 

 

Figure 6. Flow chart of the proposed method. 

3. Results 

3.1. Simulated Results 

The theory of the SSWT used in displacement measurement is described in the pre-

vious section. On this basis, a series of simulations are carried out to demonstrate its per-

formance. The parameters used in the simulations are listed in Table 1. 

The carrier frequency influences the extraction of the Doppler frequency, which in 

turn affects the accuracy of the displacement reconstruction. To investigate this, we simu-

lated the impact of different carrier frequencies on the signal reconstruction accuracy, and 

the results are shown in Figure 7. It can be observed that an optimal modulation frequency 

exists around the carrier frequency, with the most suitable range being 3 kHz to 6 kHz, 

and the minimum RMS error is 7.8 nm. 

Table 1. Simulation Parameters’ Setup. 

Parameters Value 

Feedback Level Factor (𝐶) 0.5 

Line-width Enhancement Factor (𝛼) 4 

Sampling Points (N) 4000 

Sampling Frequency (𝑓𝑠) 100 kHz 

Target Vibration Frequency (𝑓0) 100 Hz 

Target Vibration Amplitude (𝐴0) 2 µm 

Wavelength (𝜆0) 650 nm 

Carrier Frequency (𝑓𝑠ℎ𝑖𝑓𝑡) 6 kHz 
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It is demonstrated that when we shift the entire frequency curve out of the low-fre-

quency blurred region, the time–frequency ridge of the signal can be completely extracted. 

For convenience, the time–frequency ridge can be accurately extracted when the carrier 

frequency satisfies the following condition: 

max( )shift instf f  (17) 

where instf  is the instantaneous frequency of the SMI signal. When combined with Equa-

tion (9), instf  can be expressed as follows: 

0 04 sin(2 )1 1 4 ( )

2 2

F

inst

A f td d L t
f

dt dt

  

   
=  =  (18) 

By combining Equation (17) and Equation (18), the following relation is derived: 

0 04
shift

A f
f




  (19) 

On the other hand, when the carrier frequency is too high, the level of frequency 

leakage will become more severe, so the minimum carrier frequency can be selected. 

 

Figure 7. The displacement reconstruction error of different carrier frequencies. 

In practical measurements, the movement of the laser focal point on the object’s sur-

face causes changes in the geometric region illuminated by the light spot, leading to vari-

ations in the C value of the SMI system. Compared to the PUM, our approach demon-

strates a more stable displacement reconstruction accuracy under conditions of time-var-

ying C values. Figure 8a shows the simulated C value with random variations in the range 

of 0.1 to 1.8. Figure 8b presents the corresponding SMI signal, while Figure 8c depicts the 

amplitude-modulated SMI signal. Performing the SSWT on the modulated SMI signal 

yields the time–frequency plot shown in Figure 8d. It can be observed that the time–fre-

quency curve is symmetric around the carrier frequency, and the frequency of the signal 

is fully displayed when Equation (17) is satisfied. By extracting the maximum frequency 

value at each time instant, the time–frequency ridge is obtained, as indicated by the red 

line. Figure 8e shows the extracted non-directional Doppler frequency curve and direction 

information. Using these two components, the true time-varying Doppler frequency in-

formation is calculated, as shown by the blue line in Figure 8f, with its smoothed curve 

represented by the red line. Based on the relationship between the Doppler frequency and 

velocity, the motion velocity is calculated, as shown in Figure 8g. Subsequently, the target 

displacement is calculated through integration, as shown in Figure 8h. The reconstructed 

displacement is shown in Figure 8i, with a root mean square (RMS) error of 11.1 nm. 
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Figure 8. The displacement reconstruction process under the condition of variable C value: (a) ran-

dom C value, (b) SMI signal, (c) AM−SMI signal, (d) time−frequency ridge, (e) absolute value of 

Doppler frequency and the direction information, (f) Doppler frequency, (g) Doppler velocity, (h) 

displacement, (i) error curve. 

The proposed method not only effectively resists the influence of time-varying C val-

ues but also exhibits strong noise immunity. Even under 0 dB SNR conditions, the algo-

rithm maintains a high displacement reconstruction accuracy, as shown in Figure 9. Fig-

ure 9a presents the SMI signal with an SNR of 0 dB, while Figure 9b shows a locally mag-

nified portion of the signal, revealing that the signal details are almost lost at this point. 

Figure 9c illustrates the AM-SMI signal. As shown in Figure 9d, even under strong noise 

interference, the time–frequency ridge of the signal can still be effectively extracted. The 

displacement reconstruction process based on the time–frequency ridge is the same as 

described earlier. The reconstruction error curve is shown in Figure 9i, with an RMS error 

of 22.2 nm. 
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Figure 9. The displacement reconstruction accuracy under the condition of SNR = 0 dB: (a) SMI 

signal, (b) details of (a), (c) AM−SMI signal, (d) time−frequency ridge, (e) absolute value of Doppler 

frequency and the direction information, (f) Doppler frequency, (g) Doppler velocity, (h) displace-

ment, (i) error curve. 

3.2. Experiment Results 

To verify the feasibility of this method, we set up an experimental system as shown 

in Figure 10. The laser source used is a multi-longitudinal-mode semiconductor laser di-

ode (LD650P007, Thorlabs (Newton, NJ, USA)) with a wavelength of 650 nm and an out-

put power of 7 mW. The laser diode (LD) is integrated with a photodetector (PD) in a 

cylindrical metal package. An adjustable focus lens (FL) housed on the front of the package 

focuses the laser on the target. A variable attenuator (VA) placed in the external cavity is 

used to adjust the optical feedback factor [38]. The target is placed 30 cm away from the 

laser, and a small amount of light is reflected or scattered back into the laser cavity. The 

optical intensity of the SMI signal is converted to the current, converted to the voltage, 

amplified, and filtered by the analog circuit (A.C.). Finally, the waveform of the SMI signal 

is observed and collected by an oscilloscope (TBS2000B SERIES, Tektronix, Beaverton, OR, 

USA), and the calculation is processed on a computer. The sampling frequency of the os-

cilloscope is set to 100 kHz. The measured object in the experiment is a loudspeaker with 

a driven frequency of 100 Hz. 

The experimentally acquired SMI signal is shown in Figure 11a. We set the carrier 

frequency to 6 kHz, and the corresponding AM-SMI signal is shown in Figure 11b. At this 

carrier frequency, the maximum value of the signal is approximately equal to the carrier 

frequency, resulting in a relatively clear time–frequency ridge. The extracted time–fre-

quency ridge and direction information are presented in Figure 11d. The true Doppler 

frequency curve that was recovered based on the direction information is shown by the 

blue line in Figure 11e, while the smoothed curve is represented by the red line. The mo-

tion velocity curve of the loudspeaker, obtained by the Doppler frequency shift formula, 

is illustrated in Figure 11f. Furthermore, the displacement curve obtained through velocity 

integration is shown by the blue line in Figure 11g, with the red line indicating the refer-

ence displacement. Compared to the reference displacement, the measurement error of 
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our proposed method is presented in Figure 11h, with an RMS measurement error of 21.1 

nm. 

 

Figure 10. Experimental setup. 

 

Figure 11. Harmonic displacement reconstruction experiment: (a) SMI signal, (b) AM−SMI signal, 

(c) time−frequency ridge, (d) absolute value of Doppler frequency and the direction information, (e) 

Doppler frequency, (f) Doppler velocity, (g) displacement, (h) error curve. 

Furthermore, we employ an arbitrary waveform generator (MHS2300A-02M, Mhin-

stek, Beijing, China) to drive the loudspeaker, using a carrier frequency of 10 kHz. The 

obtained SMI signal is shown in Figure 12a. The resulting AM-SMI signal is shown in 

Figure 12b, and the corresponding SSWT time–frequency plot is presented in Figure 12c, 

with the time–frequency ridge marked by a red line. The extracted time–frequency ridge 

and direction information are displayed in Figure 12d. The recovered true Doppler signal 

and its smoothed curve are shown in Figure 12e. The corresponding velocity curve and 

displacement reconstruction curve are illustrated in Figure 12g. The error curve is pro-

vided in Figure 12h, showing an RMS error of 31.9 nm. 
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Figure 12. Displacement reconstruction experiment of non−cooperative target: (a) SMI signal, (b) 

AM−SMI signal, (c) time−frequency ridge, (d) absolute value of Doppler frequency and the direction 

information, (e) Doppler frequency, (f) Doppler velocity, (g) displacement, (h) error curve. 

4. Discussion 

(1). The modulation frequency can also be smaller than the maxf , as long as the signal is 

shifted out of the low-frequency blurred region. This is because we calculate the ab-

solute value of the difference between the time–frequency ridge and the carrier fre-

quency. Regardless of which is larger, we can obtain the value of the Doppler fre-

quency as described in Equation (15). In other words, if the signal frequency below 

the carrier frequency becomes blurred, it can be replaced by the symmetric frequency 

signal above the carrier frequency, which has a minimal impact on the extraction of 

the Doppler frequency. As shown in Figure 12e, the extracted maximum signal fre-

quency is approximately 12 kHz, which is higher than the carrier frequency. How-

ever, this does not affect the accurate extraction of the Doppler frequency curve of 

the signal. 

(2). This algorithm employs the GRNN fitting method to smooth the non-smooth Dop-

pler frequency curve around the zero frequency. In the error curve, it can be observed 

that the error reaches an extreme value at the point at which the velocity is zero, cor-

responding to the changes in the displacement direction. Consequently, for motion 

involving multiple frequency components and complex velocity curves, the recon-

struction error tends to increase. 

(3). In actual measurements, speckle interference is likely to occur in the SMI system. 

According to the description in the literature [37], the gain of SMI signals generated 

at different points on the surface of an object can be expressed as follows: 

( , )
( , ) cos[ ( , )]

2 D

x y
G x y x y

L


  = − +  (20) 

where DL  is the length of the internal cavity, 𝜔 is the optical frequency with feed-

back, and    is the time that light propagates in the external cavity. 

0( , ) ( , )x y KU x y = , where 𝐾 is an intracavity coupling coefficient and is constant 
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when the laser is selected. 0 ( , )U x y  and ( , )x y  represent the changes in the ampli-

tude and phase of the electric field, which are generated by target surface roughness, 

and x and y are coordinates in the coordinate planes of the target surface. From Equa-

tion (20), it is apparent that the signal intensity is closely linked to the geometrical 

shape and reflectivity of the target surface. Different points on the reflection surface 

produce different SMI signals, and the amplitude of the final detected signal is mod-

ulated by the roughness and reflectivity of the target surface in the light spot. When 

the target moves relative to the light spot, the area of the target surface covered by 

the light spot changes, which leads to a change in the signal gain at that moment. 

Consequently, when the target moves, an envelope appears on the SMI signal,  

whose amplitude is related to the roughness of the object’s surface and the motion 

amplitude. Moreover, the larger the amplitude, the more pronounced the speckle en-

velope, as demonstrated by the comparison between Figure 12a and Figure 11a. In 

practical measurements, the surface roughness of different objects varies considera-

bly, necessitating an algorithm with strong speckle interference suppression capabil-

ities. From an algorithmic perspective, our algorithm exhibits an excellent level of 

resilience against speckle interference. This is because changes in the signal ampli-

tude do not affect the determination of the dominant frequency at any given moment. 

Only when the speckle is large enough to cause signal baseline drift, resulting in the 

DC component becoming the dominant frequency, will it impact the reconstruction 

accuracy. 

5. Conclusions 

In conclusion, this study proposed the AM-IRM to reconstruct the displacement in 

SMI system. By innovatively shifting the signal frequency to a higher-frequency region 

through algebraic multiplication with a high-frequency carrier, we obtain the time–fre-

quency spectrum of the signal using the SSWT. The Doppler frequency of target motion 

is extracted by identifying the time–frequency ridge and subsequently subtracting the car-

rier frequency. Then the displacement of the target motion is reconstructed using the Dop-

pler velocity integration method. The reconstruction accuracy under conditions of time-

varying C values and a low signal-to-noise ratio in practical scenarios is analyzed through 

simulations, demonstrating the strong robustness of the proposed method. Experimen-

tally, the displacement reconstruction accuracy for harmonic vibration reaches 21.1 nm 

(0.89%). This method overcomes the critical issue of our inability to extract low-frequency 

components of signals in wavelet transforms. Furthermore, by employing the syn-

chrosqueezing wavelet transform, the frequency resolution in the time–frequency spec-

trum is enhanced, the spectral leakage problem of high-frequency components in wavelet 

transforms is mitigated, and the accuracy of the Doppler frequency curve is effectively 

improved. This study provides a practical and stable solution for displacement recon-

struction methods based on SMI signals. 
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